Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Science Enhancements by the MAVEN Participating Scientists


NASA implemented a Participating Scientist Program and released a solicitation for the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) proposals on February 14, 2013. After a NASA peer review panel evaluated the proposals, NASA Headquarters selected nine on June 12, 2013. The program’s intent is to enhance the science return from the mission by including new investigations that broaden and/or complement the baseline investigations, while still addressing key science goals. The selections cover a broad range of science investigations. Included are: a patching of a 3D exosphere model to an improved global ionosphere-thermosphere model to study the generation of the exosphere and calculate the escape rates; the addition of a focused study of upper atmosphere variability and waves; improvement of a multi-fluid magnetohydrodynamic model that will be adjusted according to MAVEN observations to enhance the understanding of the solar-wind plasma interaction; a global study of the state of the ionosphere; folding MAVEN measurements into the Mars International Reference Ionosphere under development; quantification of atmospheric loss by pick-up using ion cyclotron wave observations; the reconciliation of remote and in situ observations of the upper atmosphere; the application of precise orbit determination of the spacecraft to measure upper atmospheric density and in conjunction with other Mars missions improve the static gravity field model of Mars; and an integrated ion/neutral study of ionospheric flows and resultant heavy ion escape. Descriptions of each of these investigations are given showing how each adds to and fits seamlessly into MAVEN mission science design.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17


  1. M.H. Acuna, J.E.P. Connerney, P. Wasilewski et al., Magnetic field and plasma observations at Mars: initial results of the Mars Global Surveyor Mission. Science 279, 1676 (1998)

  2. S.M. Bailey, A.M. Merkel, G.E. Thomas, D.W. Rusch, Hemispheric differences in Polar Mesospheric Cloud morphology observed by the Student Nitric Oxide Explorer. J. Atmos. Sol.-Terr. Phys. 69, 1407–1418 (2007)

  3. C. Bertucci, C. Mazelle, M. Acuna, Interaction of the solar wind with Mars from Mars Global Surveyor MAG/ER observations. J. Atmos. Sol.-Terr. Phys. 67, 1797 (2005)

  4. M. Beuthe, S. Le Maistre, P. Rosenblatt et al., Density and lithospheric thickness of the Tharsis province from MEX MaRS and MRO gravity data. J. Geophys. Res. 117, E04002 (2012). doi:10.1029/2011JE00397

  5. A. Boesswetter, Y. Lammer, U. Kulikov et al., Non-thermal water loss of the early Mars: 3D multi-ion hybrid simulations. Planet. Space Sci. 58(14–15), 2031 (2010)

  6. S.W. Bougher, J.M. Bell, J.R. Murphy et al., Polar warming in the Mars thermosphere: seasonal variations owing to changing insolation and dust distributions. Geophys. Res. Lett. 33, L02203 (2006). doi:10.1029/2005GL024059

  7. S.W. Bougher, P.-L. Blelly, M. Combi et al., Neutral upper atmosphere and ionosphere modeling. Space Sci. Rev. 139, 107 (2008)

  8. S.W. Bougher, T.M. McDunn, K.A. Zoldak et al., Solar cycle variability of Mars dayside exospheric temperatures: model evaluation of underlying thermal balances. Geophys. Res. Lett. 37, L05201 (2009)

  9. S.W. Bougher, D. Pawlowski, J.M. Bell et al., Solar cycle variability of Mars dayside exospheric temperatures: model evaluation of underlying thermal balances. J. Geophys. Res. Planets (2014, in preparation)

  10. D.A. Brain, F. Bagenal, M.H. Acuna et al., Observations of low-frequency electromagnetic waves upstream from the martian shock. J. Geophys. Res. 107, 1076 (2002)

  11. D.A. Brain, J.S. Halekas et al., Variability of the altitude of the martian sheath. Geophys. Res. Lett. 32, L18203 (2005). doi:10.1029/2005GL023126

  12. D.A. Brain, J.S. Halekas, R. Lillis et al., A comparison of global models for the solar wind interaction with Mars. Icarus 206(1), 139 (2010)

  13. E. Carlsson, A. Fedorov, S. Barabash et al., Mass composition of the escaping plasma at Mars. Icarus 182, 320–328 (2006). doi:10.1016/j.icarus.2005.09.020

  14. J.W. Chamberlain, D.M. Hunten, Theory of Planetary Atmospheres (Academic Press, San Diego, 1987)

  15. E. Chassefiere, F. Leblanc, Mars atmospheric escape and evolution; interaction with the solar wind. Planet. Space Sci. 52, 1039–1058 (2004)

  16. R.T. Clancy, B.J. Sandor, CO2 ice clouds in the upper atmosphere of Mars. Geophys. Res. Lett. 25(4), 489–492 (1998)

  17. R.T. Clancy, M.J. Wolff, B.A. Whitney, Mars equatorial mesospheric clouds: global occurrence and physical properties from Mars Global Surveyor Thermal Emission Spectrometer and Mars Orbiter Camera limb observations. J. Geophys. Res. 112, E04004 (2007). doi:10.1029/2006JE002850

  18. A.J. Coates, Pickup ions at comets. Adv. Space Res. 33, 1977 (2004)

  19. M. Cowee, S.P. Gary, Electromagnetic ion cyclotron wave generation by planetary pickup ions: one dimensional hybrid simulations at sub-Alfvenic pickup velocities. J. Geophys. Res. 117, A017568 (2012)

  20. M. Cowee, C.T. Russell, R.J. Strangeway, X. Blanco-Cabo, One-dimensional hybrid simulations of obliquely propagating ion cyclotron waves: application to ion pickup at Io, Io’s plasma environment during the Galileo flyby: global three-dimensional. J. Geophys. Res. 112, 6230 (2007)

  21. J.E. Creasey, J.M. Forbes, D.P. Hinson, Global and seasonal distribution of gravity wave activity in Mars’ lower atmosphere derived from MGS radio occultation data. Geophys. Res. Lett. 33, L01803 (2006a). doi:10.1029/2005GL024037

  22. J.E. Creasey, J.M. Forbes, G.M. Keating, Density variability at scales typical of gravity waves observed in Mars’ thermosphere by the MGS accelerometer. Geophys. Res. Lett. 33, L22814 (2006b). doi:10.1029/2006GL027583

  23. S.M. Curry, M. Liehmohn, X. Fang et al., The influence of production mechanisms on pick-up ion loss at Mars. J. Geophys. Res. (2012). doi:10.1029/2012JA017665

  24. P.A. Delamere, Hybrid code simulations of the solar wind interaction with Pluto. J. Geophys. Res. 114, 3220 (2009)

  25. M. Delva, C. Mazelle, C. Bertucci, Upstream ion cyclotron waves at Venus and Mars. Space Sci. Rev. 162, 5 (2011)

  26. E. Dubinin, M. Franz, M. Federov et al., Ion energization and escape on Mars and Venus. Space Sci. Rev. 162, 173–211 (2011). doi:10.1007/s11214-011-9831-7

  27. S. England, R.J. Lillis, On the nature of the variability of the martian thermospheric mass density: results from electron reflectrometry with Mars Global Surveyor. J. Geophys. Res. 117, E02008 (2012). doi:10.1029/2011JE003998

  28. J.R. Espley, P. Cloutier, D.H. Crider et al., Low-frequency plasma oscillations at Mars during the October 2003 solar storm. J. Geophys. Res. 110, A09S33 (2005)

  29. X. Fang, M.W. Liehmohn, A.F. Nagy et al., Escape probability of martian atmospheric ions: controlling effects of the electromagnetic fields. J. Geophys. Res. 115, A04308 (2010). doi:10.1029/2009JA014929

  30. J.M. Forbes, A.F.C. Bridger, S.W. Bougher et al., Nonmigrating tides in the thermosphere of Mars. J. Geophys. Res. 107(E11), 5113 (2002). doi:10.1029/2001JE001582

  31. J.L. Fox, Response of the martian thermosphere/ionosphere to enhanced fluxes of solar soft X rays. J. Geophys. Res. 109, A11310 (2004). doi:10.1029/2004JA010380

  32. J.L. Fox, A.B. Haç, The escape of o from Mars: sensitivity to the elastic cross sections. Icarus 228, 375 (2014)

  33. D.C. Fritts, S.L. Vadas, K. Wan, J.A. Werne, Mean and variable forcing of the middle atmosphere by gravity waves. J. Atmos. Sol.-Terr. Phys. 68, 247–265 (2006)

  34. D. Gurnett, D. Kirchner, R. Huff et al., Radar sounding of the ionosphere of Mars. Science 310, 1929–1933 (2005). doi:10.1126/science.1121868

  35. J.S. Halekas, D.A. Brain, J.P. Eastwood, Large-amplitude compressive ‘sawtooth’ magnetic field oscillations in the martian magnetosphere. J. Geophys. Res. 116, A07222 (2011). doi:10.1029/2011JA016590

  36. W. Hanson, G.P. Mantas, Viking electron temperature measurements—evidence for a magnetic field in the martian ionosphere. J. Geophys. Res. 93, 7538–7544 (1988)

  37. W.B. Hanson, S. Santani, D.R. Zaccaro, The martian ionosphere as observed by the Viking retarding potential analyzers. J. Geophys. Res. 82, 4351–4363 (1977)

  38. D.S. Harned, Quasineutral hybrid simulation of macroscopic plasma phenomena. J. Comp. Physiol. 47, 452–462 (1982)

  39. E.M. Harnett, R.M. Winglee, Three-dimensional multifluid simulations of ionospheric loss at Mars from nominal solar wind conditions to magnetic cloud events. J. Geophys. Res. 111, A09213 (2006). doi:10.1029/2006JA011724

  40. D.E. Huddleston, A.D. Johnstone, Relationship between wave energy and free energy from pickup ions in the comet Halley environment. J. Geophys. Res. 97, 12217 (1992)

  41. D.E. Huddleston, R.J. Strangeway, X. Blanco-Canoet et al., Io-Jupiter interaction: waves generated by pickup ions. Adv. Space Res. 26, 1513 (2000)

  42. V. Krasnopolsky, Mars’ upper atmosphere and ionosphere at low, medium, and high solar activities: implications for evolution of water. J. Geophys. Res. 107, 5128–5139 (2002)

  43. W.M. Kaula, Theory of Satellite Geodesy (Blaisdell, Waltham, 1966)

  44. A.S. Konopliv, S.W. Asmar, W.M. Folkner et al., Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211, 401–428 (2011)

  45. H. Lammer, Yu.N. Kulikov, H.I.M. Lichtenegger, Thermospheric X-ray and EUV heating by the young Sun on early Venus and Mars. Space Sci. Rev. 122(1–4), 189–196 (2006)

  46. J.S. Leisner, C.T. Russell, M.K. Dougherty et al., Ion cyclotron waves in Saturn’s E ring: initial Cassini observations. Geophys. Res. Lett. 33, L11101 (2006)

  47. Y. Lee, M.R. Combi, V. Tenishev, S.W. Bougher, Hot carbon corona in Mars’ upper thermosphere and exosphere: 1. Mechanisms and structure of the hot corona for low solar activity at equinox. J. Geophys. Res. (2014, submitted)

  48. L. Li, Y. Zhang, Model investigation of the influence of the crustal magnetic field on the oxygen ion distribution in the near martian tail. J. Geophys. Res. 114, A06215 (2009). doi:10.1029/2008JA013850

  49. L. Li, Y. Zhang, Y. Feng, X. Fang, Y. Ma, Oxygen ion precipitation in the martian atmosphere and its relation with the crustal magnetic fields. J. Geophys. Res. 116, A08204 (2011). doi:10.1029/2010JA016249

  50. M.W. Liehmohn, R.A. Frahm, J.D. Winningham et al., Numerical interpretation of high–altitude photoelectron observations. Icarus 182, 383 (2006)

  51. M.W. Liemohn, Y. Ma, A.F. Nagy et al., Numerical modeling of the magnetic topology near Mars auroral observations. Geophys. Res. Lett. 34, L24202 (2007). doi:10.1029/2007GL031806

  52. R. Lundin, Ion acceleration and outflow from Mars and Venus: an overview. Space Sci. Rev. 162, 309–334 (2011). doi:10.1007/s11214-011-9811-y

  53. R. Lundin, S. Barabash, M. Holmstrom et al., Atmospheric origin of cold ion escape from Mars. Geophys. Res. Lett. 36, L17202 (2009). doi:10.1029/2009GL039341

  54. Y.-J. Ma, A.F. Nagy, Ion escape fluxes from Mars. Geophys. Res. Lett. 34, L08201 (2007). doi:10.1029/2006GL029208

  55. Y.-J. Ma, A.F. Nagy, K.C. Hansen et al., Three-dimensional multispecies MHD studies of the solar wind interaction with Mars in the presence of crustal fields. J. Geophys. Res. 107(A10), 1282 (2002). doi:10.1029/2002JA009293

  56. Y. Ma, A.F. Nagy, I.V. Sokolov, K.C. Hansen, Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars. J. Geophys. Res. 109, A07211 (2004). doi:10.1029/2003JA010367

  57. Y.J. Ma, C.T. Russell, A.F. Nagy et al., The importance of thermal electron heating in Titan’s ionosphere: comparison with Cassini T34 flyby. J. Geophys. Res. 116, A10213 (2011). doi:10.1029/2011JA016657

  58. C.V. Manning, Y.J. Ma, D.A. Brain et al., Parametric analysis of modeled ion escape from Mars. Icarus 212(1), 131 (2011)

  59. Y. Matsumoto, K. Seki, Formation of a broad plasma turbulent layer by forward and inverse energy cascades of the Kelvin–Helmholtz instability. J. Geophys. Res. 115, A10231 (2010). doi:10.1029/009JA014637

  60. M. Matta, P. Withers, M. Mendillo, The composition of Mars’ topside ionosphere: effects of hydrogen. J. Geophys. Res. 118, 2681–2693 (2013). doi:10.1002/jgra.50104

  61. J.C. Marty, G. Balmino, J. Duron et al., Martian gravity field model and its time variations from MGS and ODYSSEY data. Planet. Space Sci. 57(3), 350–363 (2009)

  62. E. Mazarico, M.T. Zuber, F.G. Lemoine, D.E. Smith, Observation of atmospheric tides in the martian exosphere using Mars reconnaissance Orbiter radio tracking data. Geophys. Res. Lett. 35, L09202 (2008). doi:10.1029/2008GL033388

  63. A. Määttänen, K. Pérot, F. Montmessin, A. Hauchecorne, Mesospheric clouds on Mars and on Earth, in Comparative Climatology of Terrestrial Planets, ed. by S.J. Mackwell et al. (Univ. of Arizona, Tucson, 2013), pp. 393–413. doi:10.2458/azu_uapress_9780816530595-chi6

  64. T.H. McConnoochie, J.F. Bell, M. Savransky et al., THEMIS_VIS observations of clouds in the martian mesosphere: altitudes, wind speeds, and decameter-scale morphology. Icarus 210, 545–565 (2010). doi:10.1016/j.icarus.2010.07.021

  65. A.S. Medvedev, E. Yiğit, Thermal effects of internal gravity waves in the martian upper atmosphere. Geophys. Res. Lett. 39, L05201 (2012). doi:10.1029/2012GL050852

  66. A.S. Medvedev, E. Yigit, P. Hartogh, E. Becker, Influence of gravity waves on the martian atmosphere: general circulation modeling. J. Geophys. Res. 116, E10004 (2011). doi:10.1029/2011JE003848

  67. M. Mendillo, A. Lollo, P. Withers et al., Modeling mars’ ionosphere with constraints from same-day observations by Mars Global Surveyor and Mars Express. J. Geophys. Res. 116, A11303 (2011). doi:10.1029/2011JA016865

  68. M. Mendillo, A. Marusiak, P. Withers et al., A new semiempirical model of the peak electron density of the Martian ionosphere. Geophys. Res. Lett. 40, 5363–5365 (2013a). doi:10.1002/2013GL05763

  69. M. Mendillo, C. Narvaez, P. Withers et al., Variability in ionospheric total electron content at Mars. Planet. Space Sci. 86, 117–129 (2013b)

  70. D.L. Mitchell, C. Lin, H. Mazelle et al., Probing Mars’ crustal magnetic field and ionosphere with the MGS Electron Reflectometer. J. Geophys. Res. 106(E10), 23419–23427 (2001). doi:10.1029/2000JE001435

  71. F. Montmessin, J.-L. Bertaux, O. Korablev et al., Subvisible CO2 ice clouds detected in the mesosphere of Mars. Icarus 183, 403–410 (2006). doi:10.1016/j.icarus.2006.03.015

  72. F. Montmessin, B. Gondet, J. Bibring et al., Hyperspectral imaging of convective CO2 ice clouds in the equatorial mesosphere of Mars. J. Geophys. Res. 112, E11S90 (2007). doi:10.1029/2007JE002944

  73. D.H. Morgan, D.A. Gurnett, D.L. Kirchner et al., Variation of the martian ionospheric electron density from Mars Express radar soundings. J. Geophys. Res. 113, A09303 (2008). doi:10.1029/2008JA013313

  74. A.F. Nagy, T.E. Cravens, Hot oxygen atoms in the upper atmosphere of Venus and Mars. Geophys. Res. Lett. 15, 433 (1988)

  75. A.F. Nagy, M. Liemohn, J.L. Fox, J. Kim, Hot carbon densities in the exosphere of Mars. J. Geophys. Res. 106, 21565 (2001)

  76. D. Najib, A.F. Nagy, G. Tóth, Y. Ma, Three-dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars. J. Geophys. Res. 116, A05204 (2011)

  77. A.O. Nier, M.B. McElroy, Composition and structure of Mars’ upper atmosphere: results from the Neutral Mass Spectrometers on Viking 1 and 2. J. Geophys. Res. 82, 4341–4349 (1977)

  78. T. Penz, N.V. Erkaev, H.K. Biernat et al., Ion loss on Mars caused by the Kelvin–Helmholtz instability. Planet. Space Sci. 52, 1157–1167 (2004). doi:10.1016/j.pss.2004.06.001

  79. G. Picardi, J.J. Plaut, D. Biccari et al., Radar soundings of the subsurface of Mars. Science 310(5756), 1925–1928 (2005). doi:10.1126/science.1122165

  80. K.G. Powell, P.L. Roe, T.J. Linde et al., A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 154, 284 (1999)

  81. P. Rosenblatt, V. Lainey, S. Le Maistre et al., Accurate Mars Express orbits to improve the determination of the mass and ephemeris of the martian moons. Planet. Space Sci. 56, 1043–1053 (2008)

  82. P. Rosenblatt, S.L. Bruinsma, I.C.F. Müller-Wodarg et al., First ever in situ observations of Venus’ polar upper atmosphere density using the tracking data of the Venus eXpress Atmospheric Drag Experiment (VExADE). Icarus, Special Issue: Advances in Venus Science 217(2), 831–838 (2012)

  83. R. Schunk, A.F. Nagy, Ionospheres (Cambridge University Press, Cambridge, 2009)

  84. H. Shinagawa, T. Cravens, The ionospheric effects of a weak intrinsic magnetic field at Mars. J. Geophys. Res. 97, 1027–1035 (1992)

  85. B.D. Shizgal, G.G. Arkos, Nonthermal escape of the atmospheres of Venus, Earth, and Mars. Rev. Geophys. 34, 483–505 (1996). doi:10.1029/96RG02213

  86. D.E. Siskind, D.R. Marsh, M.G. Mlynczak et al., Decreases in atomic hydrogen over the summer pole: evidence for dehydration from polar mesospheric clouds? Geophys. Res. Lett. 35, L13809 (2008). doi:10.1029/2008GL033742

  87. A. Spiga, F. Gonzalez-Galindo, M.-A. Lopez-Valverde, F. Forget, Gravity waves, cold pockets and CO2 clouds in the martian mesosphere. Geophys. Res. Lett. 39, L02201 (2012). doi:10.1029/2011GL050343

  88. M.H. Stevens, D.E. Siskind, S.D. Eckermann et al., Tidally induced variations of polar mesospheric cloud altitudes and ice water content using a data assimilation system. J. Geophys. Res. 115, D18209 (2010). doi:10.1029/2009JD013225

  89. D.W. Swift, Use of a hybrid code to model the Earth’s magnetosphere. Geophys. Res. Lett. 22, 311 (1995)

  90. N. Terada, S. Machida, H. Shinagawa, Global hybrid simulation of the Kelvin–Helmholtz instability at the Venus ionopause. J. Geophys. Res. 107, 11471 (2002). doi:10.1029/2001JA009224

  91. N. Terada, Y.N. Kulikov, H. Lammer et al., Atmosphere and water loss from early Mars under extreme solar wind and EUV conditions. Astrobiology 9, 55–70 (2009b). doi:10.1089/ast.2008.0250

  92. N. Terada, H. Shinagawa, T. Tanaka et al., A three-dimensional, multi-species, comprehensive MHD model of the solar wind interaction with the planet Venus. J. Geophys. Res. 114, A09208 (2009a). doi:10.1029/2008JA013937

  93. K. Terada et al., A paper in preparation on DCSM simulation of Mars atmosphere and exosphere (2014)

  94. R.L. Tokar, R.J. Wilson, R.E. Johnson et al., Cassini detection of water-group pick-up ions in the Enceladus torus. Geophys. Res. Lett. 33, L14202 (2008)

  95. G. Toth, I.V. Sokolov, T.I. Gombosi et al., Space weather modeling framework: a new tool for the space science community. J. Geophys. Res. 110, A12226 (2005). doi:10.1029/2005JA011126

  96. G. Toth, B. Vander Holst, I.V. Sokolov et al., Adaptive numerical algorithms in space weather modeling. J. Comput. Phys. 231(3), 870–903 (2012). doi:10.1016/j.jcp.2011.02.006

  97. A. Valeille, V. Tenishev, S.W. Bougher et al., Three-dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 1. General description and results at equinox for solar low conditions. J. Geophys. Res. 114, E11005 (2009a)

  98. A. Valeille, M.R. Combi, S.W. Bougher et al., Three-dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 2. Solar cycle, seasonal variations, and evolution over history. J. Geophys. Res. 114, E11006 (2009b)

  99. A. Valeille, M.R. Combi, V. Tenishev et al., A study of suprathermal oxygen atoms in Mars upper thermosphere and exosphere over the range of limiting conditions. Icarus 206, 18 (2010a)

  100. A. Valeille, M.R. Combi, V. Tenishev et al., Water loss and evolution of the upper atmosphere and exosphere over martian history. Icarus 206, 28 (2010b)

  101. M. Vincendon, C. Pilorget, B. Gondetet et al., Observations of mesospheric CO2 and H2O clouds on Mars. J. Geophys. Res. 116, E00J02 (2011). doi:10.1029/2011JE003827

  102. P. Withers, A review of observed variability in the dayside ionosphere of Mars. Adv. Space Res. 44, 277–307 (2009). doi:10.1016/J.asr.2009.04.027

  103. P. Withers, K. Fallows, Z. Girazian et al., A clear view of the multifaceted dayside ionosphere of Mars. Geophys. Res. Lett. 39, L18202 (2012). doi:10.1029/2012GL053193

  104. M. Yagi, F. Leblanc, J.Y. Chaufray, F. Gonzalez-Galindo et al., Mars exospheric thermal and non-thermal components: seasonal and local variations. Icarus 221, 682–693 (2012)

  105. M. Yamauchi et al., IMF direction derived from cycloid-like ion distributions observed by Mars Express. Space Sci. Rev. 126, 239 (2006)

Download references


Support from NASA’s MAVEN Participating Scientist Program is acknowledged for all the studies.

Author information

Correspondence to J. Grebowsky.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grebowsky, J., Fast, K., Talaat, E. et al. Science Enhancements by the MAVEN Participating Scientists. Space Sci Rev 195, 319–355 (2015). https://doi.org/10.1007/s11214-014-0080-4

Download citation


  • Mars
  • Aeronomy
  • Thermosphere
  • Ionosphere magnetosphere MAVEN mission