Space Science Reviews

, Volume 195, Issue 1–4, pp 423–456 | Cite as

The Aeronomy of Mars: Characterization by MAVEN of the Upper Atmosphere Reservoir That Regulates Volatile Escape

  • S. W. Bougher
  • T. E. Cravens
  • J. Grebowsky
  • J. Luhmann


The Mars thermosphere-ionosphere-exosphere (TIE) system constitutes the atmospheric reservoir (i.e. available cold and hot planetary neutral and thermal ion species) that regulates present day escape processes from the planet. The characterization of this TIE system, including its spatial and temporal (e.g., solar cycle, seasonal, diurnal, episodic) variability is needed to determine present day escape rates. Without knowledge of the physics and chemistry creating this TIE region and driving its variations, it is not possible to constrain either the short term or long term histories of atmosphere escape from Mars. MAVEN (Mars Atmosphere and Volatile Evolution Mission) will make both in-situ and remote measurements of the state variables of the Martian TIE system. A full characterization of the thermosphere (∼100–250 km) and ionosphere (∼100–400 km) structure (and its variability) will be conducted with the collection of spacecraft in-situ measurements that systematically span most local times and latitudes, over a regular sampling of Mars seasons, and throughout the bottom half of the solar cycle. Such sampling will far surpass that available from existing spacecraft and ground-based datasets. In addition, remote measurements will provide a systematic mapping of the composition and structure of Mars neutral upper atmosphere and coronae (e.g. H, C, N, O), as well as probe lower altitudes. Such a detailed characterization is a necessary first step toward answering MAVEN’s three main science questions (see Jakosky et al. 2014, this issue). This information will be used to determine present day escape rates from Mars, and provide an estimate of integrated loss to space throughout Mars history.


Mars Aeronomy Thermosphere Ionosphere MAVEN Mission 


  1. M. Angelats i Coll, F. Forget, M.A. López-Valverde et al., Upper atmosphere of Mars up to 120 km: Mars Global Surveyor data analysis with the LMD general circulation model. J. Geophys. Res. 109, E01011 (2004). doi: 10.1029/2003JE002163 ADSGoogle Scholar
  2. D.T. Baird, R. Tolson, S.W. Bougher, B. Steers, Zonal wind calculation from MGS Accelerometer and rate data. AIAA J. Spacecr. Rockets 44(6), 1180–1187 (2007) ADSCrossRefGoogle Scholar
  3. C.A. Barth, A.I.F. Stewart, S.W. Bougher et al., Aeronomy of the current martian atmosphere, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1992), pp. 1054–1089 Google Scholar
  4. J.-L. Bertaux, E. Chassefiere, V.G. Kurt, Vensu EUV measurements of hydrogen and helium from Venera 11 and Venera 12. Adv. Space Res. 5, 119–124 (1985) ADSCrossRefGoogle Scholar
  5. J.-L. Bertaux, F. Leblanc, S. Perrier et al., Nightglow in the upper atmosphere of Mars and implications for atmospheric transport. Science 307, 566–569 (2005a). doi: 10.1126/science.1106957 ADSCrossRefGoogle Scholar
  6. J.-L. Bertaux, F. Leblanc, O. Witasse et al., Discovery of an aurora on Mars. Nature 435, 790–794 (2005b) ADSCrossRefGoogle Scholar
  7. S.W. Bougher, Comparative thermospheres: Venus and Mars. Adv. Space Res. 15(4), 21–25 (1995) ADSCrossRefGoogle Scholar
  8. S.W. Bougher, Coupled MGCM-MTGCM Mars thermosphere simulations and resulting data products in support of the MAVEN mission. JPL/CDP report, pp. 1–9, 6 August 2012 (2012) Google Scholar
  9. S.W. Bougher, M.J. Alexander, H.G. Mayr, Upper atmosphere dynamics: global circulation and gravity waves, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (University of Arizona Press, Tucson, 1997), pp. 259–291 Google Scholar
  10. S.W. Bougher, G. Keating, R. Zurek et al., Mars global surveyor aerobraking: Atmospheric trends and model interpretation. Adv. Space Res. 23, 1887–1897 (1999a). doi: 10.1016/S0273-1177(99)00272-0 ADSCrossRefGoogle Scholar
  11. S.W. Bougher, S. Engel, R.G. Roble, B. Foster, Comparative terrestrial planet thermospheres 2. Solar cycle variation of global structure and winds at equinox. J. Geophys. Res. 104, 16591–16611 (1999b). doi: 10.1029/1998JE001019 ADSCrossRefGoogle Scholar
  12. S.W. Bougher, S. Engel, R.G. Roble, B. Foster, Comparative terrestrial planet thermospheres 3. Solar cycle variation of global structure and winds at solstices. J. Geophys. Res. 105, 17669–17692 (2000). doi: 10.1029/1999JE001232 ADSCrossRefGoogle Scholar
  13. S.W. Bougher, R.G. Roble, T.J. Fuller-Rowell, Simulations of the upper atmospheres of the terrestrial planets, in Atmospheres in the Solar System, Comparative Aeronomy, ed. by M. Mendillo, A.F. Nagy, J.H. Waite Jr. AGU Monograph, vol. 130 (American Geophysical Union, Washington, 2002), pp. 261–288 CrossRefGoogle Scholar
  14. S.W. Bougher, S. Engel, D.P. Hinson, J.R. Murphy, MGS Radio Science electron density profiles: Interannual variability and implications for the martian neutral atmosphere. J. Geophys. Res. 109, E03010 (2004). doi: 10.1029/2003JE002154 ADSGoogle Scholar
  15. S.W. Bougher, J.M. Bell, J.R. Murphy et al., Polar warming in the Mars thermosphere: Seasonal variations owing to changing isolation and dust distributions. Geophys. Res. Lett. 33, L02203 (2006). doi: 10.1029/2005GL024059 ADSCrossRefGoogle Scholar
  16. S.W. Bougher, P.-L. Blelly, M. Combi et al., Neutral upper atmosphere and ionosphere modeling. Space Sci. Rev. 139, 107–141 (2008). doi: 10.1007/s11214-008-9401-9 ADSCrossRefGoogle Scholar
  17. S.W. Bougher, A. Valeille, M.R. Combi, V. Tenishev, Solar cycle and seasonal variability of the martian thermosphere-ionosphere and associated impacts upon atmospheric escape. SAE Technical Paper #2009-01-2386, SAE International (2009a) Google Scholar
  18. S.W. Bougher, T.M. McDunn, K.A. Zoldak, J.M. Forbes, Solar cycle variability of Mars dayside exospheric temperatures: Model evaluation of underlying thermal balances. Geophys. Res. Lett. 36, L05201 (2009b). doi: 10.1029/2008GL036376 ADSCrossRefGoogle Scholar
  19. S.W. Bougher, A. Ridley, D. Pawlowski et al., Development and validation of the ground-to-exosphere Mars GITM code: solar cycle and seasonal variations of the upper atmosphere, in The Fourth International Workshop on the Mars Atmosphere: Modeling and Observations, Paris, France (2011a) Google Scholar
  20. S.W. Bougher, D.J. Pawlowski, J.R. Murphy, Toward an understanding of the time-dependent responses of the martian upper atmosphere to dust storm events, in 2011 Fall AGU Meeting, San Francisco, California (2011b) Google Scholar
  21. S.W. Bougher, D.A. Brain, J.L. Fox, F. Gonzalez-Galindo, C. Simon-Wedlund, P.G. Withers, Upper neutral atmosphere and ionosphere, in Mars Book II (Cambridge University Press, Cambridge, 2014), accepted, Chap. 14 Google Scholar
  22. D.A. Brain, S. Barabash, S.W. Bougher, F. Duru, B.M. Jakosky, R. Modolo, Solar wind interaction and atmospheric escape, in Mars Book II (Cambridge University Press, Cambridge, 2014), accepted, Chap. 15 Google Scholar
  23. P.C. Chamberlain, T.N. Woods, F.G. Eparvier, Flare irradiance spectral model (FISM): Daily component algorithms and results. Space Weather 6(S05), 001 (2008). doi: 10.1029/2007SW000372 Google Scholar
  24. S. Chapman, The absorption and dissociation of ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth. Proc. Phys. Soc. 43, 26–45 (1931) ADSCrossRefzbMATHGoogle Scholar
  25. E. Chassefiere, F. Leblanc, Mars atmospheric escape and evolution: Interaction with the solar wind. Planet. Space Sci. 52, 1039–1058 (2004) ADSCrossRefGoogle Scholar
  26. J.Y. Chaufray, R. Modolo, F. Leblanc, G. Chanteur, R.E. Johnson, J.G. Luhmann, Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space. J. Geophys. Res. 112, E09009 (2007). doi: 10.1029/2007JE002915 ADSGoogle Scholar
  27. J.Y. Chaufray, F. Leblanc, E. Quémerais, J.L. Bertaux, Martian oxygen density at the exobase deduced from O I 130.4-nm observations by spectroscopy for the investigation of the characteristics of the atmosphere of Mars on Mars Express. J. Geophys. Res. 114, E02006 (2009) ADSGoogle Scholar
  28. F. Cipriani, F. Leblanc, J.J. Berthelier, Martian corona: Nonthermal sources of hot heavy species. J. Geophys. Res. 112, E07001 (2007). doi: 10.1029/2006JE002818 ADSGoogle Scholar
  29. J.E.P. Connerney et al., The Magnetometer (MAG) (2014).
  30. D.H. Crider, D.A. Brain, M.A. Acuña, D. Vignes, C. Mazelle, C. Bertucci, Mars global surveyor observations of solar wind magnetic field draping around Mars. Space Sci. Rev. 111(1), 203–221 (2004). doi: 10.1023/B:SPAC.0000032714.66124.4e ADSCrossRefGoogle Scholar
  31. Z. Dobe, A.F. Nagy, J.L. Fox, A theoretical study concerning the solar cycle dependence of the nightside ionosphere of Venus. J. Geophys. Res. 100, 14507–14513 (1995) ADSCrossRefGoogle Scholar
  32. C. Dong, S.W. Bougher, Y. Ma, G. Toth, A.F. Nagy, D. Najib, Solar wind interaction with Mars upper atmosphere: Results from the one-way coupling between the multi-fluid MHD model and the MTGCM model. Geophys. Res. Lett. 41, 1–8 (2014). doi: 10.1002/2014GL059515 CrossRefGoogle Scholar
  33. F. Duru, D.A. Gurnett, D.D. Morgan, R. Modolo, A.F. Nagy, D. Najib, Electron densities in the upper ionosphere of Mars from the excitation of electron plasma oscillations. J. Geophys. Res. 113, A07302 (2008). doi: 10.1029/2008JA013073 ADSGoogle Scholar
  34. F. Duru, D.A. Gurnett, R.A. Frahm, J.D. Winningham, D.D. Morgan, G.G. Howes, Steep transient density gradients in the Martian ionosphere similar to the ionopause at Venus. J. Geophys. Res. 114(A), 12310 (2009). doi: 10.1029/2009JA014711 CrossRefGoogle Scholar
  35. F. Duru, D.A. Gurnett, J.D. Winningham, R. Frahm, R. Modolo, A plasma flow velocity boundary at Mars from the disappearance of electron plasma oscillations. Icarus 206(1), 74–82 (2010). doi: 10.1016/j.icarus.2009.04.012 ADSCrossRefGoogle Scholar
  36. S.L. England, R.J. Lillis, On the nature of the variability of the Martian thermospheric mass density: Results from the electron reflectometry with Mars Global Surveyor. J. Geophys. Res. 117, E02008 (2012). doi: 10.1029/2011JE003998 ADSGoogle Scholar
  37. F.G. Eparvier et al., The extreme ultraviolet (EUV) monitor (2014).
  38. R.E. Ergun et al., The Langmuir probe and waves (LPW) instrument (2014).
  39. X. Fang, S.W. Bougher, et al., The importance of pickup oxygen ion precipitation to the Mars upper atmosphere under extreme solar wind conditions. Geophys. Res. Lett. 40 (2013). doi: 10.1029/grl.50415.2013
  40. P.D. Feldman et al., Rosetta-Alice observations of exospheric hydrogen and oxygen on Mars. Icarus 214, 394–399 (2011) ADSCrossRefGoogle Scholar
  41. M.O. Fillingim, L.M. Peticolas, R.J. Lillis et al., Model calculations of electron precipitation induced ionization patches on the nightside of Mars. Geophys. Res. Lett. 34, L12101 (2007). doi: 10.1029/2007GL029986 ADSCrossRefGoogle Scholar
  42. G. Fjeldbo, V.R. Eshleman, The atmosphere of Mars analyzed by integral inversion of the Mariner IV occultation data. Planet. Space Sci. 16, 1035–1059 (1968) ADSCrossRefGoogle Scholar
  43. J.M. Forbes, M.E. Hagan, Diurnal Kelvin wave in the atmosphere of Mars: Towards an understanding of “stationary” density structures observed by the MGS Accelerometer. Geophys. Res. Lett. 27, 21 (2000). doi: 10.1029/2000GL011850 ADSCrossRefGoogle Scholar
  44. J.M. Forbes, A.F.C. Bridger, S.W. Bougher et al., Nonmigrating tides in the thermosphere of Mars. J. Geophys. Res. 107, 5113 (2002). doi: 10.1029/2001JE001582 Google Scholar
  45. J.M. Forbes, F.G. Lemoine, S.L. Bruinsma et al., Solar flux variability of Mars’ exosphere densities and temperatures. Geophys. Res. Lett. 35, L01201 (2008). doi: 10.1029/2007GL031904 ADSGoogle Scholar
  46. F. Forget, F. Montmessin, J.-L. Bertaux et al., Density and temperatures of the upper martian atmosphere measured by stellar occultations with Mars Express SPICAM. J. Geophys. Res. 114, E01004 (2009). doi: 10.1029/2008JE003086 ADSGoogle Scholar
  47. J.L. Fox, Morphology of the dayside ionosphere of Mars: Implication for ion outflows. J. Geophys. Res. 114, E12005 (2009). doi: 10.1029/2009JE003432 ADSCrossRefGoogle Scholar
  48. J.L. Fox, A.B. Hać, Photochemical escape of oxygen from Mars: A comparison of the exobase approximation to a Monte Carlo method. Icarus 204, 527–544 (2009). doi: 10.1016/j.icarus.2009.07.005 ADSCrossRefGoogle Scholar
  49. J.L. Fox, A.B. Hać, Isotope fractionation in the photochemical escape of O from Mars. Icarus 208, 176–191 (2010). doi: 10.1016/j.icarus.2010.01.019 ADSCrossRefGoogle Scholar
  50. J.L. Fox, A.J. Kliore, Ionosphere: solar cycle variations, in Venus II: Geology, Geophysics, Atmosphere and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (University of Arizona Press, Tucson, 1997) Google Scholar
  51. J.L. Fox, J.F. Brannon, H.S. Porter, Upper limits to the nightside ionosphere of Mars. Geophys. Res. Lett. 20, 1339–1342 (1993) ADSCrossRefGoogle Scholar
  52. J.L. Fox, P. Zhou, S.W. Bougher, The thermosphere/ionosphere of Mars at high and low solar activities. Adv. Space Res. 17, (11)203–(11)218 (1996) ADSCrossRefGoogle Scholar
  53. M. Fränz, E. Dubinin, E. Nielsen et al., Transterminator ion flow in the martian ionosphere. Planet. Space Sci. 58, 1442–1454 (2010) ADSCrossRefGoogle Scholar
  54. T. Fuller-Rowell, S.C. Solomon, Flares, coronal mass ejections, and atmospheric responses, in Heliophysics—Space Storms and Radiation: Causes and Effects, ed. by C.J. Schrijver, G.L. Siscoe (Cambridge University Press, Cambridge, 2010), pp. 321–357 CrossRefGoogle Scholar
  55. F. González-Galindo, F. Forget, M.A. López-Valverde et al., A ground-to-exosphere martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures. J. Geophys. Res. 114, E04001 (2009). doi: 10.1029/2008JE003246 ADSGoogle Scholar
  56. G. Gronoff, C. Simon-Wedlund, C.J. Mertens et al., Computing uncertainties in ionosphere-airglow models. II. The martian airglow. J. Geophys. Res. 117, A05309 (2012). doi: 10.1029/2011JA017308 ADSGoogle Scholar
  57. D.A. Gurnett, R.L. Huff, D.D. Morgan et al., An overview of radar soundings of the martian ionosphere from the Mars Express spacecraft. Adv. Space Res. 41, 1335–1346 (2008) ADSCrossRefGoogle Scholar
  58. S.A. Haider, K.K. Mahajan, E. Kallio, Mars ionosphere: A review of experimental results and modeling studies. Rev. Geophys. 49, RG4001 (2011). doi: 10.1029/2011RG000357 ADSGoogle Scholar
  59. W.B. Hanson, G.P. Mantas, Viking electron temperature measurements—Evidence for a magnetic field in the martian ionosphere. J. Geophys. Res. 93, 7538–7544 (1988) ADSCrossRefGoogle Scholar
  60. W.B. Hanson, S. Sanatani, D.R. Zuccaro, The martian ionosphere as observed by the Viking retarding potential analyzers. J. Geophys. Res. 82, 4351–4363 (1977) ADSCrossRefGoogle Scholar
  61. J.S. Halekas et al., The solar wind ion analyzer for MAVEN. Space Sci. Rev. (2013, this issue). doi: 10.1007/s11214-013-0029-z
  62. D.P. Hinson, R.A. Simpson, J.D. Twicken et al., Initial results from radio occultation measurements with Mars Global Surveyor. J. Geophys. Res. 104, 26997–27012 (1999) ADSCrossRefGoogle Scholar
  63. R.R. Hodges, The rate of loss of water from Mars. Geophys. Res. Lett. 29(3), 1038 (2002). doi: 10.1029/2001GL013853 ADSCrossRefGoogle Scholar
  64. D.L. Huestis, T.G. Slanger, B.D. Sharpee, J.L. Fox, Chemical origins of the Mars ultraviolet dayglow. Faraday Discuss. 147, 307–322 (2010) ADSCrossRefGoogle Scholar
  65. B.M. Jakosky, MAVEN: A Mars Scout Phase A Concept Study Report. Version 2: No Cost Edited, 1–109 (2008) Google Scholar
  66. B.M. Jakosky et al., The MAVEN mission to Mars: exploring Mars’ climate history, in 6th Alfven Conference, Abstract, 7–11 July (UCL, London, 2014) Google Scholar
  67. W.T. Kasprzak, G.M. Keating, N.C. Hsu, A.I.F. Stewart, W.B. Colwell, S.W. Bougher, Solar activity behavior of the thermosphere, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (University of Arizona Press, Tucson, 1997), pp. 225–257 Google Scholar
  68. G.M. Keating, S.W. Bougher, R.W. Zurek et al., The structure of the upper atmosphere of Mars: In situ accelerometer measurements from Mars Global Surveyor. Science 279, 1672–1676 (1998) ADSCrossRefGoogle Scholar
  69. G.M. Keating, M. Theriot, R. Tolson et al., Brief review on the results obtained with the MGS and Mars Odyssey 2001 accelerometer experiments, in Mars Atmosphere: Modeling and Observations Workshop, Granada, Spain (2003) Google Scholar
  70. G.M. Keating, S.W. Bougher, M.E. Theriot et al., Atmospheric structure from Mars reconnaissance orbiter accelerometer measurements, in Proceedings of European Planetary Science Congress, Berlin, Germany (2006) Google Scholar
  71. G.M. Keating, S.W. Bougher, M.E. Theriot, R.H. Tolson, Properties of the Mars upper atmosphere derived from accelerometer measurements, in Proceedings of 37th COSPAR Scientific Assembly 2008 and 50th Anniversary, Montreal, Canada (2008) Google Scholar
  72. Y.H. Kim, S. Son, Y. Yi, J. Kim, A non-spherical model for the hot oxygen corona of Mars. J. Korean Astron. Soc. 34, 25–29 (2001) ADSGoogle Scholar
  73. A.J. Kliore, D.L. Cain, G. Fjeldbo et al., The atmosphere of Mars from Mariner 9 radio occultation measurements. Icarus 17, 484–516 (1972) ADSCrossRefGoogle Scholar
  74. V.A. Krasnopolsky, Solar activity variations of thermospheric temperatures on Mars and a problem of CO in the lower atmosphere. Icarus 207, 638–647 (2010) ADSCrossRefGoogle Scholar
  75. V.A. Krasnopolsky, P.D. Feldman, Far ultraviolet spectrum of Mars. Icarus 160, 86–94 (2002) ADSCrossRefGoogle Scholar
  76. M.A. Krestyanikova, V.I. Shematovitch, Stochastic models of hot planetary and satellite coronas: A photochemical source of hot oxygen in the upper atmosphere of Mars. Sol. Syst. Res. 39, 22–32 (2005) ADSCrossRefGoogle Scholar
  77. T.P. Larson et al., The solar energetic particle (SEP) instrument (2014).
  78. F. Leblanc, J.Y. Chaufray, J. Lilensten et al., Martian dayglow as seen by the SPICAM UV spectrograph on Mars Express. J. Geophys. Res. 111(9) (2006). doi: 10.1029/2005JE002664
  79. C. Lee et al., Thermal tides in the Martian middle atmosphere as seen by the Mars Climate Sounder. J. Geophys. Res. 114, E03005 (2009). doi: 10.1029/2008JE003285 ADSGoogle Scholar
  80. Y. Lee, M. Combi, V. Tenishev, S.W. Bougher, Hot carbon corona in Mars’ upper thermosphere and exosphere: 1. Mechanisms and structure of the hot corona for low solar activity at Equinox. J. Geophys. Res. (2014). doi: 10.1002/2013JE004552 Google Scholar
  81. R.J. Lillis, S.W. Bougher, F. González-Galindo et al., Four martian years of nightside upper thermospheric mass densities derived from electron reflectometry: Method extension and comparison with GCM simulations. J. Geophys. Res. 115, E07014 (2010). doi: 10.1029/2009JE003529 ADSGoogle Scholar
  82. R.J. Lillis et al., Photochemical escape of the Martian atmosphere: looking forward to MAVEN, in 6th Alfven Conference, Abstract, 7–11 July (UCL, London, 2014) Google Scholar
  83. J. Liu, M.I. Richardson, R.J. Wilson, An assessment of the global, seasonal, and interannual spacecraft record of Martian climate in the thermal infrared. J. Geophys. Res. 108(E8), 5089 (2003). doi: 10.1029/2002JE001921 CrossRefGoogle Scholar
  84. R. Lundin et al., A comet-like escape of ionospheric plasma from Mars. Geophys. Res. Lett. 35, L18203 (2008). doi: 10.1029/2008GL034811 ADSCrossRefGoogle Scholar
  85. Y. Ma, A.F. Nagy, Ion escape fluxes from Mars. Geophys. Res. Lett. 34, L08201 (2007). doi: 10.1029/2006GL029208 ADSCrossRefGoogle Scholar
  86. Y. Ma, A.F. Nagy, I.V. Sokolov, K.C. Hansen, Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars. J. Geophys. Res. 109, A07211 (2004). doi: 10.1029/2003JA010367 ADSGoogle Scholar
  87. Y.J. Ma, X. Fang, A.F. Nagy, C.T. Russell, G. Toth, Martian ionospheric responses to dynamic pressure enhancements in the solar wind. J. Geophys. Res. 119, 1272–1286 (2014). doi: 10.1002/2013JA019402 CrossRefGoogle Scholar
  88. P.R. Mahaffy et al., Space Sci. Rev. (2014, this issue). doi: 10.1007/s11214-014-0043-9
  89. M. Matta, P. Withers, M. Mendillo, The composition of Mars’ topside ionosphere: Effects of hydrogen. J. Geophys. Res. 118, 1–13 (2013). doi: 10.1002/jgra.50104 CrossRefGoogle Scholar
  90. W. McClintock et al., The imaging ultraviolet spectrograph (IUVS) (2014).
  91. T.L. McDunn, S.W. Bougher, J. Murphy et al., Simulating the density and thermal structure of the middle atmosphere (80–130 km) of Mars using the MGCM-MTGCM: A comparison with MEX/SPICAM observations. Icarus 206, 5–17 (2010) ADSCrossRefGoogle Scholar
  92. J. McFadden et al., The suprathermal and thermal ion composition (STATIC) instrument (2014).
  93. M. Mendillo, S. Smith, J. Wroten et al., Simultaneous ionospheric variability on Earth and Mars. J. Geophys. Res. 108, 1432 (2003). doi: 10.1029/2003JA009961 CrossRefGoogle Scholar
  94. M. Mendillo, P. Withers, D. Hinson et al., Effects of solar flares on the ionosphere of Mars. Science 311, 1135–1138 (2006) ADSCrossRefGoogle Scholar
  95. M. Mendillo, A.G. Marusiak, P. Withers, D. Morgan, D. Gurnett, A new semi-empirical model of the peak electron density of the martian ionosphere. Geophys. Res. Lett. 40, 5361–5365 (2013). doi: 10.1002/2013GL057631 ADSCrossRefGoogle Scholar
  96. D.L. Mitchell, R.P. Lin, H. Rème, D.H. Crider, P.A. Cloutier, J.E.P. Connerney, M.H. Acuña, N.F. Ness, Oxygen Auger electrons observed in Mars’ ionosphere. Geophys. Res. Lett. 27(1), 1871–1874 (2000). doi: 10.1029/1999GL010754 ADSCrossRefGoogle Scholar
  97. D.L. Mitchell, R.P. Lin, C. Mazelle et al., Probing Mars’ crustal magnetic field and ionosphere with the MGS electron reflectometer. J. Geophys. Res. 106, 23419–23428 (2001) ADSCrossRefGoogle Scholar
  98. D.G. Mitchell et al., The Solar Wind Electron Analyzer (SWEA) (2014).
  99. D.D. Morgan, D.A. Gurnett, D.L. Kirchner et al., Variation of the Martian ionospheric electron density from Mars Express radar soundings. J. Geophys. Res. 113, A09303 (2008). doi: 10.1029/2008JA013313 ADSGoogle Scholar
  100. Y. Moudden, J.M. Forbes, Effects of vertically propagating thermal tides on the mean structure and dynamics of Mars’ lower thermosphere. Geophys. Res. Lett. 35, L23805 (2008). doi: 10.1029/2008GL036086 ADSCrossRefGoogle Scholar
  101. Y. Moudden, J.M. Forbes, A new interpretation of Mars aerobraking variability: Planetary wave-tide interactions. J. Geophys. Res. 115, E09005 (2010). doi: 10.1029/2009JE003542 ADSGoogle Scholar
  102. I.C.F. Müeller-Wodarg, D.F. Strobel, J.I. Moses et al., Neutral atmospheres. Space Sci. Rev. 139 (2008). doi: 10.1007/s11214-008-9404-6
  103. A.F. Nagy, T.E. Cravens, Hot oxygen atoms in the upper atmospheres of Venus and Mars. Geophys. Res. Lett. 15(5), 433–435 (1988) ADSCrossRefGoogle Scholar
  104. A.F. Nagy, T.E. Cravens, J.H. Lee, A.I.F. Stewart, Hot oxygen atoms in the upper atmosphere of Venus. Geophys. Res. Lett. 8, 629–632 (1981) ADSCrossRefGoogle Scholar
  105. D. Najib, A.F. Nagy, G. Toth, Y. Ma, Three-dimensional, multi-fluid, high spatial resolution MHD model studies of the solar wind interaction with Mars. J. Geophys. Res. 116, A05204 (2011). doi: 10.1029/2010JA016272 ADSGoogle Scholar
  106. F. Němec, D.D. Morgan, D.A. Gurnett, F. Duru, Nightside ionosphere of Mars: Radar soundings by the Mars Express spacecraft. J. Geophys. Res. 115, E12009 (2010). doi: 10.1029/2010JE003663 ADSCrossRefGoogle Scholar
  107. F. Němec, D.D. Morgan, D.A. Gurnett, D.A. Brain, Areas of enhanced ionization in the deep nightside ionosphere of Mars. J. Geophys. Res. 116, E06006 (2011). doi: 10.1029/2011JE003804 ADSGoogle Scholar
  108. E. Nielsen, M. Fraenz, H. Zou et al., Local plasma processes and enhanced electron densities in the lower ionosphere in magnetic cusp regions on Mars. Planet. Space Sci. 55, 2164–2172 (2007) ADSCrossRefGoogle Scholar
  109. A.O. Nier, M.B. McElroy, Composition and structure of Mars’ upper atmosphere: Results from the Neutral Mass Spectrometers on Viking 1 and 2. J. Geophys. Res. 82, 4341–4349 (1977) ADSCrossRefGoogle Scholar
  110. M. Pätzold, S. Tellmann, B. Häusler et al., A sporadic third layer in the ionosphere of Mars. Science 310, 837–839 (2005) ADSCrossRefGoogle Scholar
  111. D.J. Pawlowski, S.W. Bougher, Comparative aeronomy: the effects of solar flares at Earth and Mars, in Comparative Climatology of Terrestrial Planets Conference, Boulder, Colorado (2012) Google Scholar
  112. D.J. Pawlowski, S.W. Bougher, P. Chamberlain, Modeling the response of the martian upper atmosphere to solar flares, in 2011 Fall AGU Meeting, San Francisco, California (2011) Google Scholar
  113. L.J. Paxton, Pioneer Venus Orbiter ultraviolet spectrometer limb observations: Analysis and interpretation of the 166- and 156-nm data. J. Geophys. Res. 90, 5089–5096 (1985) ADSCrossRefGoogle Scholar
  114. T. Penz, I. Arshukova, N. Terada, H. Shinagawa, N.V. Erkaev, H.K. Biernat, H. Lammer, A comparison of magnetohydrodynamic instabilities at the Martian ionopause. Adv. Space Res. 36(1), 2049–2056 (2005). doi: 10.1016/j.asr.2004.11.039 ADSCrossRefGoogle Scholar
  115. A. Safaeinili, W. Kofman, J. Mouginot et al., Estimation of the total electron content of the martian ionosphere using radar sounder surface echoes. Geophys. Res. Lett. 34, L23204 (2007). doi: 10.1029/2007GL032154 ADSCrossRefGoogle Scholar
  116. R. Schunk, A. Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry, 2nd edn. (Cambridge University Press, New York, 2009) CrossRefGoogle Scholar
  117. A. Seiff, D.B. Kirk, Structure of the atmosphere of Mars in summer at mid-latitudes. J. Geophys. Res. 82, 4364–4378 (1977) ADSCrossRefGoogle Scholar
  118. M.D. Smith, Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 167, 148–165 (2004) ADSCrossRefGoogle Scholar
  119. M.D. Smith, THEMIS observations of Mars aerosol optical depth from 2002–2008. Icarus 202, 444–452 (2009) ADSCrossRefGoogle Scholar
  120. M.D. Smith, S.W. Bougher, T. Encrenaz, F. Forget, A. Kleinbohl, Thermal structure and composition, in Mars Book II (Cambridge University Press, Cambridge, 2014), accepted, Chap. 4 Google Scholar
  121. A. Stewart, Mariner 6 and 7 ultraviolet spectrometer experiment: Implications of \(\mathrm{CO}_{2}^{+}\), CO and O airglow. J. Geophys. Res. 77, 1 (1972). doi: 10.1029/JA077i001p00054 CrossRefGoogle Scholar
  122. A.I.F. Stewart, Revised time dependent model of the martian atmosphere for use in orbit lifetime and sustenance studies. LASP-JPL Internal Report, NQ-802429, Jet Propulsion Lab, Pasadena, California (1987) Google Scholar
  123. A.I. Stewart, C.A. Barth, C.W. Hord, A.L. Lane, Mariner 9 ultraviolet spectrometer experiment: Structure of Mars’s upper atmosphere. Icarus 17, 469–474 (1972) ADSCrossRefGoogle Scholar
  124. A.I. Stewart, M.J. Alexander, R.R. Meier et al., Atomic oxygen in the martian thermosphere. J. Geophys. Res. 97, 91–102 (1992) ADSCrossRefGoogle Scholar
  125. A. Stiepen, J.-C. Gerard, S. Bougher, F. Montmessin, B. Hubert, Mars thermospheric temperatures from CO Cameron and \(\mathrm{CO}_{2}^{+}\) dayglow observations from Mars Express. Icarus (2014, submitted) Google Scholar
  126. D.J. Strickland, G.E. Thomas, P.R. Sparks, Mariner 6 and 7 ultraviolet spectrometer experiment: Analysis of the O I 1304- and 1356-Å emissions. J. Geophys. Res. 77, 4052–4068 (1972) ADSCrossRefGoogle Scholar
  127. D.J. Strickland, A.I. Stewart, C.A. Barth et al., Mariner 9 ultraviolet spectrometer experiment: Mars atomic oxygen 1304-Å emission. J. Geophys. Res. 78, 4547–4559 (1973) ADSCrossRefGoogle Scholar
  128. R.H. Tolson, G.M. Keating, G.J. Cancro et al., Application of accelerometer data to Mars Global Surveyor aerobraking operations. J. Spacecr. Rockets 36(3), 323–329 (1999) ADSCrossRefGoogle Scholar
  129. R.H. Tolson, A.M. Dwyer, J.L. Hanna et al., Application of accelerometer data to Mars aerobraking and atmospheric modeling. J. Spacecr. Rockets 42(3), 435–443 (2005) ADSCrossRefGoogle Scholar
  130. R.H. Tolson, G.M. Keating, R.W. Zurek et al., Application of accelerometer data to atmospheric modeling during Mars aerobraking operations. J. Spacecr. Rockets 44(6), 1172–1179 (2007) ADSCrossRefGoogle Scholar
  131. R.H. Tolson, E. Bemis, S. Hough et al., Atmospheric modeling using accelerometer data during Mars Reconnaissance Orbiter aerobraking operations. J. Spacecr. Rockets 45(3), 511–518 (2008) ADSCrossRefGoogle Scholar
  132. A. Valeille, M.R. Combi, S.W. Bougher et al., Three-dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 1. General description and results at equinox for solar low conditions. J. Geophys. Res. 114, E11005 (2009a). doi: 10.1029/2009JE003388 ADSCrossRefGoogle Scholar
  133. A. Valeille, M.R. Combi, S.W. Bougher et al., Three-dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 2. Solar cycle, seasonal variations and evolution over history. J. Geophys. Res. 114, E11006 (2009b). doi: 10.1029/2009JE003389 ADSCrossRefGoogle Scholar
  134. A. Valeille, M.R. Combi, V. Tenishev et al., A study of suprathermal oxygen atoms in Mars upper thermosphere and exosphere over the range of limiting conditions. Icarus 206, 18–27 (2010a) ADSCrossRefGoogle Scholar
  135. A. Valeille, S.W. Bougher, V. Tenishev, M.R. Combi, A.F. Nagy, Water loss and evolution of the upper atmosphere and exosphere over Martian history. Icarus 206, 28–39 (2010b) ADSCrossRefGoogle Scholar
  136. Y.-C. Wang, J.G. Luhmann, F. Leblanc, X. Fang, R.E. Johnson, Y. Ma, W.-H. Ip, L. Li, Modeling of the sputtering efficiency for Martian atmosphere, in Abstract P23A-1907 Presented at 2012 Fall Meeting, AGU, San Francisco, CA, 3–7 Dec. 2012 (2012) Google Scholar
  137. R.J. Wilson, Evidence for non-migrating thermal tides in the Mars upper atmosphere from the Mars Global Surveyor Accelerometer Experiment. Geophys. Res. Lett. 29(7) (2002). doi: 10.1029/2001GL013975
  138. P.G. Withers, Mars Gobal Surveyor and Mars Odyssey accelerometer observations of the martian upper atmosphere during aerobraking. Geophys. Res. Lett. 33, L02201 (2006). doi: 10.1029/2005GL024447 ADSCrossRefGoogle Scholar
  139. P.G. Withers, A review of observed variability in the dayside ionosphere of Mars. Adv. Space Res. 44, 277–307 (2009) ADSCrossRefGoogle Scholar
  140. P.G. Withers, R. Pratt, An observational study of the response of the upper atmosphere of Mars to lower atmospheric dust storms. Icarus 225, 378–389 (2013) ADSCrossRefGoogle Scholar
  141. P.G. Withers, S.W. Bougher, G.M. Keating, The effects of topographically controlled thermal tides in the martian upper atmosphere as seen by the MGS accelerometer. Icarus 164, 14–32 (2003) ADSCrossRefGoogle Scholar
  142. P.G. Withers, M. Mendillo, H. Risbeth et al., Ionospheric characteristics above martian crustal magnetic anomalies. Geophys. Res. Lett. 32, L16204 (2005). doi: 10.1029/2005GL023483 ADSCrossRefGoogle Scholar
  143. M. Yagi, F. Leblanc, J.Y. Chaufray, F. Gonzalez-Galindo, S. Hess, R. Modolo, Mars exospheric thermal and non-thermal components: Seasonal and local variations. Icarus 221, 682–693 (2012) ADSCrossRefGoogle Scholar
  144. M.H.G. Zhang, J.G. Luhmann, A.J. Kliore, J. Kim, A post-Pioneer Venus reassessment of the martian dayside ionosphere as observed by radio occultation methods. J. Geophys. Res. 95, 14829–14839 (1990a) ADSCrossRefGoogle Scholar
  145. M.H.G. Zhang, J.G. Luhmann, A.J. Kliore, An observational study of the nightside ionospheres of Mars and Venus with radio occultation methods. J. Geophys. Res. 95, 17095–17102 (1990b) ADSCrossRefGoogle Scholar
  146. R.W. Zurek et al., Application of MAVEN accelerometer and attitude control data to Mars atmospheric characterization. Space Sci. Rev. (2014, this issue). doi: 10.1007/s11214-014-0053-7

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • S. W. Bougher
    • 1
  • T. E. Cravens
    • 2
  • J. Grebowsky
    • 3
  • J. Luhmann
    • 4
  1. 1.Department of Atmospheric, Oceanic and Space SciencesUniversity of MichiganAnn ArborUSA
  2. 2.Department of Physics & AstronomyUniversity of KansasLawrenceUSA
  3. 3.NASA Goddard Space Flight CenterGreenbeltUSA
  4. 4.Space Sciences LaboratoryUniversity of California BerkeleyBerkeleyUSA

Personalised recommendations