Advertisement

Space Science Reviews

, Volume 182, Issue 1–4, pp 85–154 | Cite as

Large-Scale Structure and Dynamics of the Magnetotails of Mercury, Earth, Jupiter and Saturn

  • C. M. JackmanEmail author
  • C. S. Arridge
  • N. André
  • F. Bagenal
  • J. Birn
  • M. P. Freeman
  • X. Jia
  • A. Kidder
  • S. E. Milan
  • A. Radioti
  • J. A. Slavin
  • M. F. Vogt
  • M. Volwerk
  • A. P. Walsh
Article

Abstract

Spacecraft observations have established that all known planets with an internal magnetic field, as part of their interaction with the solar wind, possess well-developed magnetic tails, stretching vast distances on the nightside of the planets. In this review paper we focus on the magnetotails of Mercury, Earth, Jupiter and Saturn, four planets which possess well-developed tails and which have been visited by several spacecraft over the years. The fundamental physical processes of reconnection, convection, and charged particle acceleration are common to the magnetic tails of Mercury, Earth, Jupiter and Saturn. The great differences in solar wind conditions, planetary rotation rates, internal plasma sources, ionospheric properties, and physical dimensions from Mercury’s small magnetosphere to the giant magnetospheres of Jupiter and Saturn provide an outstanding opportunity to extend our understanding of the influence of such factors on basic processes. In this review article, we study the four planetary environments of Mercury, Earth, Jupiter and Saturn, comparing their common features and contrasting their unique dynamics.

Keywords

Magnetotail Mercury Earth Jupiter Saturn Magnetosphere 

Notes

Acknowledgements

We acknowledge the generous support of the International Space Science Institute. All authors are members of ISSI team number 195, “Investigating the Dynamics of Planetary Magnetotails”. CMJ’s work at UCL was funded through a Leverhulme Trust Early Career Fellowship and a Royal Astronomical Society Fellowship (subsequently at University of Southampton). CMJ acknowledges useful discussion with Edward Smith. CSA was funded through a Royal Society University Research Fellowship and an STFC Postdoctoral fellowship. JAS is funded by the MESSENGER project which is supported by the NASA Discovery Program under contracts NASW-00002 to the Carnegie Institution of Washington and NAS5-97271 to The Johns Hopkins University Applied Physics Laboratory. AK is supported by NASA grant NNX07AJ80G to the University of Washington. AR is funded by the Belgian Fund for Scientific Research (FNRS). XJ is supported by the NASA Cassini Data Analysis Program through grant NNX12AK34G and by the NASA Cassini mission under contract 1409449 with JPL. MPF was supported by the Polar Science for Planet Earth Programme at the British Antarctic Survey. MFV’s work at the University of Leicester was supported by the Science and Technology Facilities Council (STFC) Consolidated grant ST/K001000/1. JB acknowledges support through NASA grants NNG08EJ63I, NNH11AQ42I, NNH10A045I, and NSF grant 1203711. Most of JB’s work was performed under the auspices of the US Department of Energy, while JB was a Staff Member at Los Alamos. CMJ would like to acknowledge the comments of two reviewers who helped to improve the manuscript.

References

  1. G.A. Abel, A.J. Coates, A.M. Rymer, D.R. Linder, M.F. Thomsen, D.T. Young, M.K. Dougherty, Cassini plasma spectrometer observations of bidirectional lobe electrons during the Earth flyby, August 18, 1999. J. Geophys. Res. 106, 30199–30208 (2001). doi: 10.1029/2001JA900076 ADSGoogle Scholar
  2. N. Achilleos, C.S. Arridge, C. Bertucci, C.M. Jackman, M.K. Dougherty, K.K. Khurana, C.T. Russell, Large-scale dynamics of Saturn’s magnetopause: observations by Cassini. J. Geophys. Res. 113, A11209 (2008). doi: 10.1029/2008JA013265 ADSGoogle Scholar
  3. S.-I. Akasofu, The development of the auroral substorm. Planet. Space Sci. 12, 273 (1964) ADSGoogle Scholar
  4. S.-I. Akasofu, Polar and Magnetospheric Substorm (Reidel, Dordrecht, 1968) Google Scholar
  5. S. Akasofu, S. Chapman, The ring current, geomagnetic disturbance, and the Van Allen radiation belts. J. Geophys. Res. 66(5), 1321–1350 (1961). doi: 10.1029/JZ066i005p01321 zbMATHADSGoogle Scholar
  6. R.R. Anderson, D.A. Gurnett, H. Matsumoto, K. Hashimoto, H. Kojima, Y. Kasaba, M.L. Kaiser, G. Rostoker, J.-L. Bougeret, J.-L. Steinberg, I. Nagano, H. Singer, Observations of low frequency terrestrial type III bursts by GEOTAIL and WIND and their association with isolated geomagnetic disturbances detected by ground and space-borne instruments, in Planetary Radio Emissions IV, ed. by H.O. Rucker, S.J. Bauer, A. Lecacheux (Austrian Academy of Sciences Press, Vienna, 1997), pp. 241–250 Google Scholar
  7. B.J. Anderson, M.H. Acuna, H. Korth, M.E. Purucker, C.L. Johnson, J.A. Slavin, S.C. Solomon, R.L. McNutt Jr., The structure of Mercury’s magnetic field from MESSENGER’s first flyby. Science 321, 82–85 (2008) ADSGoogle Scholar
  8. B.J. Anderson, C.L. Johnson, H. Korth, R.M. Winslow, J.E. Borovsky, M.E. Purucker, J.A. Slavin, S.C. Solomon, M.T. Zuber, R.L. McNutt Jr., Low-degree structure in Mercury’s planetary magnetic field. J. Geophys. Res. 117, E00L12 (2012). doi: 10.1029/2012JE004159 ADSGoogle Scholar
  9. V. Angelopoulos, W. Baumjohann, C.F. Kennel, F.V. Coronti, M.G. Kivelson, R. Pellat, R.J. Walker, H. Luehr, G. Paschmann, Bursty bulk flows in the inner central plasma sheet. J. Geophys. Res. 97, 4027–4039 (1992a) ADSGoogle Scholar
  10. V. Angelopoulos, C.F. Kennel, F.V. Coroniti, R. Pellat, M.G. Kivelson, R.J. Walker, W. Baumjohann, G. Paschmann, H. Luhr, Bursty bulk flows in the inner plasma sheet: an effective means of earthward transport in the magnetotail, in Proceedings of the First International Conf. on Substorms, ESA Special Publication, vol. 335 (1992b), pp. 303–308 Google Scholar
  11. V. Angelopoulos, C.F. Kennel, F.V. Coroniti, W.C. Feldman, J.T. Gosling, M.G. Kivelson, R.J. Walker, C.T. Russell, Observations of a quasi-static plasma sheet boundary. Geophys. Res. Lett. 20, 2813–2816 (1993). doi: 10.1029/93GL01979 ADSGoogle Scholar
  12. V. Angelopoulos, C.F. Kennel, F.V. Coroniti, R. Pellat, M.G. Kivelson, R.J. Walker, C.T. Russell, W. Baumjohann, W.C. Feldman, J.T. Gosling, Statistical characteristics of bursty bulk flow events. J. Geophys. Res. 99, 21257–21280 (1994). doi: 10.1029/94JA01263 ADSGoogle Scholar
  13. V.C. Angelopoulos, J.P. McFadden, D. Larson et al., Tail reconnection triggering substorm onset. Science 321(5891), 931–935 (2008). doi: 10.1126/science.1160495 ADSGoogle Scholar
  14. V.C. Angelopoulos, J.P. McFadden, D. Larson et al., Response to Comment on ”Tail reconnection triggering substorm onset”. Science 324(5933) (2009). doi: 10.1126/science.1168045
  15. R.L. Arnoldy, K.W. Chan, Particle substorms observed at the geostationary orbit. J. Geophys. Res. 74, 5019 (1969) ADSGoogle Scholar
  16. C.S. Arridge, Magnetotails of Uranus and Neptune, in Magnetotails in the Solar System. Geophys. Monogr. Ser. (2014, in press) Google Scholar
  17. C.S. Arridge, N. Achilleos, M.K. Dougherty, K.K. Khurana, C.T. Russell, Modeling the size and shape of Saturn’s magnetopause with variable dynamic pressure. J. Geophys. Res. 111, A11227 (2006). doi: 10.1029/2005JA011574 ADSGoogle Scholar
  18. C.S. Arridge, C.T. Russell, K.K. Khurana, N. Achilleos, S.W.H. Cowley, M.K. Dougherty, D.J. Southwood, E.J. Bunce, Saturn’s magnetodisc current sheet. J. Geophys. Res. 113, A04214 (2008a). doi: 10.1029/2007JA012540 ADSGoogle Scholar
  19. C.S. Arridge, K.K. Khurana, C.T. Russell, D.J. Southwood, N. Achilleos, M.K. Dougherty, A.J. Coates, H.K. Leinweber, Warping of Saturn’s magnetospheric and magnetotail current sheets. J. Geophys. Res. 113, A08217 (2008b). doi: 10.1029/2007JA012963 ADSGoogle Scholar
  20. C.S. Arridge, H.J. McAndrews, C.M. Jackman, C. Forsyth, A.P. Walsh, E.C. Sittler, L.K. Gilbert, G.R. Lewis, C.T. Russell, A.J. Coates, M.K. Dougherty, G.A. Collinson, A. Wellbrock, D.T. Young, Plasma electrons in Saturn’s magnetotail: structure, distribution and energization. Planet. Space Sci. 57(14–15), 2032–2047 (2009) ADSGoogle Scholar
  21. C.S. Arridge et al., Periodic motion of Saturn’s nightside plasma sheet. J. Geophys. Res. 116, A11205 (2011a). doi: 10.1029/2011JA016827 ADSGoogle Scholar
  22. C.S. Arridge et al., Mapping magnetospheric equatorial regions at Saturn from Cassini Prime mission observations. Space Sci. Rev. 164, 1–83 (2011b). doi: 10.1007/s11214-011-9850-4 ADSGoogle Scholar
  23. A. Artemyev, L. Zelenyi, Mechanisms of spontaneous reconnection: from magnetospheric to fusion plasma. Space Sci. Rev. (2013). doi: 10.1007/s11214-013-9959-8 Google Scholar
  24. A.V. Artemyev, W. Baumjohann, A.A. Petrukovich, R. Nakamura, I. Dandouras, A. Fazakerley, Proton/electron temperature ratio in the magnetotail. Ann. Geophys. 29(12), 2253–2257 (2011). doi: 10.5194/angeo-29-2253-2011 ADSGoogle Scholar
  25. Y. Asano, T. Mukai, M. Hoshino, Y. Saito, H. Haysakawa, T. Nagai, Statistical study of thin current sheet evolution around substorm onset. J. Geophys. Res. 109, A05213 (2004). doi: 10.1029/2004JA010413 ADSGoogle Scholar
  26. Y. Asano, R. Nakamura, W. Baumjohann, A. Runov, Z. Vörös, M. Volwerk, T.L. Zhang, A. Balogh, B. Klecker, H. Rème, How typical are atypical current sheets? Geophys. Res. Lett. 32, L03108 (2005). doi: 10.1029/2004GL021834 ADSGoogle Scholar
  27. M. Ashour-Abdalla, J.P. Berchem, J. Buechner, L.M. Zelenyi, Shaping of the magnetotail from the mantle—global and local structuring. J. Geophys. Res. 98, 5651–5676 (1993). doi: 10.1029/92JA01662 ADSGoogle Scholar
  28. M. Ashour-Abdalla, M. El-Alaoui, M.L. Goldstein, M. Zhou, D. Schriver, R. Richard, R. Walker, M.G. Kivelson, K.-J. Hwang, Observations and simulations of non-local acceleration of electrons in magnetotail magnetic reconnection events. Nat. Phys. 7, 360–365 (2011). doi: 10.1038/nphys1903 Google Scholar
  29. A. Åsnes, R.W.H. Friedel, B. Lavraud, G.D. Reeves, M.G.G.T. Taylor, P. Daly, Statistical properties of tail plasma sheet electrons above 40 keV. J. Geophys. Res. 113(A12), A03202 (2008). doi: 10.1029/2007JA012502 ADSGoogle Scholar
  30. M.P. Aubry, C.T. Russell, M.G. Kivelson, Inward motion of the magnetopause before a substorm. J. Geophys. Res. 75, 7018 (1970) ADSGoogle Scholar
  31. W.I. Axford, C.O. Hines, A unifying theory of high-latitude geophysical phenomena and geomagnetic storms. Can. J. Phys. 39, 1433–1464 (1961) MathSciNetADSGoogle Scholar
  32. W.I. Axford, Viscous interaction between the solar wind and the Earth’s magnetosphere. Planet. Space Sci. 12, 45–53 (1964) ADSGoogle Scholar
  33. W.I. Axford, H.E. Petschek, G.L. Siscoe, Tail of the magnetosphere. J. Geophys. Res. 70(5), 1231–1236 (1965). doi: 10.1029/JZ070i005p01231 zbMATHADSGoogle Scholar
  34. S.V. Badman, E.J. Bunce, J.T. Clarke, S.W.H. Cowley, J.-C. Gérard, D. Grodent, S.E. Milan, Open flux estimates in Saturn’s magnetosphere during the January 2004 Cassini-HST campaign, and implications for reconnection rates. J. Geophys. Res. 110, A11216 (2005). doi: 10.1029/2005JA011240 ADSGoogle Scholar
  35. S.V. Badman, S.W.H. Cowley, Significance of Dungey-cycle flows in Jupiter’s and Saturn’s magnetospheres, and their identification on closed equatorial field lines. Ann. Geophys. 25, 941–951 (2007) ADSGoogle Scholar
  36. S.V. Badman, S.W.H. Cowley, L. Lamy, B. Cecconi, P. Zarka, Relationship between solar wind corotating interaction regions and the phasing and intensity of Saturn kilometric radiation bursts. Ann. Geophys. 26, 3641–3651 (2008) ADSGoogle Scholar
  37. S.V. Badman, C.M. Jackman, J.D. Nichols, J.T. Clarke, J.-C. Gérard, Open flux in Saturn’s magnetosphere. Icarus 231, 137–145 (2014). doi: 10.1016/j.icarus.2013.12.004 ADSGoogle Scholar
  38. F. Bagenal, Giant planet magnetospheres. Annu. Rev. Earth Planet. Sci. 20, 289–328 (1992). doi: 10.1146/annurev.ea.20.050192.001445 ADSGoogle Scholar
  39. F. Bagenal, T. Dowling, W. McKinnon (eds.), Jupiter: Planet, Satellites, Magnetosphere (Cambridge University Press, Cambridge, 2004) Google Scholar
  40. F. Bagenal, The magnetosphere of Jupiter: coupling the equator to the poles. J. Atmos. Sol.-Terr. Phys. 69 (2007) Google Scholar
  41. F. Bagenal, Comparative planetary environments, in Heliophysics: Plasma Physics of the Local Cosmos, ed. by C.J. Schrijver, G.L. Siscoe (Cambridge University Press, Cambridge, 2009), pp. 360–398 Google Scholar
  42. F. Bagenal, P.A. Delamere, Flow of mass and energy in the magnetospheres of Jupiter and Saturn. J. Geophys. Res. 116, A05209 (2011). doi: 10.1029/2010JA016294 ADSGoogle Scholar
  43. D.N. Baker, P.R. Higbie, E.W. Hones Jr., R.D. Belian, High-resolution energetic particle measurements at 6.6 R E: 3. Low-energy electron anisotropies and short-term substorm predictions. J. Geophys. Res. 83, 4863 (1978) ADSGoogle Scholar
  44. D.N. Baker, J.E. Borovsky, J.O. Burns, G.R. Gisler, M. Zeilik, Possible calorimetric effects at Mercury due to solar wind-magnetosphere interactions. J. Geophys. Res. 92(A5), 4707–4712 (1987). doi: 10.1029/JA092iA05p04707 ADSGoogle Scholar
  45. D.N. Baker, T.I. Pulkkinen, V. Angelopoulos, W. Baumjohann, R.L. McPherron, Neutral line model of substorms: past results and present view. J. Geophys. Res. 101, 12975–13010 (1996). doi: 10.1029/95JA03753 ADSGoogle Scholar
  46. W. Baumjohann, G. Paschmann, C.A. Cattell, Average plasma properties in the central plasma sheet. J. Geophys. Res. 94, 6597–6606 (1989). doi: 10.1029/JA094iA06p06597 ADSGoogle Scholar
  47. W. Baumjohann, M. Hesse, S. Kokubun, T. Mukai, T. Nagai, A.A. Petrukovich, Substorm dipolarization and recovery. J. Geophys. Res. 104(A11), 24995–25000 (1999). doi: 10.1029/1999JA900282 ADSGoogle Scholar
  48. W. Baumjohann, A. Roux, O. Le Contel, R. Nakamura, J. Birn et al., Dynamics of thin current sheets: Cluster observations. Ann. Geophys. 25, 1365–1389 (2007) ADSGoogle Scholar
  49. K.W. Behannon, Mapping of the Earth’s bow shock and magnetic tail by Explorer 33. J. Geophys. Res. 73 (1968). doi: 10.1029/JA073i003p00907
  50. K.W. Behannon, Heliocentric distance dependence of the interplanetary magnetic field. Rev. Geophys. Space Phys. 16, 126 (1978) ADSGoogle Scholar
  51. K.W. Behannon, L.F. Burlaga, N.F. Ness, The Jovian magnetotail and its current sheet. J. Geophys. Res. 86, 8385–8401 (1981) ADSGoogle Scholar
  52. E.A. Benediktov, G.G. Getmansev, N.A. Mityakov, V.O. Papoport, A.F. Tarozov, Relation between geomagnetic activity and the sporadic radio emission recorded by the Electron-2 satellite. Kosm. Issled. 6, 7 (1968) (in Russian) Google Scholar
  53. J. Benkhoff et al., Bepi-Colombo-Comprehensive exploration of Mercury: mission overview and science goals. Planet. Space Sci. 58(1–2) (2010) Google Scholar
  54. M. Benna et al., Modeling of the magnetosphere of Mercury at the time of the first MESSENGER flyby. Icarus 209(1), 3–10 (2010). doi: 10.1016/j.icarus.2009.11.036 MathSciNetADSGoogle Scholar
  55. J. Birn, The boundary value problem of magnetotail equilibrium. J. Geophys. Res. 96, 19441 (1991) ADSGoogle Scholar
  56. J. Birn, Three-dimensional magnetotail equilibria with prescribed boundary shapes. J. Geophys. Res. 110, A07203 (2005). doi: 10.1029/2004JA010869 ADSGoogle Scholar
  57. J. Birn, M. Hesse, Details of current disruption and diversion in simulations of magnetotail dynamics. J. Geophys. Res. 101(A7), 15345–15358 (1996). doi: 10.1029/96JA00887 ADSGoogle Scholar
  58. J. Birn, K. Schindler, Thin current sheets in the magnetotail and the loss of equilibrium. J. Geophys. Res. 107(A7), SMP18 (2002). doi: 10.1029/2001JA0291 Google Scholar
  59. J. Birn, R. Sommer, K. Schindler, Open and closed magnetospheric tail configurations and their stability. Astrophys. Space Sci. 35, 389–402 (1975) ADSGoogle Scholar
  60. J. Birn, M.F. Thomsen, J.E. Borovsky, G.D. Reeves, D.J. McComas, R.D. Belian, M. Hesse, Substorm ion injections: geosynchronous observations and test particle orbits in three-dimensional dynamic MHD fields. J. Geophys. Res. 102(A2), 2325–2341 (1997a). doi: 10.1029/96JA03032 ADSGoogle Scholar
  61. J. Birn, M.F. Thomsen, J.E. Borovsky, G.D. Reeves, D.J. McComas, R.D. Belian, Characteristic plasma properties during dispersionless substorm injections at geosynchronous orbit. J. Geophys. Res. 102, 2309–2324 (1997b) ADSGoogle Scholar
  62. J. Birn, J.F. Drake, M.A. Shay, B.N. Rogers, R.E. Denton, M. Hesse, M.M. Kuznetsova, Z.W. Ma, A. Bhattacharjee, A. Otto, P.L. Pritchett, Geospace Environment Modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 106, 3715–3720 (2001) ADSGoogle Scholar
  63. J. Birn, J. Raeder, Y.L. Wang, R.A. Wolf, M. Hesse, On the propagation of bubbles in the geomagnetic tail. Ann. Geophys. 22, 1773 (2004a) ADSGoogle Scholar
  64. J. Birn, M.F. Thomsen, M. Hesse, Acceleration of oxygen ions in the dynamic magnetotail. Ann. Geophys. 22, 1305–1315 (2004b) ADSGoogle Scholar
  65. J. Birn, M. Hesse, K. Schindler, On the role of entropy conservation and entropy loss governing substorm phases, in Proc. of the Eighth International Conference of Substorms, Banff, Canada, ed. by M. Syrjasuo, E. Donovan (Univ. of Calgary, Calgary, 2006), pp. 19–24 Google Scholar
  66. J. Birn, M. Hesse, K. Schindler, S. Zaharia, Role of entropy in magnetotail dynamics. J. Geophys. Res. 114, A00D03 (2009). doi: 10.1029/2008JA014015 ADSGoogle Scholar
  67. J. Birn, R. Nakamura, E. Panov, M. Hesse, Bursty bulk flows and dipolarization in MHD simulations of magnetotail reconnection. J. Geophys. Res. 116, A01210 (2011). doi: 10.1029/2010JA016083 ADSGoogle Scholar
  68. J. Birn, K. Schindler, M. Hesse, Magnetotail aurora connection: the role of thin current sheets, in Relationship Between Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, ed. by A. Keiling, E. Donovan, F. Bagenal, T. Karlsson. Geophysical Monograph, vol. 197 (Am. Geophysical Union, Washington, 2012a), p. 337 Google Scholar
  69. J. Birn, A.V. Artemyev, D.N. Baker, M. Echim, M. Hoshino, L.M. Zelenyi, Particle acceleration in the magnetotail and aurora. Space Sci. Rev. 173, 49–102 (2012b). doi: 10.1007/s11214-012-9874-4 ADSGoogle Scholar
  70. S.J. Bolton, The Juno mission, in Proceedings of the International Astronomical Union, IAU Symposium, vol. 269 (2010), pp. 92–100 Google Scholar
  71. J.E. Borovsky, R.J. Nemzek, R.D. Belian, The occurrence rate of magnetospheric-substorm onsets: random and periodic substorms. J. Geophys. Res. 98, 3807 (1993) ADSGoogle Scholar
  72. J.E. Borovsky, M.F. Thomsen, R.C. Elphic, The driving of the plasma sheet by the solar wind. J. Geophys. Res. 103, 17617–17640 (1998). doi: 10.1029/97JA02986 ADSGoogle Scholar
  73. N.M. Brice, G.A. Ioannidis, The magnetospheres of Jupiter and Earth. Icarus 13, 173 (1970) ADSGoogle Scholar
  74. J. Büchner, L.M. Zelenyi, Deterministic chaos in the dynamics of charged particles near a magnetic field reversal. Phys. Lett. A 118, 395–399 (1986). doi: 10.1016/0375-9601(86)90268-9 ADSGoogle Scholar
  75. E.J. Bunce, S.W.H. Cowley, D.M. Wright, A.J. Coates, M.K. Dougherty, N. Krupp, W.S. Kurth, A.M. Rymer, In situ observations of a solar wind compression-induced hot plasma injection in Saturn’s tail. Geophys. Res. Lett. 32, L20S04 (2005) Google Scholar
  76. E.J. Bunce, S.W.H. Cowley, I.I. Alexeev, C.S. Arridge, M.K. Dougherty, J.D. Nichols, C.T. Russell, Cassini observations of the variation of Saturn’s ring current parameters with system size. J. Geophys. Res. 112, A10202 (2007). doi: 10.1029/2007JA012275 ADSGoogle Scholar
  77. E.J. Bunce et al., Origin of Saturn’s aurora: simultaneous observations by Cassini and the Hubble Space Telescope. J. Geophys. Res. 113, A09209 (2008). doi: 10.1029/2008JA013257 ADSGoogle Scholar
  78. L.F. Burlaga, Magnetic fields and plasmas in the inner heliosphere: Helios results. Planet. Space Sci. 49(14–15), 1619–1627 (2001) ADSGoogle Scholar
  79. P. Carlqvist, R. Boström, Space-charge regions above the aurora. J. Geophys. Res. 75, 7140 (1970) ADSGoogle Scholar
  80. S. Chapman, J. Bartels, Geomagnetism (Clarendon Press, Oxford, 1962) Google Scholar
  81. R. Chappell, The terrestrial plasma source: a new perspective in solar-terrestrial processes from Dynamics Explorer. Rev. Geophys. 26(2), 229–248 (1988) ADSGoogle Scholar
  82. C.C. Chaston, J.W. Bonnell, C.W. Carlson, J.P. McFadden, R.E. Ergun, R.J. Strangeway, Properties of small-scale Alfvén waves and accelerated electrons from FAST. J. Geophys. Res. 108, 8003 (2003). doi: 10.1029/2002JA009420 Google Scholar
  83. Y. Chen, T.W. Hill, Statistical analysis of injection/dispersion events in Saturn’s inner magnetosphere. J. Geophys. Res. 113, A07215 (2008). doi: 10.1029/2008JA013166 ADSGoogle Scholar
  84. C.X. Chen, R.A. Wolf, Interpretation of high-speed flows in the plasma sheet. J. Geophys. Res. 98, 21409–21419 (1993) ADSGoogle Scholar
  85. J.T. Clarke, J. Gerard, D. Grodent, S. Wannawichian, J. Gustin, J. Connerney, F. Crary, M. Dougherty, W. Kurth, S.W.H. Cowley, E.J. Bunce, T. Hill, J. Kim, Morphological differences between Saturn’s ultraviolet aurorae and those of Earth and Jupiter. Nature 433, 717–719 (2005). doi: 10.1038/nature03331 ADSGoogle Scholar
  86. J.E.P. Connerney, M.H. Acuña, N.F. Ness, Currents in Saturn’s magnetosphere. J. Geophys. Res. 88(A11), 8779–8789 (1983). doi: 10.1029/JA088iA11p08779 ADSGoogle Scholar
  87. F.V. Coroniti, C.F. Kennel, Changes in magnetospheric configuration during the substorm growth phase. J. Geophys. Res. 77(19), 3361–3370 (1972). doi: 10.1029/JA077i019p03361 ADSGoogle Scholar
  88. F.V. Coroniti, R.L. McPherron, G.K. Parks, Studies of the magnetospheric substorm: 3. Concept of the magnetospheric substorm and its relation to electron precipitation and micropulsations. J. Geophys. Res. 73(5), 1715–1722 (1968). doi: 10.1029/JA073i005p01715 ADSGoogle Scholar
  89. S.W.H. Cowley, The causes of convection in the Earth’s magnetosphere: a review of developments during the IMS. Rev. Geophys. 20(3), 531–565 (1982). doi: 10.1029/RG020i003p00531 ADSGoogle Scholar
  90. S.W.H. Cowley, The distant geomagnetic tail in theory and observation, in Magnetic Reconnection in Space and Laboratory Plasmas, ed. by E.W. Hones Jr. (1984), pp. 228–238 Google Scholar
  91. S.W.H. Cowley, The structure and length of tail-associated phenomena in the solar wind downstream from the Earth. Planet. Space Sci. 7, 1039 (1991) ADSGoogle Scholar
  92. S.W.H. Cowley, E.J. Bunce, Origin of the main auroral oval in Jupiter’s coupled magnetosphere-ionosphere system. Planet. Space Sci. 49, 1067 (2001) ADSGoogle Scholar
  93. S.W.H. Cowley, E.J. Bunce, Corotation-driven magnetosphere-ionosphere coupling currents in Saturn’s magnetosphere and their relation to the auroras. Ann. Geophys. 21, 1691 (2003) ADSGoogle Scholar
  94. S.W.H. Cowley, E.J. Bunce, T.S. Stallard, S. Miller, Jupiter’s polar ionospheric flows: theoretical interpretation. Geophys. Res. Lett. 30(5), 1220 (2003). doi: 10.1029/2002GL016030 ADSGoogle Scholar
  95. S.W.H. Cowley, S.V. Badman, E.J. Bunce, J.T. Clarke, J.C. Gerard, D. Grodent, C.M. Jackman, S.E. Milan, T.K. Yeoman, Reconnection in a rotation-dominated magnetosphere and its relation to Saturn’s auroral dynamics. J. Geophys. Res. 110, A02201 (2005). doi: 10.1029/2004JA010796 ADSGoogle Scholar
  96. S.W.H. Cowley, S.V. Badman, S.M. Imber, S.E. Milan, Comment on “Jupiter: a fundamentally different magnetospheric interaction with the solar wind” by D.J. McComas and F. Bagenal. Geophys. Res. Lett. 35, L10101 (2008). doi: 10.1029/2007GL032645 ADSGoogle Scholar
  97. D.C. Delcourt, Particle acceleration by inductive electric fields in the inner magnetosphere. J. Atmos. Sol.-Terr. Phys. 64, 551–559 (2002) ADSGoogle Scholar
  98. D.C. Delcourt, J.-A. Sauvaud, T.E. Moore, Phase bunching during substorm dipolarization. J. Geophys. Res. 102(A11), 24313–24324 (1997). doi: 10.1029/97JA02039 ADSGoogle Scholar
  99. M.D. Desch, Evidence for solar wind control of Saturn radio emission. J. Geophys. Res. 87, 4549–4554 (1982) ADSGoogle Scholar
  100. M.D. Desch, H.O. Rucker, The relationship between Saturn kilometric radiation and the solar wind. J. Geophys. Res. 88, 8999–9006 (1983) ADSGoogle Scholar
  101. A.J. Dessler, Length of magnetospheric tail. J. Geophys. Res. 69(19), 3913–3918 (1964). doi: 10.1029/JZ069i019p03913 ADSGoogle Scholar
  102. G.A. DiBraccio, J.A. Slavin, S.A. Boardsen, B.J. Anderson, H. Korth, T.H. Zurbuchen, J.M. Raines, D.N. Baker, R.L. McNutt Jr., S.C. Solomon, MESSENGER observations of magnetopause structure and dynamics at Mercury. J. Geophys. Res. 118 (2013). doi: 10.1002/jgra.50123
  103. M.K. Dougherty et al., Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer. Science 311, 1406–1409 (2006) ADSGoogle Scholar
  104. S. Dubyagin, V. Sergeev, S. Apatenkov, V. Angelopoulos, A. Runov, R. Nakamura, W. Baumjohann, J. McFadden, D. Larson, Can flow bursts penetrate into the inner magnetosphere? Geophys. Res. Lett. 38, L08102 (2011). doi: 10.1029/2011GL047016 ADSGoogle Scholar
  105. J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47–48 (1961). doi: 10.1103/PhysRevLett.6.47 ADSGoogle Scholar
  106. J.W. Dungey, The structure of the exosphere or adventures in velocity space, in Geophysics, the Earth’s Environment, ed. by C. DeWitt, J. Hieblot, L. Le Beau (Gordon and Breach, New York, 1963), p. 503 Google Scholar
  107. J.W. Dungey, The length of the magnetospheric tail. J. Geophys. Res. 70, 1753 (1965) ADSGoogle Scholar
  108. T.E. Eastman, L.A. Frank, W.K. Peterson, W. Lennartsson, The plasma sheet boundary layer. J. Geophys. Res. 89, 1553–1572 (1984). doi: 10.1029/JA089iA03p01553 ADSGoogle Scholar
  109. M.M. Echim, M. Roth, J. De Keyser, Sheared magnetospheric plasma flows and discrete auroral arcs: a quasi-static coupling model. Ann. Geophys. 25(1), 317–330 (2007). doi: 10.5194/angeo-25-317-2007 ADSGoogle Scholar
  110. R.C. Elphic, P.A. Mutch, C.T. Russell, Observations of field-aligned currents at the plasma sheet boundary—an ISEE-1 and 2 survey. Geophys. Res. Lett. 12, 631–634 (1985). doi: 10.1029/GL012i010p00631 ADSGoogle Scholar
  111. E. Engwall, A.I. Eriksson, C.M. Cully, M. Andre, R. Torbert, H. Vaith, Earth’s ionospheric outflow dominated by hidden cold plasma. Nat. Geosci. 2(1), 24–27 (2009). doi: 10.1038/ngeo387 ADSGoogle Scholar
  112. G.M. Erickson, R.A. Wolf, Is steady convection possible in the Earth’s magnetotail? Geophys. Res. Lett. 7, 897 (1980) ADSGoogle Scholar
  113. A.I. Eriksson, M. André, B. Klecker, H. Laakso, P.-A. Lindqvist, F. Mozer, G. Paschmann, A. Pedersen, J. Quinn, R. Torbert, K. Torkar, H. Vaith, Electric field measurements on Cluster: comparing the double-probe and electron drift techniques. Ann. Geophys. 24, 275–289 (2006). doi: 10.5194/angeo-24-275-2006 ADSGoogle Scholar
  114. D.H. Fairfield, On the average configuration of the geomagnetic tail. J. Geophys. Res. 84, 1950–1958 (1979). doi: 10.1029/JA084iA05p01950 ADSGoogle Scholar
  115. D.H. Fairfield, J. Jones, Variability of the tail lobe field strength. J. Geophys. Res. 101, 7785–7791 (1996). doi: 10.1029/95JA03713 ADSGoogle Scholar
  116. D.H. Fairfield, J.D. Scudder, Polar rain—solar coronal electrons in the Earth’s magnetosphere. J. Geophys. Res. 90, 4055–4068 (1985). doi: 10.1029/JA090iA05p04055 ADSGoogle Scholar
  117. D.H. Fairfield et al., Earthward flow bursts in the inner magnetotail and their relation to auroral brightenings, AKR intensifications, geosynchronous particle injections and magnetic activity. J. Geophys. Res. 104, 355–370 (1999) ADSGoogle Scholar
  118. T.G. Forbes, E.W. Hones Jr., S.J. Bame, J.R. Asbridge, G. Paschmann, N. Sckopke, C.T. Russell, Evidence for the tailward retreat of a magnetic neutral line in the magnetotail during substorm recovery. Geophys. Res. Lett. 8, 261 (1981) ADSGoogle Scholar
  119. C. Forsyth, M. Lester, S.W.H. Cowley, I. Dandouras, A.N. Fazakerley, R.C. Fear, H.U. Frey, A. Grocott, A. Kadokura, E. Lucek, H. Rème, S.E. Milan, J. Watermann, Observed tail current systems associated with bursty bulk flows and auroral streamers during a period of multiple substorms. Ann. Geophys. 26, 167–184 (2008) ADSGoogle Scholar
  120. L.A. Frank, W.R. Paterson, K.K. Khurana, Observations of thermal plasmas in Jupiter’s magnetotail. J. Geophys. Res. 107(A1), 1003 (2002). doi: 10.1029/2001JA000077 Google Scholar
  121. M.P. Freeman, C.J. Farrugia, A statistical study of the possible effects of solar wind variability on the recurrence rate of substorms. J. Geophys. Res. 100, 23607 (1995) ADSGoogle Scholar
  122. M.P. Freeman, C.J. Farrugia, Solar wind input between substorm onsets during and after the October 18–20, 1995, magnetic cloud. J. Geophys. Res. 104, 22729 (1999) ADSGoogle Scholar
  123. M.P. Freeman, S.K. Morley, A minimal substorm model that explains the observed statistical distribution of times between substorms. Geophys. Res. Lett. 31, L12807 (2004). doi: 10.1029/2004GL019989 ADSGoogle Scholar
  124. M.P. Freeman, S.K. Morley, No evidence for externally triggered substorms based on superposed epoch analysis of IMF B z. Geophys. Res. Lett. 36, L21101 (2009). doi: 10.1029/2009GL040621 ADSGoogle Scholar
  125. K. Fukazawa, T. Ogino, R.J. Walker, Dynamics of the Jovian magnetosphere for northward interplanetary magnetic field (IMF). Geophys. Res. Lett. 32 (2005). doi: 10.1029/2004GL021392
  126. K. Fukazawa, T. Ogino, R.J. Walker, Vortex-associated reconnection for northward IMF in the Kronian magnetosphere. Geophys. Res. Lett. 34 (2007). doi: 10.1029/2007GL031784
  127. K. Fukazawa, T. Ogino, R.J. Walker, A simulation study of dynamics in the distant Jovian magnetotail. J. Geophys. Res. 115, A09219 (2010). doi: 10.1029/2009JA015228 ADSGoogle Scholar
  128. Y.S. Ge, C.T. Russell, K.K. Khurana, Reconnection sites in Jupiter’s magnetotail and relation to Jovian auroras. Planet. Space Sci. 58(11), 1455–1469 (2010) ADSGoogle Scholar
  129. K.-H. Glassmeier, H.-U. Auster, U. Motschmann, A feedback dynamo generating Mercury’s magnetic field. Geophys. Res. Lett. 34, L22201 (2007). doi: 10.1029/2007GL031662 ADSGoogle Scholar
  130. T. Gold, Motions in the magnetosphere of the Earth. J. Geophys. Res. 644(9), 1219–1224 (1959) ADSGoogle Scholar
  131. M.L. Goldstein, R.P. Lepping, E.C. Sittler Jr., Magnetic field properties of Jupiter’s tail at distances from 80 to 7500 Jovian radii. J. Geophys. Res. 90, 8223–8239 (1985) ADSGoogle Scholar
  132. O. Grasset et al., JUpiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet. Space Sci. 78, 1–21 (2013) ADSGoogle Scholar
  133. E.E. Grigorenko, M. Hoshino, M. Hirai, T. Mukai, L.M. Zelenyi, “Geography” of ion acceleration in the magnetotail: X-line versus current sheet effects. J. Geophys. Res. 114(A13), A03203 (2009). doi: 10.1029/2008JA013811 ADSGoogle Scholar
  134. A. Grocott, S.V. Badman, S.W.H. Cowley, S.E. Milan, J.D. Nichols, T.K. Yeoman, Magnetosonic Mach number dependence of the efficiency of reconnection between planetary and interplanetary magnetic fields. J. Geophys. Res. 114, A07219 (2009). doi: 10.1029/2009JA014330 ADSGoogle Scholar
  135. D. Grodent, J.T. Clarke, J.H. Waite Jr., S.W.H. Cowley, J.-C. Gérard, J. Kim, Jupiter’s polar auroral emissions. J. Geophys. Res. 108(A10), 1366 (2003a). doi: 10.1029/2003JA010017 Google Scholar
  136. D. Grodent, J.T. Clarke, J. Kim, J.H. Waite Jr., S.W.H. Cowley, Jupiter’s main auroral oval observed with HST-STIS. J. Geophys. Res. 108(A11), 1389 (2003b). doi: 10.1029/2003JA009921 Google Scholar
  137. D. Grodent, J.-C. Gérard, J.T. Clarke, G.R. Gladstone, J.H. Waite Jr., A possible auroral signature of magnetotail reconnection process on Jupiter. J. Geophys. Res. 109, A05201 (2004). doi: 10.1029/2003JA010341 ADSGoogle Scholar
  138. D.A. Gurnett, The Earth as a radio source: terrestrial kilometric radiation. J. Geophys. Res. 79, 4227 (1974) ADSGoogle Scholar
  139. P.G. Hanlon, M.K. Dougherty, N. Krupp, K.C. Hansen, F.J. Crary, D.T. Young, G. Tóth, Dual spacecraft observations of a compression event within the Jovian magnetosphere: signatures of externally triggered supercorotation? J. Geophys. Res. 109, A09S09 (2004). doi: 10.1029/2003JA010116 ADSGoogle Scholar
  140. K.C. Hansen, T.I. Gombosi, D. Dezeeuw, C.P.T. Groth, K.G. Powell, A 3D global MHD simulation of Saturn’s magnetosphere. Adv. Space Res. 26, 1681–1690 (2000). doi: 10.1016/S0273-1177(00)00078-8 ADSGoogle Scholar
  141. K.C. Hansen, A.J. Ridley, G.B. Hospodarsky, N. Achilleos, M.K. Dougherty, T.I. Gombosi, G. Tóth, Global MHD simulations of Saturn’s magnetosphere at the time of Cassini approach. Geophys. Res. Lett. 32, L20S06 (2005). doi: 10.1029/2005GL022835 Google Scholar
  142. E.G. Harris, On a plasma sheath separating regions of oppositely directed magnetic field. Nuovo Cimento 23, 115–121 (1962) zbMATHGoogle Scholar
  143. H. Hasegawa, M. Fujimoto, T. Phan, H. Reme, A. Balogh, M. Dunlop, C. Hashimoto, R. TanDokoro, Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin-Helmholtz vortices. Nature 430(7001), 755–758 (2004). doi: 10.1038/nature02799 ADSGoogle Scholar
  144. M.G. Henderson, G.D. Reeves, R.D. Belian, J.S. Murphree, Observations of magnetospheric substorms occurring with no apparent solar wind/IMF trigger. J. Geophys. Res. 101(A5), 10773–10791 (1996). doi: 10.1029/96JA00186 ADSGoogle Scholar
  145. J.P. Heppner, Time sequences and spatial relations in auroral activity during magnetic bays at College, Alaska. J. Geophys. Res. 59(3), 329–338 (1954). doi: 10.1029/JZ059i003p00329 ADSGoogle Scholar
  146. M. Hesse, J. Birn, On dipolarization and its relation to the substorm current wedge. J. Geophys. Res. 96(A11), 19417–19426 (1991). doi: 10.1029/91JA01953 ADSGoogle Scholar
  147. M. Hesse, K. Schindler, The onset of magnetic reconnection in the magnetotail. Earth Planets Space 53, 645–653 (2001) ADSGoogle Scholar
  148. T.W. Hill, Inertial limit on corotation. J. Geophys. Res. 84, A11 (1979) Google Scholar
  149. T.W. Hill, The Jovian auroral oval. J. Geophys. Res. 106(A5), 8101–8107 (2001). doi: 10.1029/2000JA000302 ADSGoogle Scholar
  150. T.W. Hill, F.C. Michel, Heavy ions from the Galilean satellites and the centrifugal distortion of the Jovian magnetosphere. J. Geophys. Res. 81, 4561–4565 (1976) ADSGoogle Scholar
  151. T.W. Hill, A.J. Dessler, F.C. Michel, Configuration of the Jovian magnetosphere. Geophys. Res. Lett. 1, 3–6 (1974). doi: 10.1029/GL001i001p00003 ADSGoogle Scholar
  152. T.W. Hill et al., Plasmoids in Saturn’s magnetotail. J. Geophys. Res. 113, A01214 (2008). doi: 10.1029/2007JA012626 ADSGoogle Scholar
  153. G.C. Ho, S.M. Krimigis, R.E. Gold, D.N. Baker, B.J. Anderson, H. Korth, J.A. Slavin, R.L. McNutt Jr., S.C. Solomon, Spatial distribution and spectral characteristics of energetic electrons in Mercury’s magnetosphere. J. Geophys. Res. 117, A00M04 (2012). doi: 10.1029/2012JA017983 ADSGoogle Scholar
  154. R.E. Holzer, J.A. Slavin, Magnetic flux transfer associated with expansions and contractions of the dayside magnetosphere. J. Geophys. Res. 83(A8), 3831–3839 (1978). doi: 10.1029/JA083iA08p03831 ADSGoogle Scholar
  155. R.E. Holzer, J.A. Slavin, A correlative study of magnetic flux transfer in the magnetosphere. J. Geophys. Res. 84(A6), 2573–2578 (1979). doi: 10.1029/JA084iA06p02573 ADSGoogle Scholar
  156. E.W. Hones Jr., The magnetotail: its generation and dissipation, in Physics of Solar Planetary Environments, ed. by D.J. Williams (AGU, Washington, 1976), pp. 559–571 Google Scholar
  157. E.W. Hones Jr., Substorm processes in the magnetotail: comments on “On hot tenuous plasma, fireballs, and boundary layers in the Earth’s magnetotail” by L.A. Frank et al J. Geophys. Res. 82, 5633 (1977) ADSGoogle Scholar
  158. E.W. Hones Jr., Plasma flow in the magnetotail and its implications for substorm theories, in Dynamics of the Magnetosphere, ed. by S.I. Akasofu (D. Reidel, Dordrecht, 1979), p. 545 Google Scholar
  159. M. Hoshino, A. Nishida, T. Mukai, Y. Saito, T. Yamamoto, Structure of plasma sheet in magnetotail: double-peaked electric current sheet. J. Geophys. Res. 101, 24775 (1996) ADSGoogle Scholar
  160. T.-S. Hsu, R.L. McPherron, Average characteristics of triggered and nontriggered substorms. J. Geophys. Res. 109, A07208 (2004). doi: 10.1029/2003JA009933 ADSGoogle Scholar
  161. C.-S. Huang, J.C. Foster, G.D. Reeves, G. Le, H.U. Frey, C.J. Pollock, J.-M. Jahn, Periodic magnetospheric substorms: multiple space-based and ground-based instrumental observations. J. Geophys. Res. 108(A11), 1411 (2003). doi: 10.1029/2003JA009992 Google Scholar
  162. D.E. Huddleston, C.T. Russell, M.G. Kivelson, K.K. Khurana, L. Bennett, Location and shape of the Jovian magnetopause and bow shock. J. Geophys. Res. 103(E9), 20075–20082 (1998) ADSGoogle Scholar
  163. W.J. Hughes, D.G. Sibeck, On the 3-dimensional structure of plasmoids. Geophys. Res. Lett. 14, 636–639 (1987). doi: 10.1029/GL014i006p00636 ADSGoogle Scholar
  164. A. Ieda, S. Machida, T. Mukai, Y. Saito, T. Yamamoto, A. Nishida, T. Terasawa, S. Kokubun, Statistical analysis of the plasmoid evolution with geotail observations. J. Geophys. Res. 103(A3), 4453–4465 (1998). doi: 10.1029/97JA03240 ADSGoogle Scholar
  165. S. Imada, M. Hoshino, T. Mukai, The dawn-dusk asymmetry of energetic electron in the Earth’s magnetotail: observation and transport models. J. Geophys. Res. 113(A12), A11201 (2008). doi: 10.1029/2008JA013610 ADSGoogle Scholar
  166. S.M. Imber, S.E. Milan, B. Hubert, The auroral and ionospheric flow signatures of dual lobe reconnection. Ann. Geophys. 24, 3115–3129 (2006). doi: 10.5194/angeo-24-3115-2006 ADSGoogle Scholar
  167. S.M. Imber, J.A. Slavin, H.U. Auster, V. Angelopoulos, A THEMIS survey of flux ropes and travelling compression regions: location of the near-Earth reconnection site during solar minimum. J. Geophys. Res. 116, A02201 (2011). doi: 10.1029/2010JA016026 ADSGoogle Scholar
  168. D.S. Intriligator, H.R. Collard, J.D. Mihalov, O.L. Vaisberg, J.H. Wolf, Evidence for Earth magnetic tail associated phenomena at 3100 R E. Geophys. Res. Lett. 6, 585 (1979) ADSGoogle Scholar
  169. W.-H. Ip, A. Kopp, MHD simulations of the solar wind interaction with Mercury. J. Geophys. Res. 107(A11), 1348 (2002). doi: 10.1029/2001JA009171 Google Scholar
  170. J. Isbell, A.J. Dessler, J.H. Waite Jr., Magnetospheric energization by interaction between planetary spin and the solar wind. J. Geophys. Res. 89, 10716–10722 (1984) ADSGoogle Scholar
  171. P.L. Israelevich, A.I. Ershkovich, Bifurcation of Jovian magnetotail current sheet. Ann. Geophys. 24, 1479–1481 (2006) ADSGoogle Scholar
  172. P.L. Israelevich, A.I. Ershkovich, R. Oran, Bifurcation of the tail current sheet in Jovian magnetosphere. Planet. Space Sci. 55, 2261–2266 (2007) ADSGoogle Scholar
  173. C.M. Jackman, C.S. Arridge, Statistical properties of the magnetic field in the Kronian magnetotail lobes and current sheet. J. Geophys. Res. 116, A05224 (2011). doi: 10.1029/2010JA015973 ADSGoogle Scholar
  174. C.M. Jackman, N. Achilleos, E.J. Bunce, S.W.H. Cowley, M.K. Dougherty, G.H. Jones, S.E. Milan, E.J. Smith, Interplanetary magnetic field at ∼9 AU during the declining phase of the solar cycle and its implications for Saturn’s magnetospheric dynamics. J. Geophys. Res. 109, 11203 (2004). doi: 10.1029/2004JA010614 Google Scholar
  175. C.M. Jackman, C.T. Russell, D.J. Southwood, C.S. Arridge, N. Achilleos, M.K. Dougherty, Strong rapid dipolarizations in Saturn’s magnetotail: in situ evidence of reconnection. Geophys. Res. Lett. 34, L11203 (2007). doi: 10.1029/2007GL029764 ADSGoogle Scholar
  176. C.M. Jackman, R.J. Forsyth, M.K. Dougherty, The overall configuration of the interplanetary magnetic field upstream of Saturn as revealed by Cassini observations. J. Geophys. Res. 113, A08114 (2008a). doi: 10.1029/2008JA013083 ADSGoogle Scholar
  177. C.M. Jackman et al., A multi-instrument view of tail reconnection at Saturn. J. Geophys. Res. 113, A11213 (2008b). doi: 10.1029/2008JA013592 ADSGoogle Scholar
  178. C.M. Jackman, L. Lamy, M.P. Freeman, P. Zarka, B. Cecconi, W.S. Kurth, S.W.H. Cowley, M.K. Dougherty, On the character and distribution of lower-frequency radio emissions at Saturn and their relationship to substorm-like events. J. Geophys. Res. 114, A08211 (2009) ADSGoogle Scholar
  179. C.M. Jackman, J.A. Slavin, S.W.H. Cowley, Cassini observations of plasmoid structure and dynamics: implications for the role of magnetic reconnection in magnetospheric circulation at Saturn. J. Geophys. Res. 116, A10212 (2011). doi: 10.1029/2011JA016682 ADSGoogle Scholar
  180. C.M. Jackman, N. Achilleos, S.W.H. Cowley, E.J. Bunce, A. Radioti, D. Grodent, S.V. Badman, M.K. Dougherty, W. Pryor, Auroral counterpart of magnetic field dipolarizations in Saturn’s tail. Planet. Space Sci. 82–83, 34–42 (2013). doi: 10.1016/j.pss.2013.03.010 Google Scholar
  181. C.M. Jackman, J.A. Slavin, M.G. Kivelson, D.J. Southwood, N. Achilleos, M.F. Thomsen, G.A. DiBraccio, J.P. Eastwood, M.P. Freeman, M.K. Dougherty, M.F. Vogt, Saturn’s dynamic magnetotail: a comprehensive magnetic field and plasma survey of plasmoids and traveling compression regions and their role in global magnetospheric dynamics. J. Geophys. Res. Space Phys. 119 (2014). doi: 10.1002/2013JA019388
  182. C. Jacquey, J.A. Sauvaud, J. Dandouras, Location and propagation of the magnetotail current disruption during substorm expansion: analysis and simulation of an ISEE multi-onset event. Geophys. Res. Lett. 18(3), 389–392 (1991). doi: 10.1029/90GL02789 ADSGoogle Scholar
  183. X. Jia, M.G. Kivelson, T.I. Gombosi, Driving Saturn’s magnetospheric periodicities from the upper atmosphere/ionosphere. J. Geophys. Res. 117, A04215 (2012a). doi: 10.1029/2011JA017367 ADSGoogle Scholar
  184. X. Jia, K.C. Hansen, T.I. Gombosi, M.G. Kivelson, G. Tóth, D.L. DeZeeuw, A.J. Ridley, Magnetospheric configuration and dynamics of Saturn’s magnetosphere: a global MHD simulation. J. Geophys. Res. 117, A05225 (2012b). doi: 10.1029/2012JA017575 ADSGoogle Scholar
  185. T. Johansson, G. Marklund, T. Karlsson, S. Liléo, P.-A. Lindqvist, A. Marchaudon, H. Nilsson, A. Fazakerley, On the profile of intense high-altitude auroral electric fields at magnetospheric boundaries. Ann. Geophys. 24, 1713 (2006) ADSGoogle Scholar
  186. J.R. Johnson, C.Z. Cheng, Kinetic Alfvén waves and plasma transport at the magnetopause. Geophys. Res. Lett. 24(11), 1423–1426 (1997). doi: 10.1029/97GL01333 ADSGoogle Scholar
  187. S.P. Joy, M.G. Kivelson, R.J. Walker, K.K. Khurana, C.T. Russell, T. Ogino, Probabilistic models of the Jovian magnetopause and bow shock locations. J. Geophys. Res. 107(A10), 1309 (2002). doi: 10.1029/2001JA009146 Google Scholar
  188. K. Kabin, T.I. Gombosi, D.L. DeZeeuw, K.G. Powell, Interaction of Mercury with the solar wind. Icarus 143(2), 397–406 (2000) ADSGoogle Scholar
  189. K. Kabin et al., Global MHD modelling of Mercury’s magnetosphere with applications to the MESSENGER mission and dynamo theory. Icarus 195, 1–15 (2008) ADSGoogle Scholar
  190. M.L. Kaiser, J.K. Alexander, Terrestrial kilometric radiation 3. Average spectral properties. J. Geophys. Res. 82, 3273–3280 (1977) ADSGoogle Scholar
  191. M.L. Kaiser, M.D. Desch, J.W. Warwick, J.B. Pearce, Voyager detection of nonthermal radio emission from Saturn. Science 209, 1238–1240 (1980) ADSGoogle Scholar
  192. E. Kallio, P. Janhunen, Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model. Ann. Geophys. 21(11), 2133–2145 (2003) ADSGoogle Scholar
  193. S.J. Kanani, C.S. Arridge, G.H. Jones, A.N. Fazakerley, H.J. McAndrews, N. Sergis, S.M. Krimigis, M.K. Dougherty, A.J. Coates, D.T. Young, K.C. Hansen, N. Krupp, A new form of Saturn’s magnetopause using a dynamic pressure balance model, based on in-situ, multi-instrument Cassini measurements. J. Geophys. Res. 115, A06207 (2010). doi: 10.1029/2009JA014262 ADSGoogle Scholar
  194. M. Kane, B.H. Mauk, E.P. Keath, S.M. Krimigis, Hot ions in Jupiter’s magnetodisc: a model for Voyager 2 low-energy charged particle measurements. J. Geophys. Res. 100(A10), 19473–19486 (1995). doi: 10.1029/95JA00793 ADSGoogle Scholar
  195. M. Kane, D.J. Williams, B.H. Mauk, R.W. McEntire, E.C. Roelof, Galileo energetic particles detector measurements of hot ions in the neutral sheet region of Jupiter’s magnetodisk. Geophys. Res. Lett. 26(1), 5–8 (1999). doi: 10.1029/1998GL900267 ADSGoogle Scholar
  196. S. Kasahara, E.A. Kronberg, N. Krupp, T. Kimura, C. Tao, S.V. Badman, A. Retinò, M. Fujimoto, Magnetic reconnection in the Jovian tail: X-line evolution and consequent plasma sheet structures. J. Geophys. Res. 116, A11219 (2011). doi: 10.1029/2011JA016892 ADSGoogle Scholar
  197. S. Kasahara, E.A. Kronberg, T. Kimura, C. Tao, S.V. Badman, A. Masters, A. Retinò, N. Krupp, M. Fujimoto, Asymmetric distribution of reconnection jet fronts in the Jovian nightside magnetosphere. J. Geophys. Res. 118, 375–384 (2013). doi: 10.1029/2012JA018130 Google Scholar
  198. A. Keiling, V. Angelopoulos, A. Runov, J. Weygand, S.V. Apatenkov, S. Mende, J. McFadden, D. Larson, O. Amm, K.-H. Glassmeier, H.U. Auster, Substorm current wedge driven by plasma flow vortices: THEMIS observations. J. Geophys. Res. 114(A13), A00C22 (2009). doi: 10.1029/2009JA014114 ADSGoogle Scholar
  199. C.F. Kennel, Magnetospheres of the planets. Space Sci. Rev. 14, 511–533 (1973) ADSGoogle Scholar
  200. L. Kepko, E. Spanswick, V. Angelopoulos, E. Donovan, J. McFadden, K.-H. Glassmeier, J. Raeder, H.J. Singer, Equatorward moving auroral signatures of a flow burst observed prior to auroral onset. Geophys. Res. Lett. 36, L24104 (2009). doi: 10.1029/2009GL041476 ADSGoogle Scholar
  201. Y.V. Khotyaintsev, C.M. Cully, A. Vaivads, M. André, C.J. Owen, Plasma jet braking: energy dissipation and nonadiabatic electrons. Phys. Rev. Lett. 106, 165001 (2011). doi: 10.1103/PhysRevLett.106.165001 ADSGoogle Scholar
  202. K.K. Khurana, Euler potential models of Jupiter’s magnetospheric field. J. Geophys. Res. 102(A6), 11295–11306 (1997) ADSGoogle Scholar
  203. K.K. Khurana, Influence of solar wind on Jupiter’s magnetosphere deduced from currents in the equatorial plane. J. Geophys. Res. 106, 25999–26016 (2001) ADSGoogle Scholar
  204. K.K. Khurana, H.K. Schwarzl, Global structure of Jupiter’s magnetospheric current sheet. J. Geophys. Res. 110, A07227 (2005). doi: 10.1029/2004JA010757 ADSGoogle Scholar
  205. A. Kidder, R.M. Winglee, E.M. Harnett, Erosion of the dayside magnetosphere at Mercury in association with ion outflows and flux rope generation. J. Geophys. Res. 113, A09223 (2008). doi: 10.1029/2008JA013038 ADSGoogle Scholar
  206. A. Kidder, C.S. Paty, R.M. Winglee, E.M. Harnett, External triggering of plasmoid development at Saturn. J. Geophys. Res. 117, A07206 (2012). doi: 10.1029/2012JA017625 ADSGoogle Scholar
  207. S.A. Kiehas, V. Angelopoulos, A. Runov, M.B. Moldwin, C. Möstl, On the formation of tilted flux ropes in the Earth’s magnetotail observed with ARTEMIS. J. Geophys. Res. 117, A05231 (2012). doi: 10.1029/2011JA017377 ADSGoogle Scholar
  208. M.G. Kivelson, Planetary magnetospheres, in Solar-Terrestrial Environment, ed. by Y. Kamide, C.-L. Chian (Springer, New York, 2007), pp. 470–492. Chap. 19 Google Scholar
  209. M.G. Kivelson, K.K. Khurana, Properties of the magnetic field in the Jovian magnetotail. J. Geophys. Res. 107(A8), 1196 (2002). doi: 10.1029/2001JA000249 Google Scholar
  210. M.G. Kivelson, D.J. Southwood, First evidence of IMF control of Jovian magnetospheric boundary locations: Cassini and Galileo magnetic field measurements compared. Planet. Space Sci. 51, 891–898 (2003) ADSGoogle Scholar
  211. M.G. Kivelson, D.J. Southwood, Dynamical consequences of two modes of centrifugal instability in Jupiter’s outer magnetosphere. J. Geophys. Res. 110, A12209 (2005). doi: 10.1029/2005JA011176 ADSGoogle Scholar
  212. M.G. Kivelson, A.J. Ridley, Saturation of the polar cap potential: inference from Alfvén wing arguments. J. Geophys. Res. 113, A05214 (2008). doi: 10.1029/2007JA012302 ADSGoogle Scholar
  213. H. Korth, B.J. Anderson, J.M. Raines, J.A. Slavin, T.H. Zurbuchen, C.L. Johnson, M.E. Purucker, R.M. Winslow, S.C. Solomon, R.L. McNutt Jr., Plasma pressure in Mercury’s equatorial magnetosphere derived from MESSENGER magnetometer observations. Geophys. Res. Lett. 38, L22201 (2011). doi: 10.1029/2011GL049451 ADSGoogle Scholar
  214. E.A. Kronberg, K.-H. Glassmeier, J. Woch, N. Krupp, A. Lagg, M.K. Dougherty, A possible intrinsic mechanism for the quasi-periodic dynamics of the Jovian magnetosphere. J. Geophys. Res. 112, A05203 (2007). doi: 10.1029/2006JA011994 ADSGoogle Scholar
  215. E.A. Kronberg, J. Woch, N. Krupp, A. Lagg, Mass release process in the Jovian magnetosphere: statistics on particle burst parameters. J. Geophys. Res. 113, A10202 (2008). doi: 10.1029/2008JA013332 ADSGoogle Scholar
  216. E.A. Kronberg, S. Kasahara, N. Krupp, J. Woch, Field-aligned beams and reconnection in the Jovian magnetotail. Icarus 217, 55–65 (2012) ADSGoogle Scholar
  217. N. Krupp, J. Woch, A. Lagg, B. Wilken, S. Livi, D.J. Williams, Energetic particle bursts in the predawn Jovian magnetotail. Geophys. Res. Lett. 25(8), 1249–1252 (1998). doi: 10.1029/98GL00863 ADSGoogle Scholar
  218. W.S. Kurth, J.D. Sullivan, D.A. Gurnett, F.L. Scarf, H.S. Bridge, E.C. Sittler Jr., Observations of Jupiter’s distant magnetotail and wake. J. Geophys. Res. 87(A12), 10373–10383 (1982). doi: 10.1029/JA087iA12p10373 ADSGoogle Scholar
  219. W.S. Kurth, T. Murata, G. Lu, D.A. Gurnett, H. Matsumoto, Auroral kilometric radiation and the auroral electrojet index for the January 1997 magnetic cloud event. Geophys. Res. Lett. 25, 3027–3030 (1998) ADSGoogle Scholar
  220. H.R. Lai, H.Y. Wei, C.T. Russell, C.S. Arridge, M.K. Dougherty, Reconnection at the magnetopause of Saturn: perspective from FTE occurrence and magnetosphere size. J. Geophys. Res. 117, A05222 (2012). doi: 10.1029/2011JA017263 ADSGoogle Scholar
  221. L. Lamy, P. Zarka, B. Cecconi, R. Prangé, W.S. Kurth, D.A. Gurnett, Saturn kilometric radiation: average and statistical properties. J. Geophys. Res. 113, A07201 (2008). doi: 10.1029/2007JA012900 ADSGoogle Scholar
  222. R.P. Lepping, M.D. Desch, L.W. Klein, E.C. Sittler Jr., J.D. Sullivan, W.S. Kurth, K.W. Behannon, Structure and other properties of Jupiter’s distant magnetotail. J. Geophys. Res. 88(A11), 8801–8815 (1983). doi: 10.1029/JA088iA11p08801 ADSGoogle Scholar
  223. T.W. Lezniak, R.L. Arnoldy, G.K. Parks, J.R. Winckler, Measurement and intensity of energetic electrons at the equator at 6.6 R E. Radio Sci. 3, 710 (1968) ADSGoogle Scholar
  224. X. Li, D.N. Baker, M. Temerin, G.D. Reeves, Simulation of dispersionless injections and subsequent drift echoes of energetic electrons associated with substorms. Geophys. Res. Lett. 25, 3763 (1998) ADSGoogle Scholar
  225. K. Liou, Large, abrupt pressure decreases as a substorm onset trigger. Geophys. Res. Lett. 34, L14107 (2007). doi: 10.1029/2007GL029909 ADSGoogle Scholar
  226. M. Lockwood, S.W.H. Cowley, Ionospheric convection and the substorm cycle, in Proceedings of the International Conference on Substorms (ICS-1). ESA Spec. Publ., vol. SP-335 (1992), pp. 99–109 Google Scholar
  227. M. Lockwood, M.A. Hapgood, How the magnetopause transition parameter works. Geophys. Res. Lett. 24, 373–376 (1997). doi: 10.1029/97GL00120 ADSGoogle Scholar
  228. P. Louarn, A. Roux, S. Perraut, W.S. Kurth, D.A. Gurnett, A study of the Jovian “energetic magnetospheric events” observed by Galileo: role in the radial plasma transport. J. Geophys. Res. 105(A6), 13073–13088 (2000). doi: 10.1029/1999JA900478 ADSGoogle Scholar
  229. P. Louarn et al., Observation of similar radio signatures at Saturn and Jupiter: implications for the magnetospheric dynamics. Geophys. Res. Lett. 34, L20113 (2007). doi: 10.1029/2007GL030368 ADSGoogle Scholar
  230. A.T.Y. Lui, A synthesis of magnetospheric substorm models. J. Geophys. Res. 96, 1849 (1991) ADSGoogle Scholar
  231. A.T.Y. Lui, Comment on “Tail reconnection triggering substorm onset”. Science 324(5933) (2009). doi: 10.1126/science.1167726
  232. L.R. Lyons, Substorms: fundamental observational features, distinction from other disturbances, and external triggering. J. Geophys. Res. 101(A6), 13011–13025 (1996). doi: 10.1029/95JA01987 ADSGoogle Scholar
  233. L.R. Lyons, T.W. Speiser, Evidence for current sheet acceleration in the geomagnetic tail. J. Geophys. Res. 87, 2276–2286 (1982). doi: 10.1029/JA087iA04p02276 ADSGoogle Scholar
  234. L.R. Lyons, G.T. Blanchard, J.C. Samson, R.P. Lepping, T. Yamamoto, T. Moretto, Coordinated observations demonstrating external substorm triggering. J. Geophys. Res. 102(A12), 27039–27051 (1997). doi: 10.1029/97JA02639 ADSGoogle Scholar
  235. L. Lyons, T. Nagai, G. Blanchard, J. Samson, T. Yamamoto, T. Mukai, A. Nishida, S. Kokubun, Association between geotail plasma flows and auroral poleward boundary intensifications observed by CANOPUS photometers. J. Geophys. Res. 104(A3), 4485–4500 (1999) ADSGoogle Scholar
  236. W.M. Macek, W.S. Kurth, R.P. Lepping, D.G. Sibeck, Distant magnetotails of the outer magnetic planets. Adv. Space Res. 12(8), 847–855 (1992) Google Scholar
  237. G. Marklund, T. Karlsson, J. Clemmons, On low-altitude particle acceleration and intense electric fields and their relationship to black aurora. J. Geophys. Res. 102, 17509–17522 (1997) ADSGoogle Scholar
  238. A. Masters, D.G. Mitchell, A.J. Coates, M.K. Dougherty, Saturn’s low-latitude boundary layer: 1. Properties and variability. J. Geophys. Res. 116, A06210 (2011a). doi: 10.1029/2010JA016421 ADSGoogle Scholar
  239. A. Masters, M.F. Thomsen, S.V. Badman, C.S. Arridge, D.T. Young, A.J. Coates, M.K. Dougherty, Supercorotating return flow from reconnection in Saturn’s magnetotail. Geophys. Res. Lett. 38, L03103 (2011b). doi: 10.1029/2010GL046149 ADSGoogle Scholar
  240. B.H. Mauk et al., Energetic neutral atoms from a trans-Europa gas torus at Jupiter. Nature 421, 920–922 (2003) ADSGoogle Scholar
  241. H.J. McAndrews, M.F. Thomsen, C.S. Arridge, C.M. Jackman, R.J. Wilson, M.G. Henderson, R.L. Tokar, K.K. Khurana, E.C. Sittler, A.J. Coates, M.K. Dougherty, Plasma in Saturn’s nightside magnetosphere and the implications for global circulation. Planet. Space Sci. 57(14–15), 1714–1722 (2009). doi: 10.1016/j.pss.2009.03.003 ADSGoogle Scholar
  242. D.J. McComas, F. Bagenal, Jupiter: a fundamentally different magnetospheric interaction with the solar wind. Geophys. Res. Lett. 34, L20106 (2007). doi: 10.1029/2007GL031078 ADSGoogle Scholar
  243. D.J. McComas, F. Allegrini, F. Bagenal, F. Crary, R.W. Ebert, H. Elliott, A. Stern, P. Valek, Diverse plasma populations and structures in Jupiter’s magnetotail. Science 318 (2007). doi: 10.1126/science.1147393
  244. D.J. McComas et al., First IBEX observations of the terrestrial plasma sheet and a possible disconnection event. Geophys. Res. Lett. 116, A02211 (2011) ADSGoogle Scholar
  245. R.L. McNutt Jr., Force balance in the magnetospheres of Jupiter and Saturn. Adv. Space Res. 3, 55–58 (1983) ADSGoogle Scholar
  246. R.L. McNutt Jr. et al., Energetic particles in the Jovian magnetotail. Science 318, 220 (2007) ADSGoogle Scholar
  247. R.L. McPherron, C.T. Russell, M.P. Aubry, Satellite studies of magnetospheric substorms on August 15, 1968. 9. Phenomenological model for substorms. J. Geophys. Res. 78, 3131–3149 (1973). doi: 10.1029/JA078i016p03131 ADSGoogle Scholar
  248. F.C. Michel, P.A. Sturrock, Centrifugal instability of the Jovian magnetosphere and its interaction with the solar wind. Planet. Space Sci. 22, 1501 (1974) ADSGoogle Scholar
  249. S.E. Milan, A simple model of the flux content of the distant magnetotail. J. Geophys. Res. 109, A07210 (2004). doi: 10.1029/2004JA010397 ADSGoogle Scholar
  250. S.E. Milan, Both solar wind-magnetosphere coupling and ring current intensity control of the size of the auroral oval. Geophys. Res. Lett. 36, L18101 (2009). doi: 10.1029/2009GL039997 ADSGoogle Scholar
  251. S.E. Milan, J.A. Slavin, An assessment of the length and variability of Mercury’s magnetotail. Planet. Space Sci. 59, 2058–2065 (2011) ADSGoogle Scholar
  252. S.E. Milan, E.J. Bunce, S.W.H. Cowley, C.M. Jackman, Implications of rapid planetary rotation for the Dungey magnetotail of Saturn. J. Geophys. Res. 110, A03209 (2005). doi: 10.1029/2004JA010716 ADSGoogle Scholar
  253. S.E. Milan, G. Provan, B. Hubert, Magnetic flux transport in the Dungey cycle: a survey of dayside and nightside reconnection rates. J. Geophys. Res. 112, A01209 (2007). doi: 10.1029/2006JA011642 ADSGoogle Scholar
  254. S.E. Milan, P.D. Boakes, B. Hubert, Response of the expanding/contracting polar cap to weak and strong solar wind driving: implications for substorm onset. J. Geophys. Res. 113, A09215 (2008). doi: 10.1029/2008JA013340 ADSGoogle Scholar
  255. S.E. Milan, J.S. Gosling, B. Hubert, Relationship between interplanetary parameters and the magnetopause reconnection rate quantified from observations of the expanding polar cap. J. Geophys. Res. 117, A03226 (2012). doi: 10.1029/2011JA017082 ADSGoogle Scholar
  256. A. Milillo et al., The BepiColombo mission: an outstanding tool for investigating the Hermean environment. Planet. Space Sci. 58, 40–60 (2010) ADSGoogle Scholar
  257. D.G. Mitchell, F. Kutchko, D.J. Williams, T.E. Eastman, L.A. Frank, An extended study of the low-latitude boundary layer on the dawn and dusk flanks of the magnetosphere. J. Geophys. Res. 92, 7394–7404 (1987). doi: 10.1029/JA092iA07p07394 ADSGoogle Scholar
  258. D.G. Mitchell, P.C. Brandt, E.C. Roelof, D.C. Hamilton, K.C. Retterer, S. Mende, Global imaging of O+ from IMAGE/HENA. Space Sci. Rev. 109, 63–75 (2003) ADSGoogle Scholar
  259. D.G. Mitchell et al., Energetic ion acceleration in Saturn’s magnetotail: substorms at Saturn? Geophys. Res. Lett. 32, L20S01 (2005). doi: 10.1029/2005GL022647 Google Scholar
  260. D.G. Mitchell, S.M. Krimigis, C. Paranicas, P.C. Brandt, J.F. Carbary, E.C. Roelof, W.S. Kurth, D.A. Gurnett, J.T. Clarke, J.D. Nichols, J. Gerard, D.C. Grodent, M.K. Dougherty, W.R. Pryor, Recurrent energization of plasma in the midnight to-dawn quadrant of Saturn’s magnetosphere, and its relationship to auroral UV and radio emissions. Planet. Space Sci. 57, 1732–1742 (2009). doi: 10.1016/j.pss.2009.04.002 ADSGoogle Scholar
  261. P.F. Mizera, D.J. Gorney, J.F. Fennell, Experimental verification of an S-shaped potential structure. J. Geophys. Res. 87, 1535 (1982) ADSGoogle Scholar
  262. M. Moldwin, W. Hughes, On the formation and evolution of plasmoids: a survey of ISEE 3 geotail data. J. Geophys. Res. 97, 19259–19282 (1992). doi: 10.1029/92JA01598 ADSGoogle Scholar
  263. T. Moore, C. Chappell, M. Chandler, P. Craven, B. Giles, C. Pollock, J. Burch, D. Young, J. Waite, J. Nordholt, M. Thomsen, D. McComas, J. Berthelier, W. Williamson, R. Robson, F. Mozer, High-altitude observations of the polar wind. Science 277(5324), 349–351 (1997). doi: 10.1126/science.277.5324.349 ADSGoogle Scholar
  264. A. Morioka, Y. Miyoshi, F. Tsuchiya, H. Misawa, T. Sakanoi, K. Yumoto, R.R. Anderson, J.D. Menietti, E.F. Donovan, Dual structure of auroral acceleration regions at substorm onsets as derived from AKR spectra. J. Geophys. Res. 112, A06245 (2007). doi: 10.1029/2006JA012186 ADSGoogle Scholar
  265. A. Morioka, Y. Miyoshi, Y. Miyashita, Y. Kasaba, H. Misawa, F. Tsuchiya, R. Kataoka, A. Kadokura, T. Mukai, K. Yumoto, D.J. Menietti, G. Parks, K. Liou, F. Honary, E. Donovan, Two-step evolution of auroral acceleration at substorm onset. J. Geophys. Res. 115, A11213 (2010). doi: 10.1029/2010JA015361 ADSGoogle Scholar
  266. S.K. Morley, M.P. Freeman, On the association between northward turnings of the interplanetary magnetic field and substorm onsets. Geophys. Res. Lett. 34, L08104 (2007). doi: 10.1029/2006GL028891 ADSGoogle Scholar
  267. S.K. Morley, A.P. Rouillard, M.P. Freeman, Recurrent substorm activity during the passage of a corotating interaction region. J. Atmos. Sol.-Terr. Phys. 71(10–11), 1073–1081 (2009). doi: 10.1016/j.jastp.2008.11.009 ADSGoogle Scholar
  268. F.S. Mozer, C.A. Cattell, M.K. Hudson, R.L. Lysak, M. Temerin, R.B. Torbert, Satellite measurements and theories of low-altitude auroral particle acceleration. Space Sci. Rev. 27, 155 (1980) ADSGoogle Scholar
  269. R. Nakamura et al., Earthward flow bursts, auroral streamers, and small expansions. J. Geophys. Res. 106, 10791 (2001) ADSGoogle Scholar
  270. R. Nakamura, W. Baumjohann, A. Runov, M. Volwerk, T.L. Zhang, B. Klecker, Y. Bogdanova, A. Roux, A. Balogh, H. Reme, J.A. Sauvaud, H.U. Frey, Fast flow during current sheet thinning. Geophys. Res. Lett. 29, 2140 (2002) ADSGoogle Scholar
  271. R. Nakamura, W. Baumjohann, C. Mouikis, L.M. Kistler, A. Runov, M. Volwerk, Y. Asano, Z. Vörös, T.L. Zhang, B. Klecker, H. Rème, A. Balogh, Spatial scale of high-speed flows in the plasma sheet observed by Cluster. Geophys. Res. Lett. 31, L09804 (2004). doi: 10.1029/2004GL019558 ADSGoogle Scholar
  272. N.F. Ness, The Earth’s magnetic tail. J. Geophys. Res. 70(13), 2989–3005 (1965). doi: 10.1029/JZ070i013p02989 ADSGoogle Scholar
  273. N. Ness, Magnetic fields of Mercury, Mars, and Moon. Annu. Rev. Earth Planet. Sci. 7, 249–288 (1979) ADSGoogle Scholar
  274. N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, K.H. Schatten, Magnetic field observations near Mercury: preliminary results from Mariner 10. Science 185, 151–160 (1974) ADSGoogle Scholar
  275. N.F. Ness, K.W. Behannon, L.F. Burlaga, Configuration of Jupiter’s magnetic tail and equatorial current sheet. Adv. Space Res. 1, 225 (1981) ADSGoogle Scholar
  276. P.T. Newell, Reconsidering the inverted-V particle signature: relative frequency of large-scale electron acceleration events. J. Geophys. Res. 105, 15779–15794 (2000). doi: 10.1029/1999JA000051 ADSGoogle Scholar
  277. P.T. Newell, K. Liou, Solar wind driving and substorm triggering. J. Geophys. Res. 116, A03229 (2011). doi: 10.1029/2010JA016139 ADSGoogle Scholar
  278. J.D. Nichols, S.W.H. Cowley, D.J. McComas, Magnetopause reconnection rate estimates for Jupiter’s magnetosphere based on interplanetary measurements at ∼5 AU. Ann. Geophys. 24, 393–406 (2006) ADSGoogle Scholar
  279. J.D. Nichols et al., Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope. Geophys. Res. Lett. 41 (2014). doi: 10.1002/2014GL060186
  280. A. Nishida, T. Mukai, T. Yamamoto, S. Kokubun, K. Maezawa, A unified model of the magnetotail convection in geomagnetically quiet and active times. J. Geophys. Res. 103, 4409–4418 (1998) ADSGoogle Scholar
  281. Y. Nishimura, L. Lyons, S. Zou, V. Angelopoulos, S. Mende, Substorm triggering by new plasma intrusion: THEMIS all-sky imager observations. J. Geophys. Res. 115, A07222 (2010). doi: 10.1029/2009JA015166 ADSGoogle Scholar
  282. M.N. Nishino, H. Hasegawa, M. Fujimoto, Y. Saito, T. Mukai, I. Dandouras, H. Rème, A. Retinò, R. Nakamura, E. Lucek, S.J. Schwartz, A case study of Kelvin-Helmholtz vortices on both flanks of the Earth’s magnetotail. Planet. Space Sci. 59, 502–509 (2011). doi: 10.1016/j.pss.2010.03.011 ADSGoogle Scholar
  283. M. Nosé, A.T.Y. Lui, S. Ohtani, B.H. Mauk, R.W. McEntire, D.J. Williams, T. Mukai, K. Yumoto, Acceleration of oxygen ions of ionospheric origin in the near-Earth magnetotail during substorms. J. Geophys. Res. 105(A4), 7669–7677 (2000a). doi: 10.1029/1999JA000318 ADSGoogle Scholar
  284. M. Nosé, S. Ohtani, A.T.Y. Lui, S.P. Christon, R.W. McEntire, D.J. Williams, T. Mukai, Y. Saito, K. Yumoto, Change of energetic ion composition in the plasma sheet during substorms. J. Geophys. Res. 105(A10), 23277–23286 (2000b). doi: 10.1029/2000JA000129 ADSGoogle Scholar
  285. K. Nykyri, A. Otto, Plasma transport at the magnetospheric boundary due to reconnection in Kelvin-Helmholtz vortices. Geophys. Res. Lett. 28(18), 3565–3568 (2001). doi: 10.1029/2001GL013239 ADSGoogle Scholar
  286. K. Nykyri, A. Otto, B. Lavraud, C. Mouikis, L.M. Kistler, A. Balogh, H. Rème, Cluster observations of reconnection due to the Kelvin-Helmholtz instability at the dawnside magnetospheric flank. Ann. Geophys. 24, 2619–2643 (2006) ADSGoogle Scholar
  287. K.W. Ogilvie et al., Observations at Mercury encounter by the plasma science instrument on Mariner 10. Science 185, 145–150 (1974) ADSGoogle Scholar
  288. K.W. Ogilvie, J.D. Scudder, V.M. Vasyliunas, R.E. Hartle, G.L. Siscoe, Observations at the planet Mercury by the plasma electron experiment—Mariner 10. J. Geophys. Res. 82, 1807–1824 (1977). doi: 10.1029/JA082i013p01807 ADSGoogle Scholar
  289. S. Ohtani, M.A. Shay, T. Mukai, Temporal structure of the fast convective flow in the plasma sheet: comparison between observations and two-fluid simulations. J. Geophys. Res. 109(A18), A03210 (2004). doi: 10.1029/2003JA010002 ADSGoogle Scholar
  290. M. Oieroset et al., THEMIS multi-spacecraft observations of magnetosheath plasma penetration deep into the dayside low-latitude magnetosphere for northward and strong B y IMF. Geophys. Res. Lett. 35(17), L17S11 (2008) Google Scholar
  291. E.N. Parker, Interaction of the solar wind with the geomagnetic field. Phys. Fluids 1, 171 (1958a). doi: 10.1063/1.1724339 zbMATHMathSciNetADSGoogle Scholar
  292. E.N. Parker, Dynamics of the interplanetary magnetic field. Astrophys. J. 128, 664 (1958b) ADSGoogle Scholar
  293. G.K. Parks, J.R. Winckler, Acceleration of energetic electrons observed at the synchronous altitude during magnetospheric substorms. J. Geophys. Res. 73, 5786 (1968) ADSGoogle Scholar
  294. G.K. Parks, M. McCarthy, R.J. Fitzenreiter, K.W. Ogilvie, J. Etcheto, K.A. Anderson, R.P. Lin, R.R. Anderson, T.E. Eastman, L.A. Frank, Particle and field characteristics of the high-latitude plasma sheet boundary layer. J. Geophys. Res. 89, 8885–8906 (1984). doi: 10.1029/JA089iA10p08885 ADSGoogle Scholar
  295. A.A. Petrukovich, A.V. Artemyev, H.V. Malova, V.Y. Popov, R. Nakamura, L.M. Zelenyi, Embedded current sheets in the Earth’s magnetotail. J. Geophys. Res. 116, A00I25 (2011). doi: 10.1029/2010JA015749 ADSGoogle Scholar
  296. J.H. Piddington, Geomagnetic storm theory. J. Geophys. Res. 65(1), 93–106 (1960). doi: 10.1029/JZ065i001p00093 ADSGoogle Scholar
  297. C.J. Pollock et al., The role and contributions of energetic neutral atom (ENA) imaging in magnetospheric substorm research. Space Sci. Rev. 109, 155–182 (2003) ADSGoogle Scholar
  298. J.D.H. Pontius, R.A. Wolf, Transient flux tubes in the terrestrial magnetosphere. Geophys. Res. Lett. 17, 49–52 (1990) ADSGoogle Scholar
  299. T.I. Pulkkinen, D.N. Baker, C.J. Owen, J.T. Gosling, N. Murphy, Thin current sheets in the deep geomagnetic tail. Geophys. Res. Lett. 20, 2427 (1993) ADSGoogle Scholar
  300. A. Radioti, J. Woch, E.A. Kronberg, N. Krupp, A. Lagg, K.-H. Glassmeier, M.K. Dougherty, Energetic ion composition during reconfiguration events in the Jovian magnetotail. J. Geophys. Res. 112, A06221 (2007). doi: 10.1029/2006JA012047 ADSGoogle Scholar
  301. A. Radioti, D. Grodent, J.-C. Gérard, B. Bonfond, J.T. Clarke, Auroral polar dawn spots: signatures of internally driven reconnection processes at Jupiter’s magnetotail. Geophys. Res. Lett. 35, L03104 (2008). doi: 10.1029/2007GL032460 ADSGoogle Scholar
  302. A. Radioti, D. Grodent, J.-C. Gérard, B. Bonfond, Auroral signatures of flow bursts released during magnetotail reconnection at Jupiter. J. Geophys. Res. 115, A07214 (2010). doi: 10.1029/2009JA014844 ADSGoogle Scholar
  303. A. Radioti, D. Grodent, J.-C. Gérard, M.F. Vogt, M. Lystrup, B. Bonfond, Nightside reconnection at Jupiter: auroral and magnetic field observations from 26 July 1998. J. Geophys. Res. 116, A03221 (2011). doi: 10.1029/2010JA016200 ADSGoogle Scholar
  304. A. Radioti, E. Roussos, D. Grodent, J.-C. Gérard, N. Krupp, D.G. Mitchell, J. Gustin, B. Bonfond, W. Pryor, Signatures of magnetospheric injections in Saturn’s aurora. J. Geophys. Res. Space Sci. 118, 1922–1933 (2013). doi: 10.1002/jgra.50161 ADSGoogle Scholar
  305. J.M. Raines, D. Schriver, S.C. Solomon, R.D. Starr, P. Trávníček, T.H. Zurbuchen, Mercury’s magnetosphere after MESSENGER’s first flyby. Science 321, 85–89 (2008). doi: 10.1126/science.1159040 ADSGoogle Scholar
  306. J.M. Raines, J.A. Slavin, T.H. Zurbuchen, G. Gloeckler, B.J. Anderson, D.N. Baker, H. Korth, S.M. Krimigis, R.L. McNutt Jr., MESSENGER observations of the plasma environment near Mercury. Planet. Space Sci. 59, 2004–2015 (2011). doi: 10.1016/j.pss.2011.02.004 ADSGoogle Scholar
  307. A. Raj, T. Phan, R.P. Lin, V. Angelopoulos, Wind survey of high-speed bulk flows and field-aligned beams in the near-Earth plasma sheet. J. Geophys. Res. 107(A12), 1419 (2002). doi: 10.1029/2001JA007547 Google Scholar
  308. L.C. Ray, Y.-J. Su, R.E. Ergun, P.A. Delamere, F. Bagenal, Current-voltage relation of a centrifugally confined plasma. J. Geophys. Res. 114, A04214 (2009). doi: 10.1029/2008JA013969 ADSGoogle Scholar
  309. P.H. Reiff, J.L. Burch, T.W. Hill, Solar wind plasma injection at the dayside magnetospheric cusp. J. Geophys. Res. 82, 479–491 (1977). doi: 10.1029/JA082i004p00479 ADSGoogle Scholar
  310. P.H. Reiff, R.W. Spiro, T.W. Hill, Dependence of polar cap potential drop on interplanetary parameters. J. Geophys. Res. 86, 7639–7648 (1981) ADSGoogle Scholar
  311. E.C. Roelof, D.G. Sibeck, Magnetopause shape as a bivariate function of interplanetary magnetic field B z and solar wind dynamic pressure. J. Geophys. Res. 98(A12), 21421–21450 (1993). doi: 10.1029/93JA02362 ADSGoogle Scholar
  312. E.C. Roelof et al., Energetic neutral atom image of a storm-time ring current. Geophys. Res. Lett. 14, 652–655 (1997) ADSGoogle Scholar
  313. H. Rosenbauer, H. Gruenwaldt, M.D. Montgomery, G. Paschmann, N. Sckopke, Heos 2 plasma observations in the distant polar magnetosphere—the plasma mantle. J. Geophys. Res. 80, 2723–2737 (1975). doi: 10.1029/JA080i019p02723 ADSGoogle Scholar
  314. A. Runov, R. Nakamura, W. Baumjohann, T.L. Zhang, M. Volwerk, H.-U. Eichelberger, A. Balogh, Cluster observation of a bifurcated current sheet. Geophys. Res. Lett. 30, 1036 (2003a) ADSGoogle Scholar
  315. A. Runov et al., Current sheet structure near magnetic X-line observed by Cluster. Geophys. Res. Lett. 30(11), 1579 (2003b). doi: 10.1029/2002GL016730 ADSGoogle Scholar
  316. A. Runov, V.A. Sergeev, R. Nakamura, W. Baumjohann, T.L. Zhang, Y. Asano, M. Volwerk, Z. Vörös, A. Balogh, H. Rème, Reconstruction of the magnetotail current sheet structure using multi-point Cluster measurements. Planet. Space Sci. 53, 237–243 (2005a) ADSGoogle Scholar
  317. A. Runov, V.A. Sergeev, W. Baumjohann, R. Nakamura, S. Apatenkov, Y. Asano, M. Volwerk, Z. Voros, T.L. Zhang, A. Petrukovich, A. Balogh, J.-A. Sauvaud, B. Klecker, H. Reme, Electric current and magnetic field geometry in flapping magnetotail current sheets. Ann. Geophys. 23, 1391–1403 (2005b) ADSGoogle Scholar
  318. A. Runov, V. Angelopoulos, M.I. Sitnov, V.A. Sergeev, J. Bonnell, J.P. McFadden, D. Larson, K.-H. Glassmeier, U. Auster, THEMIS observations of an earthward-propagating dipolarization front. Geophys. Res. Lett. 36, L14106 (2009). doi: 10.1029/2009GL038980 ADSGoogle Scholar
  319. A. Runov et al., Dipolarization fronts in the magnetotail plasma sheet. Planet. Space Sci. 59, 517 (2010) ADSGoogle Scholar
  320. A. Runov, V. Angelopoulos, X.-Z. Zhou, X.-J. Zhang, S. Li, F. Plaschke, J. Bonnell, A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet. J. Geophys. Res. 116(A15), A05216 (2011). doi: 10.1029/2010JA016316 ADSGoogle Scholar
  321. C.T. Russell, The dynamics of planetary magnetospheres. Planet. Space Sci. 49 (2001). doi: 10.1016/S0032-0633(01)00017-4
  322. C.T. Russell, K.I. Brody, Some remarks on the position and shape of the neutral sheet. J. Geophys. Res. 72(23), 6104–6106 (1967). doi: 10.1029/JZ072i023p06104 ADSGoogle Scholar
  323. C.T. Russell, D.N. Baker, J.A. Slavin, The magnetosphere of Mercury, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (Univ. of Arizona Press, Tucson, 1988), pp. 514–561 Google Scholar
  324. C.T. Russell, C.M. Jackman, H.Y. Wei, C. Bertucci, M.K. Dougherty, Titan’s influence on Saturnian substorm occurrence. Geophys. Res. Lett. 35, L12105 (2008). doi: 10.1029/2008GL034080 ADSGoogle Scholar
  325. D.V. Sarafopoulos, E.T. Sarris, V. Angelopoulos, T. Yamamoto, S. Kokubun, Spatial structure of the plasma sheet boundary layer at distances greater than 180 R E as derived from energetic particle measurements on GEOTAIL. Ann. Geophys. 15, 1246–1256 (1997). doi: 10.1007/s00585-997-1246-0 ADSGoogle Scholar
  326. F.L. Scarf, I.M. Green, G.L. Siscoe, D.S. Intriligator, D.D. McKibbin, J.H. Wolfe, Pioneer 8 electric field measurements in the distant geomagnetic tail. J. Geophys. Res. 75(16), 3167–3179 (1970). doi: 10.1029/JA075i016p03167 ADSGoogle Scholar
  327. F.L. Scarf, D.A. Gurnett, W.S. Kurth, R.L. Poynter, Voyager 2 plasma wave observations at Saturn. Science 215, 587 (1982) ADSGoogle Scholar
  328. K. Schindler, A selfconsistent theory of the tail of the magnetosphere, in Earth’s Magnetospheric Processes, ed. by B.M. McCormac (D. Reidel, Dordrecht, 1972), p. 200 Google Scholar
  329. K. Schindler, A theory of the substorm mechanism. J. Geophys. Res. 79, 2803 (1974) ADSGoogle Scholar
  330. K. Schindler, J. Birn, Models of two-dimensional embedded thin current sheets from Vlasov theory. J. Geophys. Res. 107(A8), 1193 (2002). doi: 10.1029/2001JA000304 Google Scholar
  331. D. Schmid, M. Volwerk, R. Nakamura, W. Baumjohann, M. Heyn, A statistical and event study of magnetotail dipolarization fronts. Ann. Geophys. 29(9), 1537–1547 (2011). doi: 10.5194/angeo-29-1537-2011 ADSGoogle Scholar
  332. N. Sckopke, G. Paschmann, The plasma mantle. A survey of magnetotail boundary layer observations. J. Atmos. Terr. Phys. 40(3), 261–278 (1978). doi: 10.1016/0021-9169(78)90044-2 ADSGoogle Scholar
  333. J.D. Scudder, E.C. Sittler Jr., H.S. Bridge, A survey of the plasma electron environment of Jupiter: a view from Voyager. J. Geophys. Res. 86(A10), 8157–8179 (1981). doi: 10.1029/JA086iA10p08157 ADSGoogle Scholar
  334. L. Scurry, C.T. Russell, Proxy studies of energy transfer to the magnetosphere. J. Geophys. Res. 96, 9541–9548 (1991) ADSGoogle Scholar
  335. K. Seki, T. Terasawa, M. Hirahara, T. Mukai, Quantification of tailward cold O+ beams in the lobe/mantle regions with geotail data: constraints on polar O+ outflows. J. Geophys. Res. 103, 29371–29382 (1998). doi: 10.1029/98JA02463 ADSGoogle Scholar
  336. V.A. Sergeev, D.G. Mitchell, C.T. Russel, D.J. Williams, Structure of the tail plasma/current sheet at 11 R E and its changes in the course of a substorm. J. Geophys. Res. 98, 17345–17365 (1993) ADSGoogle Scholar
  337. V.A. Sergeev, T.I. Pulkkinen, R.J. Pellinen, Coupled-mode scenario for the magnetospheric dynamics. J. Geophys. Res. 101, 13047–13065 (1996a) ADSGoogle Scholar
  338. V.A. Sergeev, V. Angelopoulos, J.T. Gosling, C.A. Cattell, C.T. Russell, Detection of localized, plasma-depleted flux tubes or bubbles in the midtail plasma sheet. J. Geophys. Res. 101, 10817–10826 (1996b). doi: 10.1029/96JA00460 ADSGoogle Scholar
  339. V. Sergeev, V. Angelopoulos, C. Carlson, P. Sutcliffe, Current sheet measurements within a flapping plasma sheet. J. Geophys. Res. 103, 9177–9188 (1998) ADSGoogle Scholar
  340. V.A. Sergeev, K. Liou, C.-I. Meng, P.T. Newell, M. Brittnacher, G. Parks, G.D. Reeves, Development of auroral streamers in association with localized impulsive injections to the inner magnetotail. Geophys. Res. Lett. 26(3), 417–420 (1999). doi: 10.1029/1998GL900311 ADSGoogle Scholar
  341. V. Sergeev, A. Runov, W. Baumjohann, R. Nakamura, T.L. Zhang, M. Volwerk, A. Balogh, H. Reme, J.A. Sauvaud, M. Andre, B. Klecker, Current sheet flapping motion and structure observed by Cluster. Geophys. Res. Lett. 30, 1327 (2003) ADSGoogle Scholar
  342. V.A. Sergeev, V. Angelopoulos, S. Apatenkov, J. Bonnell, R. Ergun, R. Nakamura, J. McFadden, D. Larson, A. Runov, Kinetic structure of the sharp injection/dipolarization front in the flow-braking region. Geophys. Res. Lett. 36, L21105 (2009). doi: 10.1029/2009GL040658 ADSGoogle Scholar
  343. V. Sergeev, Y. Nishimura, M. Kubyshkina, V. Angelopoulos, R. Nakamura, H. Singer, Magnetospheric location of the equatorward prebreakup arc. J. Geophys. Res. 117, A01212 (2012a). doi: 10.1029/2011JA017154 ADSGoogle Scholar
  344. V.A. Sergeev, V. Angelopoulos, R. Nakamura, Recent advances in understanding substorm dynamics. Geophys. Res. Lett. 39, L05101 (2012b). doi: 10.1029/2012GL050859 ADSGoogle Scholar
  345. S. Sharma, R. Nakamura, A. Runov, E.E. Grigorenko, H. Hasegawa, M. Hoshino, P. Louarn, C.J. Owen, A. Peturkovich, J.-A. Sauvaud, V.S. Semenov, V.A. Sergeev, J.A. Slavin, B.U.O. Sonnerup, L.M. Zelenyi, G. Fruit, S. Haaland, H. Malova, K. Snekvik, Transient and localized processes in the magnetotail: a review. Ann. Geophys. 26, 955–1006 (2008) ADSGoogle Scholar
  346. J.K. Shi, Z.W. Cheng, T.L. Zhang, M. Dunlop, Z.X. Liu, K. Torkar, A. Fazakerley, E. Lucek, H. Rème, I. Dandouras, A.T.Y. Lui, Z.Y. Pu, A.P. Walsh, M. Volwerk, A.D. Lahiff, M.G.G.T. Taylor, A. Grocott, L.M. Kistler, M. Lester, C. Mouikis, C. Shen, South-north asymmetry of field-aligned currents in the magnetotail observed by Cluster. J. Geophys. Res. 115(A14), A07228 (2010). doi: 10.1029/2009JA014446 ADSGoogle Scholar
  347. J.H. Shue, J.K. Chao, H.C. Fu, C.T. Russell, P. Song, K.K. Khurana, H.J. Singer, A new functional form to study the solar wind control of the magnetopause size and shape. J. Geophys. Res. 102(A5), 9497–9511 (1997) ADSGoogle Scholar
  348. D.G. Sibeck, G.L. Siscoe, J.A. Slavin, E.J. Smith, S.J. Bame, F.L. Scarf, Magnetotail flux ropes. Geophys. Res. Lett. 11, 1090 (1984) ADSGoogle Scholar
  349. D.G. Sibeck, R.E. Lopez, E.C. Roelof, Solar wind control of the magnetopause shape, location, and motion. J. Geophys. Res. 96(A4), 5489–5495 (1991). doi: 10.1029/90JA02464 ADSGoogle Scholar
  350. S. Simon, A. Wennmacher, F.M. Neubauer, C.L. Bertucci, H. Kriegel, J. Saur, C.T. Russell, M.K. Dougherty, Titan’s highly dynamic magnetic environment: a systematic survey of Cassini magnetometer observations from flybys TA-T62. Planet. Space Sci. 58, 1230–1251 (2010). doi: 10.1016/j.pss.2010.04.021 ADSGoogle Scholar
  351. G. Siscoe, L. Christopher, Variations in the solar wind stand-off distance at Mercury. Geophys. Res. Lett. 2, 158 (1975) ADSGoogle Scholar
  352. G.L. Siscoe, T.S. Huang, Polar cap inflation and deflation. J. Geophys. Res. 90, 543–547 (1985). doi: 10.1029/JA090iA01p00543 ADSGoogle Scholar
  353. G.L. Siscoe, N.F. Ness, C.M. Yeates, Substorms on Mercury? J. Geophys. Res. 80(31), 4359–4363 (1975). doi: 10.1029/JA080i031p04359 ADSGoogle Scholar
  354. G.L. Siscoe, N.U. Crooker, K.D. Siebert, Transpolar potential saturation: roles of region 1 current system and solar wind ram pressure. J. Geophys. Res. 107(A10), 1321 (2002). doi: 10.1029/2001JA009176 Google Scholar
  355. G. Siscoe, J. Raeder, A.J. Ridley, Transpolar potential saturation models compared. J. Geophys. Res. 109, A09203 (2004). doi: 10.1029/2003JA010318 ADSGoogle Scholar
  356. M.I. Sitnov, L.M. Zelenyi, H.V. Malova, A.S. Sharma, Thin current sheet embedded within a thicker plasma sheet: self-consistent kinetic theory. J. Geophys. Res. 105(A6), 13029–13043 (2000). doi: 10.1029/1999JA000431 ADSGoogle Scholar
  357. M.I. Sitnov, P.N. Guzdar, M. Swisdak, On the formation of a plasma bubble. Geophys. Res. Lett. 32, L16103 (2005). doi: 10.1029/2005GL023585 ADSGoogle Scholar
  358. M.I. Sitnov, M. Swisdak, A.V. Divin, Dipolarization fronts as a signature of transient reconnection in the magnetotail. J. Geophys. Res. 114(A13), A04202 (2009). doi: 10.1029/2008JA013980 ADSGoogle Scholar
  359. J.A. Slavin, Mercury’s magnetosphere, comparative magnetospheres. Adv. Space Res. 33(11), 1859–1874 (2004), ed. by X. Blanco-Cano, C.T. Russell ADSGoogle Scholar
  360. J.A. Slavin, B.T. Tsurutani, E.J. Smith, D.E. Jones, D.G. Sibeck, Average configuration of the distant (<220 R e) magnetotail: initial ISEE-3 magnetic field results. Geophys. Res. Lett. 10(10), 973–976 (1983). doi: 10.1029/GL010i010p00973 ADSGoogle Scholar
  361. J.A. Slavin, E.J. Smith, B.T. Thomas, Large scale temporal and radial gradients in the IMF: Helios 1, 2, ISEE-3, and Pioneer 10, 11. Geophys. Res. Lett. 11, 279 (1984a) ADSGoogle Scholar
  362. J.A. Slavin, E.J. Smith, B.T. Tsurutani, D.G. Sibeck, H.J. Singer, D.N. Baker, J.T. Gosling, E.W. Hones Jr., F.L. Scarf, Substorm-associated traveling compression regions in the distant tail: ISEE 3 geotail observations. Geophys. Res. Lett. 11, 657 (1984b) ADSGoogle Scholar
  363. J.A. Slavin, E.J. Smith, J.R. Spreiter, S.S. Stahara, Solar wind flow about the outer planets: gas dynamic modeling of the Jupiter and Saturn bow shocks. J. Geophys. Res. 90(A7), 6275–6286 (1985a) ADSGoogle Scholar
  364. J.A. Slavin, E.J. Smith, D.G. Sibeck, D.N. Baker, R.D. Zwickl, S.-I. Akasofu, An ISEE-3 study of average and substorm conditions in the distant magnetotail. J. Geophys. Res. 90, 10875 (1985b) ADSGoogle Scholar
  365. J.A. Slavin et al., CDAW-8 observations of plasmoid signatures in the geomagnetic tail: an assessment. J. Geophys. Res. 94, 15153 (1989) ADSGoogle Scholar
  366. J.A. Slavin, M.F. Smith, E.L. Mazur, D.N. Baker, E.W. Hones Jr., T. Iyemori, E.W. Greenstadt, ISEE 3 observations of traveling compression regions in the Earth’s magnetotail. J. Geophys. Res. 98(A9), 15425–15446 (1993). doi: 10.1029/93JA01467 ADSGoogle Scholar
  367. J.A. Slavin, C.J. Owen, M.M. Kuznetsova, M. Hesse, ISEE 3 observations of plasmoids with flux rope magnetic topologies. Geophys. Res. Lett. 22(15), 2061–2064 (1995) ADSGoogle Scholar
  368. J.A. Slavin, R.P. Lepping, J. Gjerloev, D.H. Fairfield, M. Hesse, C.J. Owen, M.B. Moldwin, T. Nagai, A. Ieda, T. Mukai, Geotail observations of magnetic flux ropes in the plasma sheet. J. Geophys. Res. 108(A1), 1015 (2003). doi: 10.1029/2002JA009557 Google Scholar
  369. J.A. Slavin, E.I. Tanskanen, M. Hesse, C.J. Owen, M.W. Dunlop, S. Imber, E.A. Lucek, A. Balogh, K.-H. Glassmeier, Cluster observations of traveling compression regions in the near-tail. J. Geophys. Res. 110, A06207 (2005). doi: 10.1029/2004JA010878 ADSGoogle Scholar
  370. J.A. Slavin, S.M. Krimigis, M.H. Acuña, B.J. Anderson, D.N. Baker, P.L. Koehn, H. Korth, S. Livi, B.H. Mauk, S.C. Solomon, T.H. Zurbuchen, MESSENGER: exploring Mercury’s magnetosphere. Space. Sci. Rev. (2007). doi: 10.1007/s11214-007-9154-x Google Scholar
  371. J.A. Slavin, M.H. Acuna, B.J. Anderson, D.N. Baker, M. Benna, G. Gloeckler, R.E. Gold, G.C. Ho, R.M. Killen, H. Korth, S.M. Krimigis, R.L. McNutt Jr., L.R. Nittler, J.M. Slavin et al., MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere. Science 324, 606–610 (2009). doi: 10.1126/science.1172011 ADSGoogle Scholar
  372. J.A. Slavin et al., MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail. Science 329, 665–668 (2010). doi: 10.1126/science.1188067 ADSGoogle Scholar
  373. J.A. Slavin et al., MESSENGER and Mariner 10 flyby observations of magnetotail structure and dynamics at Mercury. J. Geophys. Res. 117, A01215 (2012a). doi: 10.1029/2011JA016900 ADSGoogle Scholar
  374. J.A. Slavin, S.M. Imber, G.A. DiBraccio, T. Sundberg, S.A. Boardsen, B.J. Anderson, H. Korth, D.N. Baker, R.L. McNutt, S.C. Solomon, MESSENGER observations of magnetotail dynamics at Mercury. Geophys. Res. Abstr. 14, EGU2012-3817-3 (2012b) Google Scholar
  375. E.J. Smith, Radial gradients in the interplanetary magnetic field between 1.0 and 4.3 AU: Pioneer 10, in Solar Wind Three, ed. by C.T. Russell (University of California Press, Los Angeles, 1974) Google Scholar
  376. K. Snekvik, S. Haaland, N. Østgaard, H. Hasegawa, R. Nakamura, T. Takada, L. Juusola, O. Amm, F. Pitout, H. Rème, B. Klecker, E.A. Lucek, Cluster observations of a field aligned current at the dawn flank of a bursty bulk flow. Ann. Geophys. 25(6), 1405–1415 (2007). doi: 10.5194/angeo-25-1405-2007 ADSGoogle Scholar
  377. K. Snekvik, E. Tanskanen, N. Østgaard, L. Juusola, K. Laundal, E.I. Gordeev, A.L. Borg, Changes in the magnetotail configuration before near-Earth reconnection. J. Geophys. Res. 117, A02219 (2012). doi: 10.1029/2011JA017040 ADSGoogle Scholar
  378. S.C. Solomon et al., The MESSENGER mission to Mercury: scientific objectives and implementation. Planet. Space Sci. 49, 1445–1465 (2001). doi: 10.1016/S0032-0633(01)00085-X ADSGoogle Scholar
  379. D.J. Southwood, M.G. Kivelson, Magnetospheric interchange instability. J. Geophys. Res. 92(A1), 109–116 (1987). doi: 10.1029/JA092iA01p00109 ADSGoogle Scholar
  380. D.J. Southwood, M.G. Kivelson, Magnetospheric interchange motions. J. Geophys. Res. 94(A1), 299–308 (1989). doi: 10.1029/JA094iA01p00299 ADSGoogle Scholar
  381. T.W. Speiser, Particle trajectories in model current sheets: 1. Analytical solutions. J. Geophys. Res. 70, 4219–4226 (1965) ADSGoogle Scholar
  382. T.S. Stallard, S. Miller, S.W.H. Cowley, E.J. Bunce, Jupiter’s polar ionospheric flows: measured intensity and velocity variations poleward of the main auroral oval. Geophys. Res. Lett. 30(5), 1221 (2003). doi: 10.1029/2002GL016031 ADSGoogle Scholar
  383. Š. Štverák, M. Maksimovic, P.M. Trávníček, E. Marsch, A.N. Fazakerley, E.E. Scime, Radial evolution of nonthermal electron populations in the low-latitude solar wind: Helios, Cluster, and Ulysses observations. J. Geophys. Res. 114, A05104 (2009). doi: 10.1029/2008JA013883 ADSGoogle Scholar
  384. T. Sundberg, S.A. Boardsen, J.A. Slavin, B.J. Anderson, H. Korth, T.H. Zurbuchen, J.M. Raines, S.C. Solomon, MESSENGER orbital observations of large-amplitude Kelvin-Helmholtz waves at Mercury’s magnetopause. J. Geophys. Res. 117, A04216 (2012a). doi: 10.1029/2011JA017268 ADSGoogle Scholar
  385. T. Sundberg et al., MESSENGER observations of dipolarization events in Mercury’s magnetotail. J. Geophys. Res. 117, A00M03 (2012b). doi: 10.1029/2012JA017756 ADSGoogle Scholar
  386. W.-L. Teh, R. Nakamura, H. Karimabadi, W. Baumjohann, T.L. Zhang, Correlation of core field polarity of magnetotail flux ropes with the IMF B y: reconnection guide field dependency. J. Geophys. Res. 119, 2933–2944 (2014). doi: 10.1002/2013JA019454 Google Scholar
  387. N. Thomas, F. Bagenal, T.W. Hill, J.K. Wilson, The Io neutral clouds and plasma torus, in Jupiter: Planet, Satellites, Magnetosphere, ed. by Bagenal, Dowling, McKinnon (Cambridge University Press, Cambridge, 2004) Google Scholar
  388. M.F. Thomsen, R.J. Wilson, R.L. Tokar, D.B. Reisenfeld, C.M. Jackman, Cassini/CAPS observations of duskside tail dynamics at Saturn. J. Geophys. Res. 118, 5767–5781 (2013). doi: 10.1002/jgra.50552 Google Scholar
  389. P.M. Travnicek et al., Mercury’s magnetosphere-solar wind interaction for northward and southward interplanetary magnetic field: hybrid simulation results. Icarus 209(1), 11–22 (2010). doi: 10.1016/j.icarus.2010.01.008 ADSGoogle Scholar
  390. N.A. Tsyganenko, D.H. Fairfield, Global shape of the magnetotail current sheet as derived from geotail and polar data. J. Geophys. Res. 109, A03218 (2004). doi: 10.1029/2003JA010062 ADSGoogle Scholar
  391. V.M. Vasyliunas, Plasma distribution and flow, in Physics of the Jovian Magnetosphere, ed. by A.J. Dessler (Cambridge Univ. Press, Cambridge, 1983), pp. 395–453 Google Scholar
  392. M.F. Vogt, M.G. Kivelson, K.K. Khurana, S.P. Joy, R.J. Walker, Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations. J. Geophys. Res. 115, A06219 (2010). doi: 10.1029/2009JA015098 ADSGoogle Scholar
  393. M.F. Vogt, M.G. Kivelson, K.K. Khurana, R.J. Walker, B. Bonfond, D. Grodent, A. Radioti, Improved mapping of Jupiter’s auroral features to magnetospheric sources. J. Geophys. Res. 116, A03220 (2011). doi: 10.1029/2010JA016148 ADSGoogle Scholar
  394. M.F. Vogt, C.M. Jackman, J.A. Slavin, E.J. Bunce, S.W.H. Cowley, M.G. Kivelson, K.K. Khurana, Structure and statistical properties of plasmoids in Jupiter’s magnetotail. J. Geophys. Res. 119, 821–843 (2014). doi: 10.1002/2013JA019393 Google Scholar
  395. M. Volwerk, J. Berchem, Y.V. Bogdanova, O.D. Constantinescu, M.W. Dunlop, J.P. Eastwood, P. Escoubet, A.N. Fazakerley, H. Frey, H. Hasegawa, B. Lavraud, E.V. Panov, C. Shen, J.K. Shi, M.G.G.T. Taylor, J. Wang, J.A. Wild, Q.H. Zhang, O. Amm, J.M. Weygand, Interplanetary magnetic field rotations followed from L1 to the ground: the response of the Earth’s magnetosphere as seen by multi-spacecraft and ground-based observations. Ann. Geophys. 29, 1549–1569 (2011) ADSGoogle Scholar
  396. M. Volwerk, N. André, C.S. Arridge, C.M. Jackman, X. Jia, S.E. Milan, A. Radioti, M.F. Vogt, A.P. Walsh, R. Nakamura, A. Masters, C. Forsyth, Comparative magnetotail flapping: an overview of selected events at Earth, Jupiter and Saturn. Ann. Geophys. 31, 817–833 (2013). doi: 10.5194/angeo-31-817-2013 ADSGoogle Scholar
  397. G.R. Voots, D.A. Gurnett, S.-I. Akasofu, Auroral kilometric radiation as an indicator of auroral magnetic disturbances. J. Geophys. Res. 82, 2259–2266 (1977) ADSGoogle Scholar
  398. A.P. Walsh, C. Forsyth, Cluster observations of plasma bubbles, BBFs and their wakes, in The Dynamic Magnetosphere, ed. by W. Liu, M. Fujimoto. IAGA Special Sopron Book Series, vol. 3 (Springer, Dordrecht, 2011), pp. 117–124. doi: 10.1007/978-94-007-0501-2_6 Google Scholar
  399. A.P. Walsh, A.N. Fazakerley, A.D. Lahiff, M. Volwerk, A. Grocott, M. Dunlop, T. Lui, L. Kistler, M. Lester, C. Mouikis, Z. Pu, C. Shen, J. Shi, M.G. Taylor, E. Lucek, T.L. Zhang, I. Dandouras, Cluster and Double Star multipoint observations of a plasma bubble. Ann. Geophys. 27, 725–743 (2009). doi: 10.5194/angeo-27-725-2009 ADSGoogle Scholar
  400. A.P. Walsh, A.N. Fazakerley, C. Forsyth, C.J. Owen, M.G.G.T. Taylor, I.J. Rae, Sources of electron pitch angle anisotropy in the magnetotail plasma sheet. J. Geophys. Res. 118 (2013a). doi: 10.1002/jgra.50553
  401. A.P. Walsh, C.S. Arridge, A. Masters, G.R. Lewis, A.N. Fazakerley, G.H. Jones, C.J. Owen, A.J. Coates, An indication of the existence of a solar wind strahl at 10 AU. Geophys. Res. Lett. 40, 2495–2499 (2013b). doi: 10.1002/grl.50529 ADSGoogle Scholar
  402. Y.C. Wang, J. Mueller, U. Motschmann, W.H. Ip, A hybrid simulation of Mercury’s magnetosphere for the MESSENGER encounters in year 2008. Icarus 209(1), 46–52 (2010). doi: 10.1016/j.icarus.2010.05.020 ADSGoogle Scholar
  403. H. Wiechen, K. Schindler, Quasi-static theory of the Earth’s magnetotail, including the far tail. J. Geophys. Res. 93, 5922 (1988) ADSGoogle Scholar
  404. S. Wing, J.R. Johnson, P.T. Newell, C.-I. Meng, Dawn-dusk asymmetries, ion spectra, and sources in the northward interplanetary magnetic field plasma sheet. J. Geophys. Res. 110, A08205 (2005). doi: 10.1029/2005JA011086 ADSGoogle Scholar
  405. R.M. Winglee, E.M. Harnett, A. Kidder, D. Snowden, Supplying the Io plasma torus: local versus extended plasma sources, Fall AGU Abstract SM11C-03, 2009 Google Scholar
  406. J.D. Winningham, W.J. Heikkila, Polar cap auroral electron fluxes observed with Isis 1. J. Geophys. Res. 79, 949–957 (1974). doi: 10.1029/JA079i007p00949 ADSGoogle Scholar
  407. R.M. Winslow, B.J. Anderson, C.L. Johnson, J.A. Slavin, H. Korth, M.E. Purucker, D.N. Baker, S.C. Solomon, Mercury’s magnetopause and bow shock from MESSENGER magnetometer observations. J. Geophys. Res. 118, 2213–2227 (2013). doi: 10.1002/jgra.50237 Google Scholar
  408. J. Woch, N. Krupp, A. Lagg, Particle bursts in the Jovian magnetosphere: evidence for a near-Jupiter neutral line. Geophys. Res. Lett. 29(7), 1138 (2002). doi: 10.1029/2001GL014080 ADSGoogle Scholar
  409. R.A. Wolf, Y. Wan, X. Xing, J.-C. Zhang, S. Sazykin, Entropy and plasma sheet transport. J. Geophys. Res. 114(A13), A00D05 (2009). doi: 10.1029/2009JA014044 ADSGoogle Scholar
  410. R.A. Wolf, C.X. Chen, F.R. Toffoletto, Thin filament simulations for Earth’s plasma sheet: interchange oscillations. J. Geophys. Res. 117(A16), A02215 (2012a). doi: 10.1029/2011JA016971 ADSGoogle Scholar
  411. R.A. Wolf, C.X. Chen, F.R. Toffoletto, Thin filament simulations for Earth’s plasma sheet: tests of validity of the quasi-static convection approximation. J. Geophys. Res. 117(A16), A02216 (2012b). doi: 10.1029/2011JA016972 ADSGoogle Scholar
  412. C.S. Wu, L.C. Lee, A theory of the terrestrial kilometric radiations. Astrophys. J. 230, 621–626 (1979) ADSGoogle Scholar
  413. J.R. Wygant, R.B. Torbert, F.S. Mozer, Comparison of S3-3 polar cap potential with the interplanetary magnetic field and models of magnetospheric reconnection. J. Geophys. Res. 88, 5727–5735 (1983) ADSGoogle Scholar
  414. J.N. Yates, N. Achilleos, P. Guio, Response of the Jovian thermosphere to a transient ‘pulse’ in solar wind pressure. Planet. Space Sci. 91, 27–44 (2014). doi: 10.1016/j.pss.2013.11.009 ADSGoogle Scholar
  415. D. Young, Ion and neutral mass spectrometry, in Encyclopedia of Planetary Sciences, ed. by J.A. Shirley, R.W. Fairbridge (Van Nostrand Reinhold, New York, 1997a) Google Scholar
  416. D. Young, Space plasma particle instrumentation and the new paradigm: faster, cheaper, better, in Measurement Techniques in Space Plasmas: Particles, ed. by D.T. Young, R.F. Pfaff, J.E. Borovsky. AGU Monograph, vol. 102 (American Geophysical Union, Washington, 1997b) Google Scholar
  417. P. Zarka, Auroral radio emissions at the outer planets: observations and theories. J. Geophys. Res. 103(E9), 20159–20194 (1998). doi: 10.1029/98JE01323 ADSGoogle Scholar
  418. P. Zarka, L. Lamy, B. Cecconi, R. Prangé, H.O. Rucker, Modulation of Saturn’s radio clock by solar wind speed. Nature 450, 265–267 (2007) ADSGoogle Scholar
  419. L.M. Zelenyi, H.V. Malova, V.Y. Popov, D. Delcourt, A.S. Sharma, Nonlinear equilibrium structure of thin currents sheets: influence of electron pressure anisotropy. Nonlinear Process. Geophys. 11, 579–587 (2004) ADSGoogle Scholar
  420. E. Zesta, Y. Shi, E. Donovan, E. Spanswick, L.R. Lyons, V. Angelopoulos, J.P. McFadden, C.W. Carlson, H.-U. Auster, S. Mende, M.A. McCready, C.J. Heinselman, E. Kendall, R. Doe, Ionospheric convection signatures of tail fast flows during substorms and poleward boundary intensifications (PBI). Geophys. Res. Lett. 38, L08105 (2011). doi: 10.1029/2011GL046758 ADSGoogle Scholar
  421. T.L. Zhang, W. Baumjohann, R. Nakamura, A. Balogh, K.-H. Glassmeier, A wavy twisted neutral sheet observed by Cluster. Geophys. Res. Lett. 29, 1899 (2002). doi: 10.1029/2002GL015544 ADSGoogle Scholar
  422. T.L. Zhang, W. Baumjohann, R. Nakamura, A. Runov, M. Volwerk, Y. Asano, Z. Vörös, H.-U. Eichelberger, V. Sergeev, J.K. Shi, A. Balogh, A statistical survey of the magnetotail current sheet. Adv. Space Res. 38, 1834–1837 (2006) ADSGoogle Scholar
  423. M. Zhou et al., Observation of waves near lower hybrid frequency in the reconnection region with thin current sheet. J. Geophys. Res. 114, A02216 (2009). doi: 10.1029/2008JA013427 ADSGoogle Scholar
  424. X.-Z. Zhou, V. Angelopoulos, V.A. Sergeev, A. Runov, Accelerated ions ahead of earthward propagating dipolarization fronts. J. Geophys. Res. 115(A14), A00I03 (2010). doi: 10.1029/2010JA015481 ADSGoogle Scholar
  425. X.-Z. Zhou, V. Angelopoulos, V.A. Sergeev, A. Runov, On the nature of precursor flows upstream of advancing dipolarization fronts. J. Geophys. Res. 116(A15), A03222 (2011). doi: 10.1029/2010JA016165 ADSGoogle Scholar
  426. X.-Z. Zhou, V. Angelopoulos, A. Runov, J. Liu, Y.S. Ge, Emergence of the active magnetotail plasma sheet boundary from transient, localized ion acceleration. J. Geophys. Res. 117, A10216 (2012). doi: 10.1029/2012JA018171 ADSGoogle Scholar
  427. B. Zieger, K.C. Hansen, T.I. Gombosi, D.L. DeZeeuw, Periodic plasma escape from the mass-loaded Kronian magnetosphere. J. Geophys. Res. 115 (2010). doi: 10.1029/2009JA014951
  428. T.H. Zurbuchen, J.M. Raines, G. Gloeckler, S.M. Krimigis, J.A. Slavin, P.L. Koehn, R.M. Killen, A.L. Sprague, R.L. McNutt Jr., S.C. Solomon, MESSENGER observations of the compositions of Mercury’s ionized exosphere and plasma environment. Science 321, 90–92 (2008) ADSGoogle Scholar
  429. T.H. Zurbuchen, J.M. Raines, J.A. Slavin, D.J. Gershman, J.A. Gilbert, G. Gloeckler, B.J. Anderson, D.N. Baker, H. Korth, S.M. Krimigis, M. Sarantos, D. Schriver, R.L. McNutt Jr., S.C. Solomon, MESSENGER observations of the spatial distribution of planetary ions near Mercury. Science 30(333), 1862–1865 (2011). doi: 10.1126/science.1211302 ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • C. M. Jackman
    • 1
    • 2
    • 3
    Email author
  • C. S. Arridge
    • 2
    • 4
  • N. André
    • 5
    • 6
  • F. Bagenal
    • 7
  • J. Birn
    • 8
    • 9
  • M. P. Freeman
    • 10
  • X. Jia
    • 11
  • A. Kidder
    • 12
  • S. E. Milan
    • 13
  • A. Radioti
    • 14
  • J. A. Slavin
    • 11
  • M. F. Vogt
    • 13
    • 15
  • M. Volwerk
    • 16
  • A. P. Walsh
    • 17
  1. 1.Department of Physics and AstronomyUniversity College LondonLondonUK
  2. 2.Centre for Planetary Sciences at UCL/BirkbeckLondonUK
  3. 3.Department of Physics and AstronomyUniversity of SouthamptonSouthamptonUK
  4. 4.Mullard Space Science LaboratoryUniversity College LondonHolmbury St. MaryUK
  5. 5.Institut de Recherche en Astrophysique et PlanétologieUniversité Paul SabatierToulouseFrance
  6. 6.CNRSInstitut de Recherche en Astrophysique et PlanétologieToulouseFrance
  7. 7.Laboratory for Atmospheric and Space PhysicsUniversity of Colorado at BoulderBoulderUSA
  8. 8.Space Science InstituteBoulderUSA
  9. 9.Los Alamos National LaboratoryLos AlamosUSA
  10. 10.British Antarctic SurveyCambridgeUK
  11. 11.Dept. of Atmospheric, Oceanic and Space SciencesUniversity of MichiganAnn ArborUSA
  12. 12.Department of Earth and Space SciencesUniversity of WashingtonSeattleUSA
  13. 13.Department of Physics and AstronomyUniversity of LeicesterLeicesterUK
  14. 14.Laboratoire de Physique Atmospherique et Planetaire, Institut d’Astrophysique et de GeophysiqueUniversite de LiegeLiegeBelgium
  15. 15.Center for Space PhysicsBoston UniversityBostonUSA
  16. 16.Space Research InstituteAustrian Academy of SciencesGrazAustria
  17. 17.ESTECESANoordwiik ZHThe Netherlands

Personalised recommendations