Space Science Reviews

, Volume 200, Issue 1–4, pp 357–392 | Cite as

Pre-flight and On-orbit Geometric Calibration of the Lunar Reconnaissance Orbiter Camera

  • E. J. Speyerer
  • R. V. Wagner
  • M. S. Robinson
  • A. Licht
  • P. C. Thomas
  • K. Becker
  • J. Anderson
  • S. M. Brylow
  • D. C. Humm
  • M. Tschimmel


The Lunar Reconnaissance Orbiter Camera (LROC) consists of two imaging systems that provide multispectral and high resolution imaging of the lunar surface. The Wide Angle Camera (WAC) is a seven color push-frame imager with a 90 field of view in monochrome mode and 60 field of view in color mode. From the nominal 50 km polar orbit, the WAC acquires images with a nadir ground sampling distance of 75 m for each of the five visible bands and 384 m for the two ultraviolet bands. The Narrow Angle Camera (NAC) consists of two identical cameras capable of acquiring images with a ground sampling distance of 0.5 m from an altitude of 50 km. The LROC team geometrically calibrated each camera before launch at Malin Space Science Systems in San Diego, California and the resulting measurements enabled the generation of a detailed camera model for all three cameras. The cameras were mounted and subsequently launched on the Lunar Reconnaissance Orbiter (LRO) on 18 June 2009. Using a subset of the over 793000 NAC and 207000 WAC images of illuminated terrain collected between 30 June 2009 and 15 December 2013, we improved the interior and exterior orientation parameters for each camera, including the addition of a wavelength dependent radial distortion model for the multispectral WAC. These geometric refinements, along with refined ephemeris, enable seamless projections of NAC image pairs with a geodetic accuracy better than 20 meters and sub-pixel precision and accuracy when orthorectifying WAC images.


LRO LROC Instrument Camera Moon Lunar Reconnaissance Orbiter Geometric Calibration Distortion Orientation Mapping 



The LROC Team would like to acknowledge Michael Ravine, Michael Caplinger, Jacob Schaffner and the other scientists and engineers at Malin Space Science Systems who designed, built, and integrated the LROC system. We would not be able to create products with such a high level of precision and accuracy without their attention to detail and craftsmanship. We would also like to acknowledge the superior work of Erwan Mazarico and Gregory Neumann of the LOLA and GRAIL Science Teams in deriving the improved ephemeris for the LRO Spacecraft that we used in this study. We would finally like to thank Ella Lee and Lynn Weller of the USGS Astrogeology Science Center for producing several large control mosaics used to derive the absolute twist of the NAC-L and NAC-R instruments as well as the two reviewers whose detailed criticisms helped improve and clarify this manuscript.

Supplementary material

11214_2014_73_MOESM1_ESM.gif (620 kb)
Animation of the Apollo 14 landing site showing a before and after comparison of the relative twist correction (GIF 620 kB)


  1. C.H. Acton, Ancillary data services of NASA’s navigation and ancillary information facility. Planet. Space Sci. 44, 65–70 (1996). doi: 10.1016/0032-0633(95)00107-7 ADSCrossRefGoogle Scholar
  2. C.O. Alley, Apollo Laser Ranging Retro-Reflector Experiment ( \(\mathit{SO}78\) ). Final Report (1971), p. 455 Google Scholar
  3. C.O. Alley, P.L. Bender, R.H. Dicke, J.E. Faller, P.A. Franken, H.H. Plotkin, D.T. Wilkinson, Optical radar using a corner reflector on the Moon. J. Geophys. Res. 70, 2267–2269 (1965). doi: 10.1029/JZ070i009p02267 ADSCrossRefGoogle Scholar
  4. J.A. Anderson, ISIS camera model design, in Lunar Planet. Sci. Conf. XXXIX, Abstract 2159 (2008) Google Scholar
  5. J.A. Anderson, Comparing patch orthorectification algorithms in ISIS based on camera type, in Lunar Planet. Sci. Conf. XLIV, Abstract 2069 (2013) Google Scholar
  6. J.A. Anderson, S.C. Sides, D.L. Soltesz, T.L. Sucharski, K.J. Becker, Modernization of the integrated software for imagers and spectrometers, in Lunar Planet. Sci. Conf. XXXV, Abstract 2039 (2004) Google Scholar
  7. J.W. Ashley, M.S. Robinson, B.R. Hawke, C.H. van der Bogert, H. Hiesinger, H. Sato, E.J. Speyerer, A.C. Enns, R.V. Wagner, K.E. Young, K.N. Burns, Geology of the King crater region: new insights into impact melt dynamics on the Moon. J. Geophys. Res. 117, E00H29 (2012). doi: 10.1029/2011JE003990 ADSCrossRefGoogle Scholar
  8. J.B.R. Battat, T.W. Murphy, E.G. Adelberger, B. Gillespie, C.D. Hoyle, R.J. McMillan, E.L. Michelsen, K. Nordtvedt, A.E. Orin, C.W. Stubbs, H.E. Swanson, The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO): two years of millimeter-precision measurements of the Earth-Moon range. Publ. Astron. Soc. Pac. 121, 29–40 (2009). doi: 10.1086/596748 ADSCrossRefGoogle Scholar
  9. E. Bowman-Cisneros, LROC EDR/CDR Data Product Software Interface Specification (2010) Google Scholar
  10. A.K. Boyd, M.S. Robinson, LROC WAC multispectral empirical normalized reflectance (10i, 0e, 10g), in NASA Lunar Science Forum (2013) Google Scholar
  11. A.K. Boyd, M.S. Robinson, H. Sato, Lunar reconnaissance orbiter wide angle camera photometry: an empirical solution, in Lunar Planet. Sci. Conf. XLIII, Abstract 2795 (2012) Google Scholar
  12. D.C. Brown, Decentering distortion of lenses. Photogramm. Eng. 32, 444–462 (1966) Google Scholar
  13. D.C. Brown, Close-range camera calibration. Photogramm. Eng. 37, 855–866 (1971) Google Scholar
  14. K.N. Burns, E.J. Speyerer, M.S. Robinson, T. Tran, M.R. Rosiek, B.A. Archinal, E. Howington-Kraus (LROC Science Team), Digital elevation models and derived products from LROC NAC stereo observations, in Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXIX-B4 (2012), pp. 483–488. doi: 10.5194/isprsarchives-XXXIX-B4-483-2012 Google Scholar
  15. P.C. Calhoun, J.C. Garrick, Observing mode attitude controller for the lunar reconnaissance orbiter, in 20th Int. Symp. Sp. Flight Dyn. (2007) Google Scholar
  16. G. Chin, S. Brylow, M. Foote, J. Garvin, J. Kasper, J. Keller, M. Litvak, I. Mitrofanov, D. Paige, K. Raney, M. Robinson, A. Sanin, D. Smith, H. Spence, P. Spudis, S.A. Stern, M. Zuber, Lunar reconnaissance orbiter overview: the instrument suite and mission. Space Sci. Rev. 129, 391–419 (2007). doi: 10.1007/s11214-007-9153-y ADSCrossRefGoogle Scholar
  17. R.G. Congalton, K. Green, Assessing the Accuracy of Remotely Sensed Data: Principles and Practices (CRC Press/Taylor & Francis, Boca Raton, 2009), p. 183 Google Scholar
  18. J.P. de Villiers, F.W. Leuschner, R. Geldenhuys, Centi-pixel accurate real-time inverse distortion correction, optomechatronic technologies, in Int. Symp. Optomechatronic Technol., vol. 7266, ed. by Y. Otani, Y. Bellouard, J.T. Wen, D. Hodko, Y. Katagiri, S.K. Kassegne, J. Kofman, S. Kaneko, C.A. Perez, D. Coquin, O. Kaynak, Y. Cho, T. Fukuda, J. Yi, F. Janabi-Sharifi (2008), pp. 726601–726608. doi: 10.1117/12.804771 Google Scholar
  19. Eastman Kodak, KAI-1001 Series: \(1024(H)\times 1024(V)\) Pixel-Megapixel Interline CCD Image Sensor Performance Specification (Rochester, NY, 1993), p. 22 Google Scholar
  20. Eastman Kodak, KLI-5001G: 5000 Element Linear CCD Image Sensor Performance Specification (Rochester, NY, 2002), p. 16 Google Scholar
  21. Federal Geographic Data Committee, Geospatial Positioning Accuracy Standards Part 3: National Standard for Spatial Data Accuracy (Washington, DC, 1998), p. 24 Google Scholar
  22. R.D. Fiete, Elements of photogrammetric optics, in Manual of Photogrammetry, ed. by J.C. McGlone 6th edn. (American Society of Photogrammetry and Remote Sensing, Bethesda, 2013), pp. 359–450 Google Scholar
  23. W.M. Folkner, J.G. Williams, D.H. Boggs, The Planetary and Lunar Ephemeris. DE 421. Interplanet. Netw. Prog. Rep. 42-178 (2009), p. 34 Google Scholar
  24. D. Folta, D. Quinn, Lunar frozen orbits, in AIAA/AAS Astrodyn. Spec. Conf. Exhib. (AIAA, Washington, 2006). doi: 10.2514/6.2006-6749 Google Scholar
  25. W. Förstner, B.P. Wrobel, Mathematical concepts in photogrammetry, in Manual of Photogrammetry, ed. by J.C. McGlone 6th edn. (American Society of Photogrammetry and Remote Sensing, Bethesda, 2013), pp. 63–234 Google Scholar
  26. M. Fournet, Le réflecteur laser de Lunokhod, in Sp. Res. XII, vol. 1 (1972), pp. 261–277 Google Scholar
  27. R.C. Gonzalez, R.E. Woods, Digital Image Processing (Addison-Wesley, Reading, 1992), p. 730 Google Scholar
  28. B. Hallert, Photogrammetry: Basic Principles and General Survey (McGraw-Hill, New York, 1960), p. 340 zbMATHGoogle Scholar
  29. B. Hapke, B. Denevi, H. Sato, S. Braden, M. Robinson, The wavelength dependence of the lunar phase curve as seen by the Lunar Reconnaissance Orbiter wide-angle camera. J. Geophys. Res. 117, E00H15 (2012). doi: 10.1029/2011JE003916 ADSCrossRefGoogle Scholar
  30. B. Harvey, Soviet and Russian Lunar Exploration (Springer, Chichester, 2007), p. 317 Google Scholar
  31. M.R. Henriksen, P. Seymour, K.N. Burns, E.J. Speyerer, M.S. Robinson (LROC Science Team), Improvements to high resolution LROC NAC digital terrain models, in Lunar Planet. Sci. Conf. XLV, Abstract 1676 (2014) Google Scholar
  32. D.C. Humm, M. Tschimmel, S.M. Brylow, P. Mahanti, T.N. Tran, S.E. Braden, S. Wiesman, J. Danton, E.M. Eliason, M.S. Robinson. Space Sci. Rev. (2014, this issue) Google Scholar
  33. D. Kim, J. Oh, K. Sohn, H. Shin, Automatic radial distortion correction in zoom lens video camera. J. Electron. Imaging 19, 043010 (2010). doi: 10.1117/1.3503524 ADSCrossRefGoogle Scholar
  34. Y.L. Kokurin, V.V. Kurbasov, V.F. Lobanov, A.N. Sukhanovskii, N.S. Chernykh, Laser location of the reflector on board Lunokhod-1. Sov. J. Quantum Electron. 1, 555–557 (1972). doi: 10.1070/QE1972v001n05ABEH003290 ADSCrossRefGoogle Scholar
  35. D.S. Lee, J.C. Storey, M.J. Choate, R.W. Hayes, Four years of Landsat-7 on-orbit geometric calibration and performance. IEEE Trans. Geosci. Remote Sens. 42, 2786–2795 (2004). doi: 10.1109/TGRS.2004.836769 ADSCrossRefGoogle Scholar
  36. E.M. Lee, L.A. Weller, J.O. Richie, B.L. Redding, J.R. Shinaman, K. Edmundson, B.A. Archinal, T.M. Hare, R.L. Fergason, Controlled polar mosaics of the Moon for LMMP by USGS, in Lunar Planet. Sci. Conf. XLIII, Abstract 2507 (2012) Google Scholar
  37. F.G. Lemoine, S. Goossens, T.J. Sabaka, J.B. Nicholas, E. Mazarico, D.D. Rowlands, B.D. Loomis, D.S. Chinn, G.A. Neumann, D.E. Smith, M.T. Zuber, GRGM900C: A degree 900 lunar gravity model from GRAIL primary and extended mission data. Geophys. Res. Lett. 41, 3382–3389 (2014). doi: 10.1002/2014GL060027 ADSCrossRefGoogle Scholar
  38. J.P. Lewis, Fast Normalized Cross-Correlation (1995), p. 7 Google Scholar
  39. LRO Project, LGCWG, A Standardized Lunar Coordinate System for the Lunar Reconnaissance Orbiter and Lunar Datasets (Goddard Space Flight Center, Greenbelt, 2009), p. 13 Google Scholar
  40. V.N. Mahajan, Optical Imaging and Aberrations. Part I. Ray Geometrical Optics, 1st edn. (SPIE Press, Bellingham, 1998), p. 469. doi: 10.1117/3.265735 CrossRefGoogle Scholar
  41. J. Mallon, P.F. Whelan, Calibration and removal of lateral chromatic aberration in images. Pattern Recognit. Lett. 28, 125–135 (2007). doi: 10.1016/j.patrec.2006.06.013 CrossRefGoogle Scholar
  42. J.G. Masek, M. Honzak, S.N. Goward, P. Liu, E. Pak, Landsat-7 ETM+ as an observatory for land cover. Remote Sens. Environ. 78, 118–130 (2001). doi: 10.1016/S0034-4257(01)00254-1 CrossRefGoogle Scholar
  43. S. Mattson, L. Ojha, A. Ortiz, A.S. McEwen, K. Burns, Regional digital terrain model production with LROC-NAC, in Lunar Planet. Sci. Conf. XLIII, Abstract 2630 (2012) Google Scholar
  44. H. Mayer, M. Sester, G. Vosselman, Basic computer vision techniques, in Manual of Photogrammetry, ed. by J.C. McGlone 6th edn. (American Society of Photogrammetry and Remote Sensing, Bethesda, 2013), pp. 517–583 Google Scholar
  45. E. Mazarico, D.D. Rowlands, G.A. Neumann, D.E. Smith, M.H. Torrence, F.G. Lemoine, M.T. Zuber, Orbit determination of the Lunar Reconnaissance Orbiter. J. Geod. 86, 193–207 (2011). doi: 10.1007/s00190-011-0509-4 ADSCrossRefGoogle Scholar
  46. E. Mazarico, S.J. Goossens, F.G. Lemoine, G.A. Neumann, M.H. Torrence, D.D. Rowlands, D.E. Smith, M.T. Zuber, Improved orbit determination of lunar orbiters with lunar gravity fields obtained by the GRAIL mission, in Lunar Planet. Sci. Conf. XLIV, Abstract 2414 (2013) Google Scholar
  47. C.J. Mugnier, W. Förstner, B. Wrobel, F. Paderes, R. Munjy, The mathematics of photogrammetry, in Manual of Photogrammetry, ed. by J.C. McGlone 6th edn. (American Society of Photogrammetry and Remote Sensing, Bethesda, 2013), pp. 235–358 Google Scholar
  48. T.W. Murphy Jr., E.G. Adelberger, J.B.R. Battat, C.D. Hoyle, N.H. Johnson, R.J. McMillan, E.L. Michelsen, C.W. Stubbs, H.E. Swanson, Laser ranging to the lost Lunokhod 1 reflector. Icarus 211, 1103–1108 (2011). doi: 10.1016/j.icarus.2010.11.010 ADSCrossRefGoogle Scholar
  49. T.W. Murphy, E.L. Michelson, A.E. Orin, E.G. Adelberger, C.D. Hoyle, H.E. Swanson, C.W. Stubbs, J.B. Battat, APOLLO: a new push in lunar laser ranging. Int. J. Mod. Phys. D 16, 2127–2135 (2007). doi: 10.1142/S0218271807011589 ADSCrossRefGoogle Scholar
  50. D.E. Pavlix, S. Poulose, J.J. McCarthy, GEODYN operations manuals, Raytheon ITTS contractor report (Greenbelt, Maryland, 2009) Google Scholar
  51. S.F. Ray, Applied Photographic Optics: Lenses and Optical Systems for Photography, Film, Video, Electronic and Digital Imaging (Focal Press, Waltham, 2002), p. 656 Google Scholar
  52. M.S. Robinson, S.M. Brylow, M. Tschimmel, D. Humm, S.J. Lawrence, P.C. Thomas, B.W. Denevi, E. Bowman-Cisneros, J. Zerr, M.A. Ravine, M.A. Caplinger, F.T. Ghaemi, J.A. Schaffner, M.C. Malin, P. Mahanti, A. Bartels, J. Anderson, T.N. Tran, E.M. Eliason, A.S. McEwen, E. Turtle, B.L. Jolliff, H. Hiesinger, Lunar Reconnaissance Orbiter Camera (LROC) instrument overview Space Sci. Rev. 150, 81–124 (2010). doi: 10.1007/s11214-010-9634-2 ADSCrossRefGoogle Scholar
  53. M.R. Rosiek, E.M. Lee, E.T. Howington-Kraus, R.L. Fergason, L.A. Weller, D.M. Galuszka, B.L. Redding, O.H. Thomas, R.A. Saleh, J.O. Richie, J.R. Shinaman, B.A. Archinal, T.M. Hare, USGS digital terrain models and mosaics for LMMP, in Lunar Planet. Sci. Conf. XLIII, Abstract 2343 (2012) Google Scholar
  54. H. Sato, M.S. Robinson, B.W. Hapke, B.W. Denevi, A.K. Boyd, Resolved Hapke parameter maps of the Moon. J. Geophys. Res., Planets (2014). doi: 10.1002/2013JE004580 Google Scholar
  55. F. Scholten, J. Oberst, K.-D. Matz, T. Roatsch, M. Wählisch, E.J. Speyerer, M.S. Robinson, GLD100: the near-global lunar 100 m raster DTM from LROC WAC stereo image data. J. Geophys. Res. 117, E00H17 (2012). doi: 10.1029/2011JE003926 ADSCrossRefGoogle Scholar
  56. R.A. Schowengerdt, Remote Sensing-Models and Methods for Image Processing, 3rd edn. (Academic Press, San Diego, 2007), p. 560 Google Scholar
  57. R. Schuster, B. Braunecker, Calibration of the LH systems ADS40 airborne digital sensor. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 33, 288–294 (2000) Google Scholar
  58. P.K. Seidelmann, B.A. Archinal, M.F. A’Hearn, A. Conrad, G.J. Consolmagno, D. Hestroffer, J.L. Hilton, G.A. Krasinsky, G. Neumann, J. Oberst, P. Stooke, E.F. Tedesco, D.J. Tholen, P.C. Thomas, I.P. Williams, Report of the IAU/IAG working group on cartographic coordinates and rotational elements, 2006. Celest. Mech. Dyn. Astron. 98, 155–180 (2007). doi: 10.1007/s10569-007-9072-y ADSCrossRefzbMATHGoogle Scholar
  59. D.E. Smith, M.T. Zuber, G.A. Neumann, F.G. Lemoine, E. Mazarico, M.H. Torrence, J.F. McGarry, D.D. Rowlands, J.W. Head, T.H. Duxbury, O. Aharonson, P.G. Lucey, M.S. Robinson, O.S. Barnouin, J.F. Cavanaugh, X. Sun, P. Liiva, D. Mao, J.C. Smith, A.E. Bartels, Initial observations from the Lunar Orbiter Laser Altimeter (LOLA). Geophys. Res. Lett. 37, L18204 (2010). doi: 10.1029/2010GL043751 ADSGoogle Scholar
  60. E.J. Speyerer, M.S. Robinson, Persistently illuminated regions at the lunar poles: ideal sites for future exploration. Icarus 222, 122–136 (2013). doi: 10.1016/j.icarus.2012.10.010 ADSCrossRefGoogle Scholar
  61. E.J. Speyerer, M.S. Robinson, B.W. Denevi, Lunar Reconnaissance Orbiter camera global morphological map of the Moon, in Lunar Planet. Sci. Conf. XLII, Abstract 2387 (2011) Google Scholar
  62. C.R. Tooley, M.B. Houghton, R.S. Saylor, C. Peddie, D.F. Everett, C.L. Baker, K.N. Safdie, Lunar Reconnaissance Orbiter mission and spacecraft design. Space Sci. Rev. 150, 23–62 (2010). doi: 10.1007/s11214-009-9624-4 ADSCrossRefGoogle Scholar
  63. T. Toutin, Multi-source data fusion with an integrated and unified geometric modeling. EARSeL Adv. Remote Sens. 4, 118–129 (1995) Google Scholar
  64. T. Tran, M.R. Rosiek, R. Beyer, S. Mattson, A. Howington-Kraus, M.S. Robinson, B.A. Archinal, K. Edmundson, D. Harbour, E. Anderson (LROC Science Team), Generating digital terrain models using LROC NAC images, in Spec. Jt. Symp. ISPRS Comm. IV AutoCarto 2010 (2010) Google Scholar
  65. R. Vondrak, J. Keller, G. Chin, J. Garvin, Lunar Reconnaissance Orbiter (LRO): observations for lunar exploration and science. Space Sci. Rev. 150, 7–22 (2010). doi: 10.1007/s11214-010-9631-5 ADSCrossRefGoogle Scholar
  66. P. Wighton, T.K. Lee, H. Lui, D. McLean, M.S. Atkins, Chromatic aberration correction: an enhancement to the calibration of low-cost digital dermoscopes. Skin Res. Technol. 17, 339–347 (2011). doi: 10.1111/j.1600-0846.2011.00504.x CrossRefGoogle Scholar
  67. M.T. Zuber, D.E. Smith, R.S. Zellar, G.A. Neumann, X. Sun, R.B. Katz, I. Kleyner, A. Matuszeski, J.F. McGarry, M.N. Ott, L.A. Ramos-Izquierdo, D.D. Rowlands, M.H. Torrence, T.W. Zagwodzki, The Lunar Reconnaissance Orbiter laser ranging investigation. Space Sci. Rev. 150, 63 (2009). doi: 10.1007/s11214-009-9511-z ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • E. J. Speyerer
    • 1
  • R. V. Wagner
    • 1
  • M. S. Robinson
    • 1
  • A. Licht
    • 1
  • P. C. Thomas
    • 2
  • K. Becker
    • 3
  • J. Anderson
    • 3
  • S. M. Brylow
    • 4
  • D. C. Humm
    • 5
  • M. Tschimmel
    • 1
  1. 1.School of Earth and Space ExplorationArizona State UniversityTempeUSA
  2. 2.Center for Radiophysics and Space ResearchCornell UniversityIthacaUSA
  3. 3.Astrogeology Science CenterUnited States Geologic SurveyFlagstaffUSA
  4. 4.Malin Space Science SystemsSan DiegoUSA
  5. 5.Space Instrument Calibration ConsultingAnnapolisUSA

Personalised recommendations