Advertisement

Space Science Reviews

, Volume 186, Issue 1–4, pp 325–357 | Cite as

Solar Polar Fields and the 22-Year Activity Cycle: Observations and Models

  • G. J. D. PetrieEmail author
  • K. Petrovay
  • K. Schatten
Article

Abstract

We explore observations and models of the interacting, cyclical behavior of the active regions and the polar magnetic fields of the Sun. We focus on observational evidence of these fields interacting across the corridor between active and polar latitudes. We present observations of diverse magnetic signatures on, above and beneath the solar surface, and find much evidence of phenomena migrating in both directions across this corridor in each hemisphere, including photospheric fields, ephemeral bipoles, interior torsional oscillations, high-latitude filaments, and coronal green line intensity. Together these observations produce a complex physical picture of high-latitude solar magnetic field evolution in the photosphere, atmosphere and interior, and demonstrate their essential role in the solar cycle. The picture presented by these collected observations is consistent with the Babcock-Leighton phenomenological model for the cycle, and we discuss related efforts to predict cycle amplitudes based on polar field strengths and on combining activity and polar-field information in a single phase-independent, slowly-evolving index. We also briefly review related work on magnetic flux transport models for the solar cycle, with particular reference to the interaction between flux emergence patterns and meridional flows.

Keywords

Solar magnetic fields Activity cycle Solar poles Photosphere Chromosphere Corona Solar interior Magnetic flux-transport models 

Notes

Acknowledgements

The authors are grateful to A. Balogh for the opportunity to participate in the ISSI Workshop on “The Solar Activity Cycle: Physical Causes and Consequences”, held in November 2013. KP acknowledges support from the Hungarian Science Research Fund (OTKA grants no. K83133 and 81421). KS appreciates the support of GSFC-NASA’s code 500/590 involving Mission Operations, and a.i.-solutions, inc., as well as valuable discussions with Hans Mayr.

References

  1. R.C. Altrock, Forecasting the maxima of solar cycle 24 with coronal Fe xiv emission. Sol. Phys. 289, 623 (2014) ADSGoogle Scholar
  2. M.D. Altschuler, G. Newkirk, Magnetic fields and the structure of the solar corona. I: Methods of calculating coronal fields. Sol. Phys. 9, 131 (1969) ADSGoogle Scholar
  3. H.D. Babcock, The Sun’s polar magnetic field. Astrophys. J. 130, 364 (1959) ADSGoogle Scholar
  4. H.W. Babcock, The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572 (1961) ADSGoogle Scholar
  5. S. Basu, H.M. Antia, Characteristics of solar meridional flows during solar cycle 23. Astrophys. J. 717, 488 (2010) ADSGoogle Scholar
  6. S. Bravo, G. Stewart, Evolution of polar coronal holes and sunspots during cycles 21 and 22. Sol. Phys. 154, 377 (1994) ADSGoogle Scholar
  7. R.M. Broussard, R. Tousey, J.H. Underwood, N.R. Sheeley Jr., A survey of coronal holes and their solar wind associations throughout sunspot cycle 20. Sol. Phys. 56, 161 (1978) ADSGoogle Scholar
  8. V. Bumba, R.F. Howard, Large-scale distribution of solar magnetic fields. Astrophys. J. 141, 1492 (1965) ADSGoogle Scholar
  9. V. Bumba, R.F. Howard, Solar activity and recurrences in magnetic-field distribution. Sol. Phys. 7, 28 (1969) ADSGoogle Scholar
  10. P. Charbonneau, Dynamo models of the solar cycle. Living Rev. Sol. Phys. 7, 3 (2010) ADSGoogle Scholar
  11. G. de Toma, Evolution of coronal holes and implications for high-speed solar wind during the minimum between cycles 23 and 24. Sol. Phys. 274, 195 (2011) ADSGoogle Scholar
  12. M.L. DeRosa, A.S. Brun, J.T. Hoeksema, Solar magnetic field reversals and the role of dynamo families. Astrophys. J. 757, 96 (2012) ADSGoogle Scholar
  13. M. Dikpati, Polar field puzzle: solutions from flux-transport dynamo and surface-transport models. Astrophys. J. 733, 90 (2011) ADSGoogle Scholar
  14. T.L. Duvall, Large-scale solar velocity fields. Sol. Phys. 63, 3 (1979) ADSGoogle Scholar
  15. Y. Fan, G.H. Fisher, Radiative heating and the Buoyant rise of magnetic flux tubes in the solar interior. Sol. Phys. 166, 17 (1996) ADSGoogle Scholar
  16. V. Gaizauskas, K.L. Harvey, J.W. Harvey, C. Zwaan, Large-scale patterns formed by solar active regions during the ascending phase of cycle 21. Astrophys. J. 265, 1056 (1983) ADSGoogle Scholar
  17. N. Gopalswamy, K. Shibasaki, M. Salem, Microwave enhancement in coronal holes: statistical properties. J. Astrophys. Astron. 21, 413 (2000) ADSGoogle Scholar
  18. N. Gopalswamy, S. Yashiro, P. Makala, G. Michalek, K. Shibasaki, D.H. Hathaway, Behavior of solar cycles 23 and 24 revealed by microwave observations. Astrophys. J. 750, L42 (2012) ADSGoogle Scholar
  19. S. Gosain, A.A. Pevtsov, G.V. Rudenko, S.A. Anfinogentov, First synoptic maps of photospheric vector magnetic field from SOLIS/VSM: non-radial magnetic fields and hemispheric pattern of helicity. Astrophys. J. 772, 52 (2013) ADSGoogle Scholar
  20. J. Hagenaar Hermance, C.J. Schrijver, A.M. Title, The properties of small magnetic regions on the solar surface and the implications for the solar dynamo(s). Astrophys. J. 584, 1107 (2003) ADSGoogle Scholar
  21. G.E. Hale, Invisible sun-spots. Mon. Not. R. Astron. Soc. 82, 168 (1920) ADSGoogle Scholar
  22. G.E. Hale, F. Ellerman, S.B. Nicholson, A.H. Joy, The magnetic polarity of sun-spots. Astrophys. J. 49, 153 (1919) ADSGoogle Scholar
  23. G.E. Hale, S.B. Nicholson, The law of sun-spot polarity. Astrophys. J. 62, 270 (1925) ADSGoogle Scholar
  24. J.W. Harvey, The Sun in time. Space Sci. Rev. 176, 47 (2013) ADSGoogle Scholar
  25. J.W. Harvey, A.S. Krieger, J.M. Davis, A.F. Timothy, G.S. Vaiana, Comparison of Skylab X-Ray and ground-based Helium observations. Bull. Am. Astron. Soc. 7, 358 (1975) ADSGoogle Scholar
  26. J.W. Harvey, N.R. Sheeley Jr., Coronal holes and solar magnetic fields. Space Sci. Rev. 23, 139 (1979) ADSGoogle Scholar
  27. K.L. Harvey, S.F. Martin, Ephemeral active regions. Sol. Phys. 32, 389 (1973) ADSGoogle Scholar
  28. K.L. Harvey, F. Recely, Polar coronal holes during cycles 22 and 23. Sol. Phys. 211, 31 (2002) ADSGoogle Scholar
  29. K.L. Harvey, C. Zwaan, Properties and emergence of bipolar active regions. Sol. Phys. 148, 85 (1993) ADSGoogle Scholar
  30. D.H. Hathaway, P.A. Gilman, J.W. Harvey, F. Hill, R.F. Howard, H.P. Jones, J.C. Kasher, J.W. Leibacher, J.A. Pintar, G.W. Simon, GONG observations of solar surface flows. Science 272, 1306 (1996) ADSGoogle Scholar
  31. D.H. Hathaway, L. Rightmire, Variations in the Sun’s meridional flow over a solar cycle. Science 327, 1350 (2010) ADSGoogle Scholar
  32. J.T. Hoeksema, Structure and evolution of the large-scale solar and heliospheric magnetic fields. Ph.D. Thesis, Stanford University (1984) Google Scholar
  33. J.T. Hoeksema, Evolution of the large-scale magnetic field over three solar cycles, in Solar and Stellar Variability: Impact on Earth and Planets, Proceedings of the International Astronomical Union. IAU Symposium, vol. 264, (2010), p. 222 Google Scholar
  34. R. Howard, B.J. LaBonte, The sun is observed to be a torsional oscillator with a period of 11 years. Sol. Phys. 239, 33 (1980) Google Scholar
  35. R. Howe, D. Baker, L. Harra, L. van Driel-Gesztelyi, R. Komm, F. Hill, I. González Hernńdez, Magnetic polarity streams and subsurface flows, in Fifty Years of Seismology of the Sun and Stars, ed. by K. Jain, S.C. Tripathy, F. Hill, J.W. Leibacher, A.A. Pevtsov. ASP Conference Proceedings, vol. 478, (2013), p. 291 Google Scholar
  36. R. Howe, F. Hill, R. Komm, J. Christensen-Dalsgaard, T.P. Larson, J. Schou, M.J. Thompson, R. Ulrich, The torsional oscillation and the new solar cycle. J. Phys. Conf. Ser. 271, 012074 (2011) ADSGoogle Scholar
  37. R. Howe, J. Christensen-Dalsgaard, F. Hill, R. Komm, T.P. Larson, M. Rempel, J. Schou, M.J. Thompson, The high-latitude branch of the solar torsional oscillation in the rising phase of cycle 24. Astrophys. J. Lett. 767, 20 (2013) ADSGoogle Scholar
  38. J. Jiang, R. Cameron, D. Schmitt, M. Schüssler, Can surface flux transport account for the weak polar field in cycle 23? Space Sci. Rev. 176, 289 (2011) ADSGoogle Scholar
  39. C.L. Jin, J.W. Harvey, A. Pietarila, Synoptic mapping of chromospheric magnetic flux. Astrophys. J. 765, 79 (2013) ADSGoogle Scholar
  40. R.W. Komm, R.F. Howard, J.W. Harvey, Meridional flow of small photospheric magnetic features. Sol. Phys. 147, 207 (1993) ADSGoogle Scholar
  41. A.S. Krieger, A.F. Timothy, E.C. Roelof, A coronal hole and its identification as the source of a high velocity solar wind stream. Sol. Phys. 29, 505 (1973) ADSGoogle Scholar
  42. B.J. LaBonte, R. Howard, Solar rotation measurements at Mount Wilson. III. Meridional flow and limbshift. Sol. Phys. 80, 361 (1982) ADSGoogle Scholar
  43. R.B. Leighton, Transport of magnetic fields on the Sun. Astrophys. J. 140, 1547 (1964) ADSzbMATHGoogle Scholar
  44. R.B. Leighton, A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1 (1969) ADSGoogle Scholar
  45. J.L. Leroy, On the orientation of magnetic fields in quiescent prominences. Astron. Astrophys. 64, 247 (1978) ADSMathSciNetGoogle Scholar
  46. J.L. Leroy, V. Bommier, S. Sahal-Brechot, The magnetic field in the prominences of the polar crown. Sol. Phys. 83, 135 (1983) ADSGoogle Scholar
  47. J.-L. Leroy, J.-C. Noens, Does the solar activity cycle extend over more than an 11-year period? Astron. Astrophys. 120, L1 (1983) ADSGoogle Scholar
  48. J.A. Linker, R. Lionello, Z. Mikić, V.S. Titov, S.K. Antiochos, The evolution of open magnetic flux driven by photospheric dynamics. Astrophys. J. 731, 110 (2011) ADSGoogle Scholar
  49. D.H. Mackay, J.T. Karpen, J.L. Ballester, B. Schmieder, G. Aulanier, Physics of solar prominences. II. Magnetic structure and dynamics. Space Sci. Rev. 151, 333 (2010) ADSGoogle Scholar
  50. D. Mackay, A. Yeates, The Sun’s global photospheric and coronal magnetic fields: observations and models. Living Rev. Sol. Phys. 9, 6 (2012) ADSGoogle Scholar
  51. V.I. Makarov, V.V. Makarova, Polar faculae and sunspot cycles. Sol. Phys. 163, 267 (1996) ADSGoogle Scholar
  52. S.F. Martin, R. Bilimoria, P.W. Tracadas, Magnetic field configurations basic to filament channels and filaments, in Solar Surface Magnetism, ed. by R.J. Rutten, C.J. Schrijver (Kluwer Academic, Dordrecht, 1994), p. 303 Google Scholar
  53. E.W. Maunder, Sun, place of the, distribution of sun-spots in heliographic latitude, 1874–1913. Mon. Not. R. Astron. Soc. 74, 112 (1913) ADSGoogle Scholar
  54. B.H. McClintock, A.A. Norton, Recovering Joy’s law as a function of solar cycle, hemisphere, and longitude. Sol. Phys. 287, 215 (2013) ADSGoogle Scholar
  55. P.S. McIntosh, Solar magnetic fields derived from hydrogen alpha filtergrams. Rev. Geophys. Space Phys. 10, 837 (1972) ADSGoogle Scholar
  56. R. Müller, Zur Statistik der Koronastrahlen. Mit 2 Textabbildungen. Z. Astrophys. 38, 212 (1955) ADSGoogle Scholar
  57. A. Muñoz-Jaramillo, M. Dasi-Espuig, L.A. Balmaceda, E.E. DeLuca, Solar cycle propagation, memory, and prediction: insights from a century of magnetic proxies. Astrophys. J. Lett. 767, L25 (2013) ADSGoogle Scholar
  58. A. Muñoz-Jaramillo, N.R. Sheeley Jr., J. Zhang, E.E. DeLuca, Calibrating 100 years of polar faculae measurements: implications for the evolution of the heliospheric magnetic field. Astrophys. J. 753, 146 (2012) ADSGoogle Scholar
  59. D. Nandy, A. Muñoz-Jaramillo, P.C.H. Martens, The unusual minimum of sunspot cycle 23 caused by meridional plasma flow variations. Nature 471, 80 (2011) ADSGoogle Scholar
  60. V.N. Obridko, B.D. Shelting, On prediction of the strength of the 11-year solar cycle no. 24. Sol. Phys. 248, 191 (2008) ADSGoogle Scholar
  61. E.N. Parker, The formation of sunspots from the solar toroidal field. Astrophys. J. 121, 491 (1955) ADSGoogle Scholar
  62. E.N. Parker, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664 (1958) ADSGoogle Scholar
  63. G.J.D. Petrie, Evolution of active and polar photospheric magnetic fields during the rise of cycle 24 compared to previous cycles. Sol. Phys. 281, 577 (2012) ADSGoogle Scholar
  64. G.J.D. Petrie, Solar magnetic activity cycles, coronal potential field models and eruption rates. Astrophys. J. 768, 162 (2013) ADSGoogle Scholar
  65. G.J.D. Petrie, K.J. Haislmaier, Low-latitude coronal holes, decaying active regions, and global coronal magnetic structure. Astrophys. J. 775, 100 (2013) ADSGoogle Scholar
  66. G.J.D. Petrie, I. Patrikeeva, A comparative study of magnetic fields in the solar photosphere and chromosphere at equatorial and polar latitudes. Astrophys. J. 699, 871 (2009) ADSGoogle Scholar
  67. N.-E. Raouafi, J.W. Harvey, C.J. Henney, Latitude distribution of polar magnetic flux in the chromosphere near solar minimum. Astrophys. J. 669, 636 (2007) ADSGoogle Scholar
  68. M. Rempel, High-latitude solar torsional oscillations during phases of changing magnetic cycle amplitude. Astrophys. J. Lett. 750, 8 (2012) ADSGoogle Scholar
  69. E. Robbrecht, Y.-M. Wang, N.R. Sheeley Jr., N.B. Rich, On the “extended” solar cycle in coronal emission. Astrophys. J. 716, 693 (2010) ADSGoogle Scholar
  70. D.M. Rust, S.F. Martin, A correlation between sunspot whirls and filament type, in Solar Active Region Evolution: Comparing Models with Observations, ed. by K.S. Balasubramaniam, W. George. ASP Conf. Ser., vol. 68 (Simon, San Francisco, 1994), p. 337 Google Scholar
  71. K.H. Schatten, Large-scale solar magnetic field mapping: I. SpringerPlus 2, 21 (2013a). http://download.springer.com/static/pdf/412/art (Open access) Google Scholar
  72. K.H. Schatten, Solar field mapping and dynamo behavior (2013b). http://www.hindawi.com/journals/aa/2012/923578/
  73. K. Schatten, D.J. Myers, S. Sofia, Solar activity forecast for solar cycle 23. Geophys. Res. Lett. 23, 605 (1996) ADSGoogle Scholar
  74. K.H. Schatten, W.D. Pesnell, An early solar dynamo prediction: cycle 23 is approximately cycle 22. Geophys. Res. Lett. 20, 2275 (1993) ADSGoogle Scholar
  75. K.H. Schatten, P.H. Scherrer, L. Svalgaard, J.M. Wilcox, Using dynamo theory to predict the sunspot number during solar cycle 21. Geophys. Res. Lett. 5, 411 (1978) ADSGoogle Scholar
  76. K.H. Schatten, S. Sofia, Forecast of an exceptionally large even-numbered solar cycle. Geophys. Res. Lett. 14, 632 (1987) ADSGoogle Scholar
  77. K.H. Schatten, J.M. Wilcox, N.F. Ness, A model of interplanetary and coronal magnetic fields. Sol. Phys. 6, 442 (1969) ADSGoogle Scholar
  78. C.J. Schrijver, Simulations of the photospheric magnetic activity and outer atmospheric radiative losses of cool stars based on characteristics of the solar magnetic field. Astrophys. J. 547, 475 (2001) ADSGoogle Scholar
  79. C.J. Schrijver, Y. Liu, The global solar magnetic field through a full sunspot cycle: observations and model results. Sol. Phys. 252, 19 (2008) ADSGoogle Scholar
  80. C.J. Schrijver, C. Zwaan, Solar and Stellar Magnetic Activity (Cambridge University Press, New York, 2000) Google Scholar
  81. N.R. Sheeley Jr., A century of polar faculae variations. Astrophys. J. 374, 386 (1991) ADSGoogle Scholar
  82. N.R. Sheeley Jr., Polar faculae—1906–1990. Astrophys. J. 680, 1553 (2008) ADSGoogle Scholar
  83. E.J. Smith, A. Balogh, Decrease in heliospheric magnetic flux in this solar minimum: recent Ulysses magnetic field observations. Geophys. Res. Lett. 35, L22103 (2008) ADSGoogle Scholar
  84. X. Sun, Y. Liu, J.T. Hoeksema, K. Hayashi, X. Zhao, A new method for polar field interpolation. Sol. Phys. 270, 9 (2011) ADSGoogle Scholar
  85. L. Svalgaard, T.L. Duvall, P.H. Scherrer, The strength of the Sun’s polar fields. Sol. Phys. 58, 225 (1978) ADSGoogle Scholar
  86. J. Sykora, M. Parisi, A new database of the green-line corona brightness as compiled for the last five solar cycles and its possible utilization in the ISCS project. Astron. Astrophys. Trans. 16, 75 (1998) ADSGoogle Scholar
  87. S.J. Tappin, R.C. Altrock, The extended solar cycle tracked high into the corona. Sol. Phys. 282, 249 (2013) ADSGoogle Scholar
  88. A.G. Tlatov, V.V. Vasil’eva, A.A. Pevtsov, Distribution of magnetic bipoles on the sun over three solar cycles. Astrophys. J. 717, 357 (2010) ADSGoogle Scholar
  89. M. Trellis, Contribution a L’Étude de la couronne solaire. Suppl. Aux. Ann. Astrophys. 5, 3 (1957) ADSGoogle Scholar
  90. S. Tsuneta, K. Ichimoto, Y. Katsukawa, B.W. Lites, K. Matsuzaki, S. Nagata et al., The magnetic landscape of the Sun’s polar region. Astrophys. J. 688, 1374 (2008) ADSGoogle Scholar
  91. R.K. Ulrich, The controversial sun, in Inside the Stars, ed. by W.W. Weiss, A. Baglin. IAU Colloq., vol. 137, (1993), p. 25 Google Scholar
  92. R.K. Ulrich, Solar meridional circulation from Doppler shifts of the Fe I line at 5250 Å as measured by the 150-foot solar tower telescope at the Mt. Wilson observatory. Astrophys. J. 725, 658 (2010) ADSGoogle Scholar
  93. R.K. Ulrich, T. Tran, The global solar magnetic field—identification of traveling, long-lived ripples. Astrophys. J. 768, 189 (2013) ADSGoogle Scholar
  94. L. Upton, D.H. Hathaway, Predicting the Sun’s polar magnetic fields with a surface flux transport model. Astrophys. J. 780, 5 (2014) ADSGoogle Scholar
  95. M. Waldmeier, Die Sonnenkorona, 2nd edn. (Birkhäuser, Basel, 1957) Google Scholar
  96. M. Waldmeier, Das Verhalten der koronalen Polarzone. Mit 4 Textabbildungen. Z. Astrophys. 59, 205 (1964) ADSGoogle Scholar
  97. Y.-M. Wang, J.L. Lean, N.R. Sheeley Jr., Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys. J. 625, 522 (2005) ADSGoogle Scholar
  98. Y.-M. Wang, E. Robbrecht, N.R. Sheeley Jr., On the weakening of the polar magnetic fields during solar cycle 23. Astrophys. J. 707, 1372 (2009) ADSGoogle Scholar
  99. Y.-M. Wang, N.R. Sheeley Jr., The solar origin of long-term variations of the interplanetary magnetic field strength. J. Geophys. Res. 93, 11227 (1988) ADSGoogle Scholar
  100. Y.-M. Wang, N.R. Sheeley Jr., Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726 (1990) ADSGoogle Scholar
  101. Y.-M. Wang, N.R. Sheeley Jr., Magnetic flux transport and the Sun’s dipole moment—new twists to the Babcock–Leighton model. Astrophys. J. 375, 761 (1991) ADSGoogle Scholar
  102. Y.-M. Wang, N.R. Sheeley Jr., On potential field models of the solar corona. Astrophys. J. 392, 310 (1992) ADSGoogle Scholar
  103. Y.-M. Wang, N.R. Sheeley Jr., A.G. Nash, A new solar cycle model including meridional circulation. Astrophys. J. 383, 431 (1991) ADSGoogle Scholar
  104. J. Worden, J. Harvey, An evolving synoptic magnetic flux map and implications for the distribution of photospheric magnetic flux. Sol. Phys. 195, 247 (2000) ADSGoogle Scholar
  105. A.R. Yeates, D.H. Mackay, Chirality of high-latitude filaments over solar cycle 23. Astrophys. J. 753, L34 (2012) ADSGoogle Scholar
  106. X.P. Zhao, J.T. Hoeksema, P.H. Scherrer, Changes of the boot-shaped coronal hole boundary during Whole Sun Month near sunspot minimum. J. Geophys. Res. 104, 9735 (1999) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.National Solar ObservatoryTucsonUSA
  2. 2.Department of AstronomyEotvos UniversityBudapestHungary
  3. 3.a.i. solutionsLanhamUSA

Personalised recommendations