Space Science Reviews

, Volume 186, Issue 1–4, pp 359–386 | Cite as

A Combined Analysis of the Observational Aspects of the Quasi-biennial Oscillation in Solar Magnetic Activity

  • G. Bazilevskaya
  • A.-M. BroomhallEmail author
  • Y. Elsworth
  • V. M. Nakariakov


Solar quasi-biennial oscillations (QBOs) with the time scale of 0.6–4 yrs appear to be a basic feature of the Sun’s activity. Observational aspects of QBOs are reviewed on the basis of recent publications. Solar QBOs are shown to be ubiquitous and very variable. We demonstrate that many features of QBOs are common to different observations. These features include variable periodicity and intermittence with signs of stochastisity, a presence at all levels of the solar atmosphere and even in the convective zone, independent development in the northern and southern solar hemispheres, most pronounced amplitudes during the maximum phase of the 11-yr cycle and the transition of QBOs into interplanetary space. Temporal weakening of solar activity around the maximum of the 11-yr cycle (Gnevyshev Gap) can be considered an integral part of QBOs. The exact mechanism by which the solar QBO is produced is poorly understood. We describe some of the most plausible theoretical mechanisms and discuss observational features that support/contradict the theory. QBOs have an important meaning as a benchmark of solar activity, not only for investigation of the solar dynamo but also in terms of space weather.


Sun: activity Sun: magnetic fields 



The paper was stimulated by the workshop “The solar activity cycle: physical causes and consequences”. It is a pleasure to thank André Balogh, Hugh Hudson, Kristof Petrovay, Rudolf von Steiger and the International Space Science Institute for financial support, excellent organization and hospitality. We thank SIDC-team, World Data Center for the Sunspot Index, Royal Observatory of Belgium, Royal Observatory (Greenwich), Wilcox Solar Observatory, NOAA NGDC, GSFC, IZMIRAN Cosmic Ray group, WDC for Geomagnetism (Kyoto) providing their data in open access. We thank the Birmingham Solar Oscillations Network for making their data available to us. G.B. acknowledges support from the Russian Academy of Sciences. A.M.B thanks the Institute of Advanced Study, University of Warwick for their support. Y.E. acknowledges support from the UK Science and Technology Facilities Council (STFC). A.M.B. and Y.E. acknowledge the Leverhulme trust for funding “Probing the Sun: inside and out” project upon which this research is partly based. V.N.: This work was supported by the European Research Council under the SeismoSun Research Project No. 321141 and the BK21 plus program through the National Research Foundation funded by the Ministry of Education of Korea.


  1. H.S. Ahluwalia, Ap time variations and interplanetary magnetic field intensity. J. Geophys. Res. 105, 27481–27488 (2000). doi: 10.1029/2000JA900124 ADSGoogle Scholar
  2. H.S. Ahluwalia, Y. Kamide, Gnevyshev gap, Forbush decreases, ICMEs and solar wind electric field: relationships. Adv. Space Res. 35, 2119–2123 (2005). doi: 10.1016/j.asr.2004.11.030 ADSGoogle Scholar
  3. M. Akioka, J. Kubota, K. Ichimoto, I. Tohmura, M. Suzuki, The 17-month periodicity of sunspot activity. Sol. Phys. 112, 313–316 (1987). doi: 10.1007/BF00148785 ADSGoogle Scholar
  4. M. Amenomori, S. Ayabe, S.W. Cui, Danzengluobu, L.K. Ding, X.H. Ding, C.F. Feng, Z.Y. Feng, X.Y. Gao, Q.X. Geng, H.W. Guo, H.H. He, M. He, K. Hibino, N. Hotta, H. Hu, H.B. Hu, J. Huang, Q. Huang, M. Izumi, H.Y. Jia, F. Kajino, K. Kasahara, Y. Katayose, C. Kato, K. Kawata, Labaciren, G.M. Le, J.Y. Li, H. Lu, S.L. Lu, X.R. Meng, K. Mizutani, J. Mu, K. Munakata, A. Nagai, H. Nanjo, M. Nishizawa, M. Ohnishi, I. Ohta, H. Onuma, T. Ouchi, S. Ozawa, J.R. Ren, T. Saito, M. Sakata, T. Sasaki, M. Shibata, A. Shiomi, T. Shirai, H. Sugimoto, M. Takita, Y.H. Tan, N. Tateyama, S. Torii, H. Tsuchiya, S. Udo, T. Utsugi, B.S. Wang, H. Wang, X. Wang, Y.G. Wang, H.R. Wu, L. Xue, Y. Yamamoto, C.T. Yan, X.C. Yang, S. Yasue, Z.H. Ye, G.C. Yu, A.F. Yuan, T. Yuda, H.M. Zhang, J.L. Zhang, N.J. Zhang, X.Y. Zhang, Y. Zhang, Zhaxisangzhu, X.X. Zhou (Tibet AS γ Collaboration), Variation of sun shadow in the solar cycle 23 observed with the Tibet air shower array. Adv. Space Res. 38, 936–941 (2006). doi: 10.1016/j.asr.2006.04.023 ADSGoogle Scholar
  5. A. Antalova, M.N. Gnevyshev, Latitudinal distribution of sunspot areas during the period 1874–1976. Contrib. Astron. Obs. Skaln. Pleso 11, 63–93 (1983) ADSGoogle Scholar
  6. H.M. Antia, S. Basu, Temporal variations of the rotation rate in the solar interior. Astrophys. J. 541, 442–448 (2000). doi: 10.1086/309421 ADSGoogle Scholar
  7. H.M. Antia, S. Basu, S.M. Chitre, Solar rotation rate and its gradients during cycle 23. Astrophys. J. 681, 680–692 (2008). doi: 10.1086/588523 ADSGoogle Scholar
  8. T. Appourchaux, K. Belkacem, A.-M. Broomhall, W.J. Chaplin, D.O. Gough, G. Houdek, J. Provost, F. Baudin, P. Boumier, Y. Elsworth, R.A. García, B.N. Andersen, W. Finsterle, C. Fröhlich, A. Gabriel, G. Grec, A. Jiménez, A. Kosovichev, T. Sekii, T. Toutain, S. Turck-Chièze, The quest for the solar g modes. Astron. Astrophys. Rev. 18, 197–277 (2010). doi: 10.1007/s00159-009-0027-z ADSGoogle Scholar
  9. N. Astafyeva, G. Bazilevskaya, Long-term changes of cosmic ray intensity: spectral behaviour and 27-day variations. Phys. Chem. Earth, Part C, Sol.-Terr. Planet. Sci. 25, 129–132 (2000). doi: 10.1016/S1464-1917(99)00053-7 ADSGoogle Scholar
  10. T. Ataç, A. Özgüç, J. Rybák, Overview of the flare index during the maximum phase of the solar cycle 23. Adv. Space Res. 35, 400–405 (2005). doi: 10.1016/j.asr.2005.01.040 ADSGoogle Scholar
  11. O.G. Badalyan, V.N. Obridko, Solar magnetic fields and the intensity of the green coronal line. Astron. Rep. 48, 678–687 (2004). doi: 10.1134/1.1787070 ADSGoogle Scholar
  12. O.G. Badalyan, V.N. Obridko, North-South asymmetry of the sunspot indices and its quasi-biennial oscillations. New Astron. 16, 357–365 (2011). doi: 10.1016/j.newast.2011.01.005 ADSGoogle Scholar
  13. O.G. Badalyan, V.N. Obridko, J. Sýkora, Quasi-biennial oscillations in the North—South asymmetry of solar activity. Sol. Phys. 247, 379–397 (2008). doi: 10.1007/s11207-008-9120-0 ADSGoogle Scholar
  14. J.N. Bahcall, R. Davis Jr., Solar neutrinos: a scientific puzzle. Science 191, 264–267 (1976). doi: 10.1126/science.191.4224.264 ADSGoogle Scholar
  15. T. Bai, Periodicities in solar flare occurrence: analysis of cycles 19–23. Astrophys. J. 591, 406–415 (2003). doi: 10.1086/375295 ADSGoogle Scholar
  16. C.S. Baldner, T.P. Larson, S. Basu, Solar-cycle related changes at the base of the convection zone, in Solar-Stellar Dynamos as Revealed by Helio- and Asteroseismology: GONG 2008/SOHO 21, ed. by M. Dikpati, T. Arentoft, I. González Hernández, C. Lindsey, F. Hill. Astronomical Society of the Pacific Conference Series, vol. 416, (2009), p. 477 Google Scholar
  17. M.P. Baldwin, L.J. Gray, T.J. Dunkerton, K. Hamilton, P.H. Haynes, W.J. Randel, J.R. Holton, M.J. Alexander, I. Hirota, T. Horinouchi, D.B.A. Jones, J.S. Kinnersley, C. Marquardt, K. Sato, M. Takahashi, The quasi-biennial oscillation. Rev. Geophys. 39, 179–229 (2001). doi: 10.1029/1999RG000073 ADSGoogle Scholar
  18. S.L. Baliunas, R.A. Donahue, W.H. Soon, J.H. Horne, J. Frazer, L. Woodard-Eklund, M. Bradford, L.M. Rao, O.C. Wilson, Q. Zhang, W. Bennett, J. Briggs, S.M. Carroll, D.K. Duncan, D. Figueroa, H.H. Lanning, T. Misch, J. Mueller, R.W. Noyes, D. Poppe, A.C. Porter, C.R. Robinson, J. Russell, J.C. Shelton, T. Soyumer, A.H. Vaughan, J.H. Whitney, Chromospheric variations in main-sequence stars. Astrophys. J. 438, 269–287 (1995). doi: 10.1086/175072 ADSGoogle Scholar
  19. J.L. Ballester, R. Oliver, M. Carbonell, The near 160 day periodicity in the photospheric magnetic flux. Astrophys. J. 566, 505–511 (2002). doi: 10.1086/338075 ADSGoogle Scholar
  20. J.L. Ballester, R. Oliver, M. Carbonell, Return of the near 160 day periodicity in the photospheric magnetic flux during solar cycle 23. Astrophys. J. Lett. 615, 173–176 (2004). doi: 10.1086/426430 ADSGoogle Scholar
  21. G.A. Bazilevskaya, M.B. Krainev, V.S. Makhmutov, E.O. Flückiger, A.I. Sladkova, M. Storini, Structure of the maximum phase of solar cycles 21 and 22. Sol. Phys. 197, 157–174 (2000). doi: 10.1023/A:1026515520311 ADSGoogle Scholar
  22. G.A. Bazilevskaya, E.O. Fluckiger, M.B. Krainev, V.S. Makhmutov, A.I. Sladkova, M. Storini, Distribution of solar energetic particle events over an 11-year solar cycle. Int. Cosm. Ray Conf. 8, 3413 (2001) Google Scholar
  23. G.A. Bazilevskaya, V.S. Makhmutov, A.I. Sladkova, Gnevyshev gap effects in solar energetic particle activity. Adv. Space Res. 38, 484–488 (2006). doi: 10.1016/j.asr.2004.11.011 ADSGoogle Scholar
  24. A.V. Belov, Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena (2009). doi: 10.1017/S1743921309029676
  25. E.E. Benevolenskaya, Double magnetic cycle of solar activity. Sol. Phys. 161, 1–8 (1995). doi: 10.1007/BF00732080 ADSGoogle Scholar
  26. E.E. Benevolenskaya, A model of the double magnetic cycle of the sun. Astrophys. J. Lett. 509, 49–52 (1998). doi: 10.1086/311755 ADSGoogle Scholar
  27. E.E. Benevolenskaya, Impulses of activity and the solar cycle. Sol. Phys. 216, 325–341 (2003). doi: 10.1023/A:1026105100181 ADSGoogle Scholar
  28. E.E. Benevolenskaya, The formation and evolution of complexes of activity, activity nests and the large-scale connectivity in the solar corona, in Large-Scale Structures and Their Role in Solar Activity, ed. by K. Sankarasubramanian, M. Penn, A. Pevtsov. Astronomical Society of the Pacific Conference Series, vol. 346, (2005), p. 129 Google Scholar
  29. S.V. Berdyugina, I.G. Usoskin, Active longitudes in sunspot activity: century scale persistence. Astron. Astrophys. 405, 1121–1128 (2003). doi: 10.1051/0004-6361:20030748 ADSGoogle Scholar
  30. S.V. Berdyugina, J. Pelt, I. Tuominen, Magnetic activity in the young solar analog LQ Hydrae. I. Active longitudes and cycles. Astron. Astrophys. 394, 505–515 (2002). doi: 10.1051/0004-6361:20021179 ADSGoogle Scholar
  31. F. Boberg, H. Lundstedt, J.T. Hoeksema, P.H. Scherrer, W. Liu, Solar mean magnetic field variability: a wavelet approach to Wilcox solar observatory and SOHO/Michelson Doppler imager observations. J. Geophys. Res. 107, 1318 (2002). doi: 10.1029/2001JA009195 Google Scholar
  32. E. Böhm-Vitense, Chromospheric activity in G and K main-sequence stars, and what it tells us about stellar dynamos. Astrophys. J. 657, 486–493 (2007). doi: 10.1086/510482 ADSGoogle Scholar
  33. A. Broomhall, W.J. Chaplin, Y. Elsworth, S.T. Fletcher, R. New, Is the current lack of solar activity only skin deep? Astrophys. J. Lett. 700, 162–165 (2009). doi: 10.1088/0004-637X/700/2/L162 ADSGoogle Scholar
  34. A.-M. Broomhall, S.T. Fletcher, D. Salabert, S. Basu, W.J. Chaplin, Y. Elsworth, R.A. García, A. Jiménez, R. New, Are short-term variations in solar oscillation frequencies the signature of a second solar dynamo? J. Phys. Conf. Ser. 271(1), 012025 (2011). doi: 10.1088/1742-6596/271/1/012025 ADSGoogle Scholar
  35. A.-M. Broomhall, W.J. Chaplin, Y. Elsworth, R. Simoniello, Quasi-biennial variations in helioseismic frequencies: can the source of the variation be localized? Mon. Not. R. Astron. Soc. 420, 1405–1414 (2012). doi: 10.1111/j.1365-2966.2011.20123.x ADSGoogle Scholar
  36. A.C. Cadavid, J.K. Lawrence, D.P. McDonald, A. Ruzmaikin, Independent global modes of solar magnetic field fluctuations. Sol. Phys. 226, 359–376 (2005). doi: 10.1007/s11207-005-8187-0 ADSGoogle Scholar
  37. W.J. Chaplin, Y. Elsworth, B.A. Miller, G.A. Verner, R. New, Solar p-mode frequencies over three solar cycles. Astrophys. J. 659, 1749–1760 (2007). doi: 10.1086/512543 ADSGoogle Scholar
  38. I.-H. Cho, J. Hwang, Y.-D. Park, Revisiting solar and heliospheric 1.3-Year signals during 1970–2007. Sol. Phys. 289, 707–719 (2014). doi: 10.1007/s11207-013-0365-x ADSGoogle Scholar
  39. D.-Y. Chou, A. Serebryanskiy, In search of the solar cycle variations of p-mode frequencies generated by perturbations in the solar interior. Astrophys. J. 624, 420–427 (2005). doi: 10.1086/428925 ADSGoogle Scholar
  40. D.P. Choudhary, J.K. Lawrence, M. Norris, A.C. Cadavid, Different periodicities in the sunspot area and the occurrence of solar flares and coronal mass ejections in solar cycle 23–24. Sol. Phys. 289, 649–656 (2014). doi: 10.1007/s11207-013-0392-7 ADSGoogle Scholar
  41. P. Chowdhury, P.C. Ray, Periodicities of solar electron flare occurrence: analysis of cycles 21–23. Mon. Not. R. Astron. Soc. 373, 1577–1589 (2006). doi: 10.1111/j.1365-2966.2006.11120.x ADSGoogle Scholar
  42. P. Chowdhury, M. Khan, P. Ray, Intermediate-term periodicities in relativistic solar electron fluences during solar cycles 22 and 23. Adv. Space Res. 43, 297–307 (2009a). doi: 10.1016/j.asr.2008.06.008 ADSGoogle Scholar
  43. P. Chowdhury, M. Khan, P.C. Ray, Intermediate-term periodicities in sunspot areas during solar cycles 22 and 23. Mon. Not. R. Astron. Soc. 392, 1159–1180 (2009b). doi: 10.1111/j.1365-2966.2008.14117.x ADSGoogle Scholar
  44. P. Chowdhury, D.P. Choudhary, S. Gosain, A study of the hemispheric asymmetry of sunspot area during solar cycles 23 and 24. Astrophys. J. 768, 188 (2013). doi: 10.1088/0004-637X/768/2/188 ADSGoogle Scholar
  45. J. Christensen-Dalsgaard, Helioseismology, Rev. Mod. Phys. 74, 1073–1129 (2002). doi: 10.1103/RevModPhys.74.1073 ADSGoogle Scholar
  46. T. Corbard, M.J. Thompson, The subsurface radial gradient of solar angular velocity from MDI f-mode observations. Sol. Phys. 205, 211–229 (2002). doi: 10.1023/A:1014224523374 ADSGoogle Scholar
  47. E. Covas, R. Tavakol, D. Moss, Spatiotemporal fragmentation as a mechanism for different dynamical modes of behaviour in the solar convection zone. Astron. Astrophys. 363, 13–16 (2000a) ADSGoogle Scholar
  48. E. Covas, R. Tavakol, D. Moss, A. Tworkowski, Torsional oscillations in the solar convection zone. Astron. Astrophys. 360, 21–24 (2000b) ADSGoogle Scholar
  49. L. D’Alessi, A. Vecchio, V. Carbone, M. Laurenza, M. Storini, Quasi-biennial modulation of the solar neutrino flux: a “Telescope” for the solar interior. J. Mod. Phys. 4, 49–56 (2013). doi: 10.4236/jmp.2013.44A008 Google Scholar
  50. S. Danilovic, I. Vince, N. Vitas, P. Jovanovic, Time series analysis of long term full disk observations of the Mn i 539.4 nm solar line. Serb. Astron. J. 170, 79–88 (2005). doi: 10.2298/SAJ0570079D ADSGoogle Scholar
  51. Y. Elsworth, R. Howe, G.R. Isaak, C.P. McLeod, R. New, Variation of low-order acoustic solar oscillations over the solar cycle. Nature 345, 322–324 (1990). doi: 10.1038/345322a0 ADSGoogle Scholar
  52. F. Feminella, M. Storini, Large-scale dynamical phenomena during solar activity cycles. Astron. Astrophys. 322, 311–319 (1997) ADSGoogle Scholar
  53. S.T. Fletcher, A.-M. Broomhall, D. Salabert, S. Basu, W.J. Chaplin, Y. Elsworth, R.A. Garcia, R. New, A seismic signature of a second dynamo? Astrophys. J. Lett. 718, 19–22 (2010). doi: 10.1088/2041-8205/718/1/L19 ADSGoogle Scholar
  54. D.M. Fluri, S.V. Berdyugina, Flip-flops as observational signatures of different dynamo modes in cool stars. Sol. Phys. 224, 153–160 (2004). doi: 10.1007/s11207-005-4147-y ADSGoogle Scholar
  55. E. Forgács-Dajka, T. Borkovits, Searching for mid-term variations in different aspects of solar activity—looking for probable common origins and studying temporal variations of magnetic polarities. Mon. Not. R. Astron. Soc. 374, 282–291 (2007). doi: 10.1111/j.1365-2966.2006.11167.x ADSGoogle Scholar
  56. K. Georgieva, Why the sunspot cycle is double peaked. ISRN Astron. Astrophys. 2011 (2011). doi: 10.5402/2011/437838
  57. K. Georgieva, B. Kirov, Long-term variations in solar meridional circulation from geomagnetic data: implications for solar dynamo theory. (2007). arXiv:physics/0703187
  58. K. Georgieva, B. Kirov, Solar dynamo and geomagnetic activity. J. Atmos. Sol.-Terr. Phys. 73, 207–222 (2011). doi: 10.1016/j.jastp.2010.03.003 ADSGoogle Scholar
  59. M.N. Gnevyshev, On the 11-years cycle of solar activity. Sol. Phys. 1, 107–120 (1967). doi: 10.1007/BF00150306 ADSGoogle Scholar
  60. M.N. Gnevyshev, Essential features of the 11-year solar cycle. Sol. Phys. 51, 175–183 (1977). doi: 10.1007/BF00240455 ADSGoogle Scholar
  61. N. Gyenge, T. Baranyi, A. Ludmány, Migration and extension of solar active longitudinal zones. Sol. Phys. 289, 579–591 (2014). doi: 10.1007/s11207-013-0424-3 ADSGoogle Scholar
  62. D.H. Hathaway, The solar cycle. Living Rev. Sol. Phys. 7, 1 (2010). doi: 10.12942/lrsp-2010-1 ADSGoogle Scholar
  63. M.E. Hill, D.C. Hamilton, S.M. Krimigis, Periodicity of 151 days in outer heliospheric anomalous cosmic ray fluxes. J. Geophys. Res. 106, 8315–8322 (2001). doi: 10.1029/2000JA000380 ADSGoogle Scholar
  64. J.T. Hoeksema, Global solar magnetic fields. NASA STI/Recon Technical Report N 92, 29421 (1991) Google Scholar
  65. R. Howe, J. Christensen-Dalsgaard, F. Hill, R.W. Komm, R.M. Larsen, J. Schou, M.J. Thompson, J. Toomre, Dynamic variations at the base of the solar convection zone. Science 287, 2456–2460 (2000). doi: 10.1126/science.287.5462.2456 ADSGoogle Scholar
  66. R. Howe, R. Komm, F. Hill, J. Christensen-Dalsgaard, T.P. Larson, J. Schou, M.J. Thompson, J. Toomre, Rotation-rate variations at the tachocline: an update. J. Phys. Conf. Ser. 271(1), 012075 (2011). doi: 10.1088/1742-6596/271/1/012075 ADSGoogle Scholar
  67. K. Ichimoto, J. Kubota, M. Suzuki, I. Tohmura, H. Kurokawa, Periodic behaviour of solar flare activity. Nature 316, 422–424 (1985). doi: 10.1038/316422a0 ADSGoogle Scholar
  68. E.V. Ivanov, V.N. Obridko, B.D. Shelting, Quasi-biennial oscillations of the solar magnetic fields, in Solar Variability: from Core to Outer Frontiers, ed. by A. Wilson. ESA Special Publication, vol. 506, (2002), pp. 847–850 Google Scholar
  69. K. Jain, S.C. Tripathy, F. Hill, How peculiar was the recent extended minimum: a hint toward double minima. Astrophys. J. 739, 6 (2011). doi: 10.1088/0004-637X/739/1/6 ADSGoogle Scholar
  70. S.J. Jiménez-Reyes, R.A. García, A. Jiménez, W.J. Chaplin, Excitation and damping of low-degree solar p-modes during activity cycle 23: analysis of GOLF and VIRGO sun photometer data. Astrophys. J. 595, 446–457 (2003). doi: 10.1086/377304 ADSGoogle Scholar
  71. S.J. Jiménez-Reyes, W.J. Chaplin, Y. Elsworth, R.A. García, R. Howe, H. Socas-Navarro, T. Toutain, On the variation of the peak asymmetry of low-l solar p modes. Astrophys. J. 654, 1135–1145 (2007). doi: 10.1086/509700 ADSGoogle Scholar
  72. B. Joshi, A. Joshi, Intermediate-term periodicities in soft x-ray flare index during solar cycles 21, 22 and 23. Sol. Phys. 226, 153–161 (2005). doi: 10.1007/s11207-005-5716-9 ADSGoogle Scholar
  73. R.P. Kane, Evolutions of various solar indices around sunspot maximum and sunspot minimum years. Ann. Geophys. 20, 741–755 (2002). doi: 10.5194/angeo-20-741-2002 ADSGoogle Scholar
  74. R.P. Kane, Differences in the quasi-biennial oscillation and quasi-triennial oscillation characteristics of the solar, interplanetary, and terrestrial parameters. J. Geophys. Res. 110, 1108 (2005a). doi: 10.1029/2004JA010606 Google Scholar
  75. R.P. Kane, Short-term periodicities in solar indices. Sol. Phys. 227, 155–175 (2005b). doi: 10.1007/s11207-005-1110-x ADSGoogle Scholar
  76. R.P. Kane, Which one is the ‘GNEVYSHEV’ GAP? Sol. Phys. 229, 387–407 (2005c). doi: 10.1007/s11207-005-7451-7 ADSGoogle Scholar
  77. R.P. Kane, A detailed comparison of cosmic ray gaps with solar gnevyshev gaps. Sol. Phys. 236, 207–226 (2006). doi: 10.1007/s11207-006-0142-1 ADSGoogle Scholar
  78. C. Kato, K. Munakata, S. Yasue, K. Inoue, F.B. McDonald, A 1.7-year quasi-periodicity in cosmic ray intensity variation observed in the outer heliosphere. J. Geophys. Res. 108, 1367 (2003). doi: 10.1029/2003JA009897 Google Scholar
  79. C. Katsavrias, P. Preka-Papadema, X. Moussas, Wavelet analysis on solar wind parameters and geomagnetic indices. Sol. Phys. 280, 623–640 (2012). doi: 10.1007/s11207-012-0078-6 ADSGoogle Scholar
  80. M.N. Khramova, E.V. Kononovich, S.A. Krasotkin, Quasi-biennial oscillations of global solar-activity indices. Sol. Syst. Res. 36, 507–512 (2002) ADSGoogle Scholar
  81. A. Kilcik, A. Ozguc, One possible reason for double-peaked maxima in solar cycles: is a second maximum of solar cycle 24 expected? Sol. Phys. 289, 1379–1386 (2014). doi: 10.1007/s11207-013-0407-4 ADSGoogle Scholar
  82. A. Kilcik, V.B. Yurchyshyn, V. Abramenko, P.R. Goode, A. Ozguc, J.P. Rozelot, W. Cao, Time distributions of large and small sunspot groups over four solar cycles. Astrophys. J. 731, 30 (2011). doi: 10.1088/0004-637X/731/1/30 ADSGoogle Scholar
  83. R. Knaack, J.O. Stenflo, Spherical harmonic decomposition of solar magnetic fields. Astron. Astrophys. 438, 349–363 (2005). doi: 10.1051/0004-6361:20052765 ADSzbMATHGoogle Scholar
  84. R. Knaack, J.O. Stenflo, S.V. Berdyugina, Periodic oscillations in the North-South asymmetry of the solar magnetic field. Astron. Astrophys. 418, 17–20 (2004). doi: 10.1051/0004-6361:20040107 ADSGoogle Scholar
  85. R. Knaack, J.O. Stenflo, S.V. Berdyugina, Evolution and rotation of large-scale photospheric magnetic fields of the Sun during cycles 21-23. Periodicities, North-South asymmetries and r-mode signatures. Astron. Astrophys. 438, 1067–1082 (2005). doi: 10.1051/0004-6361:20042091 ADSGoogle Scholar
  86. M.B. Krainev, G.A. Bazilevskaya, V.S. Makhmutov, Solar magnetic field and dynamic phenomena in cosmic rays. Adv. Space Res. 29, 331–336 (2002). doi: 10.1016/S0273-1177(01)00593-2 ADSGoogle Scholar
  87. N.A. Krivova, S.K. Solanki, The 1.3-year and 156-day periodicities in sunspot data: wavelet analysis suggests a common origin. Astron. Astrophys. 394, 701–706 (2002). doi: 10.1051/0004-6361:20021063 ADSGoogle Scholar
  88. K. Kudela, J. Rybák, A. Antalová, M. Storini, Time evolution of low-frequency periodicities in cosmic ray intensity. Sol. Phys. 205, 165–175 (2002). doi: 10.1023/A:1013869322693 ADSGoogle Scholar
  89. K. Kudela, H. Mavromichalaki, A. Papaioannou, M. Gerontidou, On mid-term periodicities in cosmic rays. Sol. Phys. 266, 173–180 (2010). doi: 10.1007/s11207-010-9598-0 ADSGoogle Scholar
  90. P. Kumar, S. Talon, J.-P. Zahn, Angular momentum redistribution by waves in the sun. Astrophys. J. 520, 859–870 (1999). doi: 10.1086/307464 ADSGoogle Scholar
  91. A. Lara, A. Borgazzi, O. Mendes Jr., R.R. Rosa, M.O. Domingues, Short-period fluctuations in coronal mass ejection activity during solar cycle 23. Sol. Phys. 248, 155–166 (2008). doi: 10.1007/s11207-008-9153-4 ADSGoogle Scholar
  92. M. Laurenza, M. Storini, S. Giangravè, G. Moreno, Search for periodicities in the IMP 8 charged particle measurement experiment proton fluxes for the energy bands 0.50-0.96 MeV and 190-440 MeV. J. Geophys. Res. 114, 1103 (2009). doi: 10.1029/2008JA013181 Google Scholar
  93. M. Laurenza, A. Vecchio, M. Storini, V. Carbone, Quasi-biennial modulation of galactic cosmic rays. Astrophys. J. 749, 167 (2012). doi: 10.1088/0004-637X/749/2/167 ADSGoogle Scholar
  94. K.G. Libbrecht, M.F. Woodard, Solar-cycle effects on solar oscillation frequencies. Nature 345, 779–782 (1990). doi: 10.1038/345779a0 ADSGoogle Scholar
  95. M. Lockwood, Long-term variations in the magnetic fields of the sun and the heliosphere: their origin, effects, and implications. J. Geophys. Res. 106, 16021–16038 (2001). doi: 10.1029/2000JA000115 ADSGoogle Scholar
  96. Y.-Q. Lou, Rossby-type wave-induced periodicities in flare activities and sunspot areas or groups during solar maxima. Astrophys. J. 540, 1102–1108 (2000). doi: 10.1086/309387 ADSGoogle Scholar
  97. Y.-Q. Lou, Y.-M. Wang, Z. Fan, S. Wang, J.X. Wang, Periodicities in solar coronal mass ejections. Mon. Not. R. Astron. Soc. 345, 809–818 (2003). doi: 10.1046/j.1365-8711.2003.06993.x ADSGoogle Scholar
  98. R. Lukianova, K. Mursula, Changed relation between sunspot numbers, solar UV/EUV radiation and TSI during the declining phase of solar cycle 23. J. Atmos. Sol.-Terr. Phys. 73, 235–240 (2011). doi: 10.1016/j.jastp.2010.04.002 ADSGoogle Scholar
  99. K. Maeda, Quasi-biennial cycles in cosmic ray intensity. J. Atmos. Sci. 24, 320–322 (1967). doi: 10.1175/1520-0469(1967)024<0320:QBCICR>2.0.CO;2 ADSGoogle Scholar
  100. H. Mavromichalaki, P. Preka-Papadema, I. Liritzis, B. Petropoulos, V. Kurt, Short-term variations of cosmic-ray intensity and flare related data in 1981–1983. New Astron. 8, 777–794 (2003). doi: 10.1016/S1384-1076(03)00066-6 ADSGoogle Scholar
  101. T.S. Metcalfe, A.P. Buccino, B.P. Brown, S. Mathur, D.R. Soderblom, T.J. Henry, P.J.D. Mauas, R. Petrucci, J.C. Hall, S. Basu, Magnetic activity cycles in the exoplanet host star epsilon Eridani. Astrophys. J. Lett. 763, 26 (2013). doi: 10.1088/2041-8205/763/2/L26 ADSGoogle Scholar
  102. L.I. Miroshnichenko, Solar cosmic rays in the system of solar terrestrial relations. J. Atmos. Sol.-Terr. Phys. 70, 450–466 (2008). doi: 10.1016/j.jastp.2007.08.027 ADSGoogle Scholar
  103. D. Moss, Non-axisymmetric solar magnetic fields. Mon. Not. R. Astron. Soc. 306, 300–306 (1999). doi: 10.1046/j.1365-8711.1999.02510.x ADSGoogle Scholar
  104. D. Moss, Dynamo models and the flip-flop phenomenon in late-type stars. Mon. Not. R. Astron. Soc. 352, 17–20 (2004). doi: 10.1111/j.1365-2966.2004.08125.x ADSGoogle Scholar
  105. D. Moss, J. Brooke, Towards a model for the solar dynamo. Mon. Not. R. Astron. Soc. 315, 521–533 (2000). doi: 10.1046/j.1365-8711.2000.03452.x ADSGoogle Scholar
  106. D. Moss, D.M. Barker, A. Brandenburg, I. Tuominen, Nonaxisymmetric dynamo solutions and extended starspots on late-type stars. Astron. Astrophys. 294, 155–164 (1995) ADSGoogle Scholar
  107. X. Moussas, J.M. Polygiannakis, P. Preka-Papadema, G. Exarhos, Solar cycles: a tutorial. Adv. Space Res. 35, 725–738 (2005). doi: 10.1016/j.asr.2005.03.148 ADSGoogle Scholar
  108. J. Murakozy, A. Ludmany, Cycle dependence of the longitudinal-latitudinal sunspot motion correlations. Astron. Astrophys. 486, 1003–1007 (2008). doi: 10.1051/0004-6361:20078456 ADSGoogle Scholar
  109. K. Mursula, J.H. Vilppola, Fluctuations of the solar dynamo observed in the solar wind and interplanetary magnetic field at 1 AU and in the outer heliosphere. Sol. Phys. 221, 337–349 (2004). doi: 10.1023/B:SOLA.0000035053.17913.26 ADSGoogle Scholar
  110. K. Mursula, B. Zieger, The 1.3-year variation in solar wind speed and geomagnetic activity. Adv. Space Res. 25, 1939–1942 (2000). doi: 10.1016/S0273-1177(99)00608-0 ADSGoogle Scholar
  111. K. Mursula, B. Zieger, J.H. Vilppola, Mid-term quasi-periodicities in geomagnetic activity during the last 15 solar cycles: connection to solar dynamo strength to the memory of Karolen I. Paularena (1957–2001). Sol. Phys. 212, 201–207 (2003). doi: 10.1023/A:1022980029618 ADSGoogle Scholar
  112. K. Nagashima, S. Sakakibara, I. Morishita, Quiescence of GLE-producible solar proton eruptions during the transition phase of heliomagnetic polarity reversal near the solar-activity-maximum period. Int. Cosm. Ray Conf. 3, 29 (1991) Google Scholar
  113. A.A. Norton, J.C. Gallagher, Solar-cycle characteristics examined in separate hemispheres: phase, gnevyshev gap, and length of minimum. Sol. Phys. 261, 193–207 (2010). doi: 10.1007/s11207-009-9479-6 ADSGoogle Scholar
  114. V.N. Obridko, B.D. Shelting, Quasi-biennial oscillations of the global solar magnetic field. Astron. Rep. 45, 1012–1017 (2001). doi: 10.1134/1.1426132 ADSGoogle Scholar
  115. V.N. Obridko, B.D. Shelting, Occurrence of the 1.3-year periodicity in the large-scale solar magnetic field for 8 solar cycles. Adv. Space Res. 40, 1006–1014 (2007). doi: 10.1016/j.asr.2007.04.105 ADSGoogle Scholar
  116. V.P. Okhlopkov, Distinctive properties of the frequency spectra of cosmic ray variations and parameters of solar activity and the interplanetary medium in solar cycles 20–23. Mosc. University Phys. Bull. 66, 99–103 (2011). doi: 10.3103/S0027134911010188 ADSGoogle Scholar
  117. K. Oláh, Z. Kolláth, T. Granzer, K.G. Strassmeier, A.F. Lanza, S. Järvinen, H. Korhonen, S.L. Baliunas, W. Soon, S. Messina, G. Cutispoto, Multiple and changing cycles of active stars. II. Results. Astron. Astrophys. 501, 703–713 (2009). doi: 10.1051/0004-6361/200811304 ADSGoogle Scholar
  118. A. Özgüç, T. Ataç, J. Rybák, Temporal variability of the flare index (1966–2001). Sol. Phys. 214, 375–396 (2003). doi: 10.1023/A:1024225802080 ADSGoogle Scholar
  119. P.L. Pallé, C. Régulo, T. Roca Cortés, Solar cycle induced variations of the low L solar acoustic spectrum. Astron. Astrophys. 224, 253–258 (1989) ADSGoogle Scholar
  120. C. Petrick, K. Matthes, H. Dobslaw, M. Thomas, Impact of the solar cycle and the QBO on the atmosphere and the ocean. J. Geophys. Res., Atmos. 117, 17111 (2012). doi: 10.1029/2011JD017390 ADSGoogle Scholar
  121. E.P. Popova, N.A. Yukhina, The quasi-biennial cycle of solar activity and dynamo theory. Astron. Lett. 39, 729–735 (2013). doi: 10.1134/S1063773713100046 ADSGoogle Scholar
  122. V.E. Reznikova, K. Shibasaki, R.A. Sych, V.M. Nakariakov, Three-minute oscillations above sunspot umbra observed with the solar dynamics Observatory/Atmospheric imaging assembly and nobeyama radioheliograph. Astrophys. J. 746, 119 (2012). doi: 10.1088/0004-637X/746/2/119 ADSGoogle Scholar
  123. I.G. Richardson, H.V. Cane, The ∼150 day quasi-periodicity in interplanetary and solar phenomena during cycle 23. Geophys. Res. Lett. 32, 2104 (2005). doi: 10.1029/2004GL021691 ADSGoogle Scholar
  124. I.G. Richardson, H.V. Cane, E.W. Cliver, Sources of geomagnetic activity during nearly three solar cycles (1972–2000). J. Geophys. Res. 107, 1187 (2002). doi: 10.1029/2001JA000504 Google Scholar
  125. E. Rieger, G. Kanbach, C. Reppin, G.H. Share, D.J. Forrest, E.L. Chupp, A 154-day periodicity in the occurrence of hard solar flares? Nature 312, 623–625 (1984). doi: 10.1038/312623a0 ADSGoogle Scholar
  126. J. Rodríguez-Pacheco, J.J. Blanco, B. Heber, R. Gómez-Herrero, Energetic particles measured in and out of the ecliptic plane during the last Gnevyshev gap. Sol. Phys. 281, 491–499 (2012). doi: 10.1007/s11207-012-9977-9 ADSGoogle Scholar
  127. A. Ruzmaikin, A.C. Cadavid, J. Lawrence, Quasi-periodic patterns coupling the sun, solar wind and the earth. J. Atmos. Sol.-Terr. Phys. 70, 2112–2117 (2008). doi: 10.1016/j.jastp.2008.09.013 ADSGoogle Scholar
  128. J. Rybák, A. Antalová, M. Storini, The wavelet analysis of the solar and cosmic-ray data. Space Sci. Rev. 97, 359–362 (2001). doi: 10.1023/A:1011805923567 ADSGoogle Scholar
  129. S.H. Saar, A. Brandenburg, Time evolution of the magnetic activity cycle period. II. Results for an expanded stellar sample. Astrophys. J. 524, 295–310 (1999). doi: 10.1086/307794 ADSGoogle Scholar
  130. K. Sakurai, Quasi-biennial variation of the solar neutrino flux and solar activity. Nature 278, 146–148 (1979). doi: 10.1038/278146a0 ADSGoogle Scholar
  131. D.J. Schove, Sunspot turning-points and aurorae since A.D. 1510. Sol. Phys. 63, 423–432 (1979). doi: 10.1007/BF00174546 ADSGoogle Scholar
  132. S. Sello, Wavelet entropy and the multi-peaked structure of solar cycle maximum. New Astron. 8, 105–117 (2003). doi: 10.1016/S1384-1076(02)00192-6 ADSGoogle Scholar
  133. A. Serebryanskiy, D.-Y. Chou, Comparison of solar cycle variations of solar p-mode frequencies from GONG and MDI. Astrophys. J. 633, 1187–1190 (2005). doi: 10.1086/491467 ADSGoogle Scholar
  134. T. Shirai, Time variation of the solar neutrino fluxes from Super-Kamiokande data. Sol. Phys. 222, 199–201 (2004). doi: 10.1023/ ADSGoogle Scholar
  135. S.M. Silverman, R. Shapiro, Power spectral analysis of auroral occurrence frequency. J. Geophys. Res. 88, 6310–6316 (1983). doi: 10.1029/JA088iA08p06310 ADSGoogle Scholar
  136. R. Simoniello, W. Finsterle, D. Salabert, R.A. García, S. Turck-Chièze, A. Jiménez, M. Roth, The quasi-biennial periodicity (QBP) in velocity and intensity helioseismic observations. The seismic QBP over solar cycle 23. Astron. Astrophys. 539, 135 (2012a). doi: 10.1051/0004-6361/201118057 ADSGoogle Scholar
  137. R. Simoniello, K. Jain, S.C. Tripathy, S. Turck-Chiéze, W. Finsterle, M. Roth, Seismic comparison of the 11- and 2-year cycle signatures in the sun. Astron. Nachr. 333, 1018 (2012b). doi: 10.1002/asna.201211813 ADSGoogle Scholar
  138. R. Simoniello, K. Jain, S.C. Tripathy, S. Turck-Chièze, C. Baldner, W. Finsterle, F. Hill, M. Roth, The quasi-biennial periodicity as a window on the solar magnetic dynamo configuration. Astrophys. J. 765, 100 (2013). doi: 10.1088/0004-637X/765/2/100 ADSGoogle Scholar
  139. Y.P. Singh, S. Gautam Badruddin, Temporal variations of short- and mid-term periodicities in solar wind parameters and cosmic ray intensity. J. Atmos. Sol.-Terr. Phys. 89, 48–53 (2012). doi: 10.1016/j.jastp.2012.07.011 ADSGoogle Scholar
  140. M. Storini, M. Laurenza, Solar activity effects on muon data. Mem. Soc. Astron. Ital. 74, 774 (2003) ADSGoogle Scholar
  141. M. Storini, G.A. Bazilevskaya, E.O. Fluckiger, M.B. Krainev, V.S. Makhmutov, A.I. Sladkova, The GNEVYSHEV gap: a review for space weather. Adv. Space Res. 31, 895–900 (2003). doi: 10.1016/S0273-1177(02)00789-5 ADSGoogle Scholar
  142. M. Storini, K. Kudela, E.G. Cordaro, S. Massetti, Ground-level enhancements during solar cycle 23: results from SVIRCO, LOMNICKY STIT and LARC neutron monitors. Adv. Space Res. 35, 416–420 (2005). doi: 10.1016/j.asr.2004.12.020 ADSGoogle Scholar
  143. J. Sykora, The coronal responses to the large-scale and long-term phenomena of the lower layers of the sun. Sol. Interplanet. Dyn. 91, 87–104 (1980) ADSGoogle Scholar
  144. M.J. Thompson, Temporal variations of the sun’s internal structure and dynamics: a theoretical perspective, in SOHO 10/GONG 2000 Workshop: Helio- and Asteroseismology at the Dawn of the Millennium, ed. by A. Wilson, P.L. Pallé. ESA Special Publication, vol. 464, (2001), pp. 39–44 Google Scholar
  145. I. Tuominen, S.V. Berdyugina, M.J. Korpi, Starspot cycles from Doppler imaging and photometric time series as nonlinear dynamo. Astron. Nachr. 323, 367–370 (2002). doi: 10.1002/1521-3994(200208)323:3/4<367::AID-ASNA367>3.0.CO;2-E ADSGoogle Scholar
  146. J.F. Valdés-Galicia, V.M. Velasco, Variations of mid-term periodicities in solar activity physical phenomena. Adv. Space Res. 41, 297–305 (2008). doi: 10.1016/j.asr.2007.02.012 ADSGoogle Scholar
  147. J.F. Valdés-Galicia, V.M. Velasco, B. Mendoza, Mid term cosmic ray quasi periodicities and solar magnetic activity manifestations. Int. Cosm. Ray Conf. 2, 211 (2005) Google Scholar
  148. A. Vecchio, V. Carbone, On the origin of the double magnetic cycle of the sun. Astrophys. J. 683, 536–541 (2008). doi: 10.1086/589768 ADSGoogle Scholar
  149. A. Vecchio, V. Carbone, Spatio-temporal analysis of solar activity: main periodicities and period length variations. Astron. Astrophys. 502, 981–987 (2009). doi: 10.1051/0004-6361/200811024 ADSGoogle Scholar
  150. A. Vecchio, M. Laurenza, V. Carbone, M. Storini, Quasi-biennial modulation of solar neutrino flux and solar and galactic cosmic rays by solar cyclic activity. Astrophys. J. Lett. 709, 1–5 (2010). doi: 10.1088/2041-8205/709/1/L1 ADSGoogle Scholar
  151. A. Vecchio, M. Laurenza, D. Meduri, V. Carbone, M. Storini, The dynamics of the solar magnetic field: polarity reversals, butterfly diagram, and quasi-biennial oscillations. Astrophys. J. 749, 27 (2012a). doi: 10.1088/0004-637X/749/1/27 ADSGoogle Scholar
  152. A. Vecchio, M. Laurenza, M. Storini, V. Carbone, New insights on cosmic ray modulation through a joint use of nonstationary data-processing methods. Adv. Astron. 2012(2012b). doi: 10.1155/2012/834247
  153. Y.-M. Wang, The sun’s large-scale magnetic field and its long-term evolution. Sol. Phys. 224, 21–35 (2004). doi: 10.1007/s11207-005-4982-x ADSGoogle Scholar
  154. Y. Wang, N.R. Sheeley Jr., On the fluctuating component of the sun’s large-scale magnetic field. Astrophys. J. 590, 1111–1120 (2003). doi: 10.1086/375026 ADSGoogle Scholar
  155. Y.-M. Wang, J. Lean, N.R. Sheeley Jr., Role of a variable meridional flow in the secular evolution of the sun’s polar fields and open flux. Astrophys. J. Lett. 577, 53–57 (2002). doi: 10.1086/344196 ADSGoogle Scholar
  156. C.L. Wolff, The rotational spectrum of g-modes in the sun. Astrophys. J. 264, 667–676 (1983). doi: 10.1086/160640 ADSGoogle Scholar
  157. M.F. Woodard, R.W. Noyes, Change of solar oscillation eigenfrequencies with the solar cycle. Nature 318, 449 (1985) ADSGoogle Scholar
  158. T.V. Zaqarashvili, M. Carbonell, R. Oliver, J.L. Ballester, Magnetic rossby waves in the solar tachocline and rieger-type periodicities. Astrophys. J. 709, 749–758 (2010a). doi: 10.1088/0004-637X/709/2/749 ADSGoogle Scholar
  159. T.V. Zaqarashvili, M. Carbonell, R. Oliver, J.L. Ballester, Quasi-biennial oscillations in the solar tachocline caused by magnetic rossby wave instabilities. Astrophys. J. Lett. 724, 95–98 (2010b). doi: 10.1088/2041-8205/724/1/L95 ADSGoogle Scholar
  160. T.V. Zaqarashvili, R. Oliver, J.L. Ballester, M. Carbonell, M.L. Khodachenko, H. Lammer, M. Leitzinger, P. Odert, Rossby waves and polar spots in rapidly rotating stars: implications for stellar wind evolution. Astron. Astrophys. 532, 139 (2011). doi: 10.1051/0004-6361/201117122 ADSGoogle Scholar
  161. S.I. Zharkov, E. Gavryuseva, V.V. Zharkova, On phase relation between toroidal and poloidal magnetic fields in the solar cycle 23, in Proceedings of the International Astronomical Union, IAU Symposium, vol. 247, (2008), pp. 39–45. doi: 10.1017/S1743921308014634 Google Scholar
  162. N.V. Zolotova, D.I. Ponyavin, Impulse-like behavior of the sunspot activity. Astron. Rep. 56, 250–255 (2012). doi: 10.1134/S1063772912030080 ADSGoogle Scholar
  163. T.H. Zurbuchen, A new view of the coupling of the sun and the heliosphere. Annu. Rev. Astron. Astrophys. 45, 297–338 (2007). doi: 10.1146/annurev.astro.45.010807.154030 ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • G. Bazilevskaya
    • 1
  • A.-M. Broomhall
    • 2
    • 3
    Email author
  • Y. Elsworth
    • 4
  • V. M. Nakariakov
    • 3
    • 5
    • 6
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Advanced StudiesUniversity of WarwickCoventryUK
  3. 3.Centre for Fusion, Space, and Astrophysics, Department of PhysicsUniversity of WarwickCoventryUK
  4. 4.School of Physics and AstronomyUniversity of BirminghamEdgbastonUK
  5. 5.School of Space ResearchKyung Hee UniversityYonginKorea
  6. 6.Central Astronomical Observatory at Pulkovo of RASSt. PetersburgRussia

Personalised recommendations