Advertisement

Space Science Reviews

, Volume 187, Issue 1–4, pp 99–179 | Cite as

Auroral Processes at the Giant Planets: Energy Deposition, Emission Mechanisms, Morphology and Spectra

  • Sarah V. BadmanEmail author
  • Graziella Branduardi-Raymont
  • Marina Galand
  • Sébastien L. G. Hess
  • Norbert Krupp
  • Laurent Lamy
  • Henrik Melin
  • Chihiro Tao
Article

Abstract

The ionospheric response to auroral precipitation at the giant planets is reviewed, using models and observations. The emission processes for aurorae at radio, infrared, visible, ultraviolet, and X-ray wavelengths are described, and exemplified using ground- and space-based observations. Comparisons between the emissions at different wavelengths are made, where possible, and interpreted in terms of precipitating particle characteristics or atmospheric conditions. Finally, the spatial distributions and dynamics of the various components of the aurorae (moon footprints, low-latitude, main oval, polar) are related to magnetospheric processes and boundaries, using theory, in situ, and remote observations, with the aim of distinguishing between those related to internally-driven dynamics, and those related to the solar wind interaction.

Keywords

Giant planet Aurora Magnetodisk 

Notes

Acknowledgements

The authors acknowledge the support of EUROPLANET RI project (Grant agreement no.: 228319) funded by EU; and also the support of the International Space Science Institute (Bern). SVB was supported by a Royal Astronomical Society Research Fellowship. MG was partially supported by the Science and Technology Facilities Council (STFC) through the Consolidated Grant to Imperial College London. C. Tao was supported by a JSPS Postdoctoral Fellowship for Research Abroad. The Editor thanks the work of two anonymous referees.

References

  1. N. Achilleos, S. Miller, J. Tennyson, A.D. Aylward, I. Müller-Wodarg, D. Rees, JIM: A time-dependent, three-dimensional model of Jupiter’s thermosphere and ionosphere. J. Geophys. Res. 103, 20089–20112 (1998). doi: 10.1029/98JE00947 ADSGoogle Scholar
  2. M.H. Acuña, K.W. Behannon, J.E.P. Connerney, Jupiter’s magnetic field and magnetosphere, in Physics of the Jovian Magnetosphere, ed. by A.J. Dessler, (1983), pp. 1–50 Google Scholar
  3. J.M. Ajello, W. Pryor, L. Esposito, I. Stewart, W. McClintock, J. Gustin, D. Grodent, J.-C. Gérard, J.T. Clarke, The Cassini campaign observations of the Jupiter aurora by the ultraviolet imaging spectrograph and the space telescope imaging spectrograph. Icarus 178, 327–345 (2005). doi: 10.1016/j.icarus.2005.01.023 ADSGoogle Scholar
  4. D.J. Andrews, A.J. Coates, S.W.H. Cowley, M.K. Dougherty, L. Lamy, G. Provan, P. Zarka, Magnetospheric period oscillations at Saturn: Comparison of equatorial and high-latitude magnetic field periods with north and south Saturn kilometric radiation periods. J. Geophys. Res. 115, 12252 (2010). doi: 10.1029/2010JA015666 Google Scholar
  5. D.J. Andrews, B. Cecconi, S.W.H. Cowley, M.K. Dougherty, L. Lamy P. G, P. Zarka, Planetary period oscillations in Saturn’s magnetosphere: Evidence in magnetic field phase data for rotational modulation of Saturn kilometric radiation emissions. J. Geophys. Res. 116 (2011). doi: 10.1029/2011JA016636
  6. O.V. Arkhypov, H.O. Rucker, Amalthea’s modulation of Jovian decametric radio emission. Astron. Astrophys. 467, 353–358 (2007). doi: 10.1051/0004-6361:20066505 ADSGoogle Scholar
  7. S.V. Badman, S.W.H. Cowley, Significance of Dungey-cycle flows in Jupiter’s and Saturn’s magnetospheres, and their identification on closed equatorial field lines. Ann. Geophys. 25, 941–951 (2007). doi: 10.5194/angeo-25-941-2007 ADSGoogle Scholar
  8. S.V. Badman, E.J. Bunce, J.T. Clarke, S.W.H. Cowley, J.-C. Gérard, D. Grodent, S.E. Milan, Open flux estimates in Saturn’s magnetosphere during the January 2004 Cassini-HST campaign, and implications for reconnection rates. J. Geophys. Res. 110 (2005). doi: 10.1029/2005JA011240
  9. S.V. Badman, S.W.H. Cowley, J.-C. Gérard, D. Grodent, A statistical analysis of the location and width of Saturn’s southern auroras. Ann. Geophys. 24(12), 3533–3545 (2006) ADSGoogle Scholar
  10. S.V. Badman, S.W.H. Cowley, L. Lamy, B. Cecconi, P. Zarka, Relationship between solar wind corotating interaction regions and the phasing and intensity of Saturn kilometric radiation bursts. Ann. Geophys. 26(12), 3641–3651 (2008) ADSGoogle Scholar
  11. S.V. Badman, N. Achilleos, K.H. Baines, R.H. Brown, E.J. Bunce, M.K. Dougherty, H. Melin, J.D. Nichols, T. Stallard, Location of Saturn’s northern infrared aurora determined from Cassini VIMS images. Geophys. Res. Lett. 38 (2011a). doi: 10.1029/2010GL046193
  12. S.V. Badman, C. Tao, A. Grocott, S. Kasahara, H. Melin, R.H. Brown, K.H. Baines, M. Fujimoto, T. Stallard, Cassini VIMS observations of latitudinal and hemispheric variations in Saturn’s infrared auroral intensity. Icarus 216, 367–375 (2011b). doi: 10.1016/j.icarus.2011.09.031 ADSGoogle Scholar
  13. S.V. Badman, N. Achilleos, C.S. Arridge, K.H. Baines, R.H. Brown, E.J. Bunce, A.J. Coates, S.W.H. Cowley, M.K. Dougherty, M. Fujimoto, G. Hospodarsky, S. Kasahara, T. Kimura, H. Melin, D.G. Mitchell, T. Stallard, C. Tao, Cassini observations of ion and electron beams at Saturn and their relationship to infrared auroral arcs. J. Geophys. Res. 117 (2012a). doi: 10.1029/2011JA017222
  14. S.V. Badman, D.J. Andrews, S.W.H. Cowley, L. Lamy, G. Provan, C. Tao, S. Kasahara, T. Kimura, M. Fujimoto, H. Melin, T. Stallard, R.H. Brown, K.H. Baines, Rotational modulation and local time dependence of Saturn’s infrared \(\mathrm{H}_{3}^{+}\) auroral intensity. J. Geophys. Res. 117(A9), 09228 (2012b) Google Scholar
  15. S.V. Badman, A. Masters, H. Hasegawa, M. Fujimoto, A. Radioti, D. Grodent, N. Sergis, M.K. Dougherty, A.J. Coates, Bursty magnetic reconnection at Saturn’s magnetopause. Geophys. Res. Lett. 40, 1027–1031 (2013). doi: 10.1002/grl.50199 ADSGoogle Scholar
  16. S.V. Badman, C.M. Jackman, J.D. Nichols, J.-C. Gérard, Open flux in Saturn’s magnetosphere. Icarus 231, 137–145 (2014). doi: 10.1016/j.icarus.2013.12.004 ADSGoogle Scholar
  17. F. Bagenal, P.A. Delamere, Flow of mass and energy in the magnetospheres of Jupiter and Saturn. J. Geophys. Res. 116, 5209 (2011). doi: 10.1029/2010JA016294 Google Scholar
  18. F. Bagenal, T.E. Dowling, W.B. McKinnon, Jupiter (Cambridge University Press, Cambridge, 2004) Google Scholar
  19. S.J. Bame, B.L. Barraclough, W.C. Feldman, G.R. Gisler, J.T. Gosling, D.J. McComas, J.L. Phillips, M.F. Thomsen, B.E. Goldstein, M. Neugebauer, Jupiter’s magnetosphere: Plasma description from the ulysses flyby. Science 257, 1539–1543 (1992). doi: 10.1126/science.257.5076.1539 ADSGoogle Scholar
  20. R.L. Baron, T. Owen, J.E.P. Connerney, T. Satoh, J. Harrington, Solar wind control of Jupiter’s \(\mathrm{H}_{3}^{+}\) auroras. Icarus 120, 437–442 (1996). doi: 10.1006/icar.1996.0063 ADSGoogle Scholar
  21. C.H. Barrow, Jupiter’s decametric radio emission and solar activity. Planet. Space Sci. 26, 1193–1199 (1978). doi: 10.1016/0032-0633(78)90059-4 ADSGoogle Scholar
  22. C.H. Barrow, Association of corotating magnetic sector structure with Jupiter’s decameter-wave radio emission. J. Geophys. Res. 84, 5366–5372 (1979). doi: 10.1029/JA084iA09p05366 ADSGoogle Scholar
  23. C.H. Barrow, Latitudinal beaming and local time effects in the decametre-wave radiation from Jupiter observed at the Earth and from Voyager. Astron. Astrophys. 101, 142–149 (1981) ADSGoogle Scholar
  24. D. Barrow, K.I. Matcheva, Impact of atmospheric gravity waves on the Jovian ionosphere. Icarus 211, 609–622 (2011). doi: 10.1016/j.icarus.2010.10.017 ADSGoogle Scholar
  25. D.J. Barrow, K.I. Matcheva, Modeling the effect of atmospheric gravity waves on Saturn’s ionosphere. Icarus 224(1), 32–42 (2013). doi: 10.1016/j.icarus.2013.01.027 ADSGoogle Scholar
  26. E.S. Belenkaya, S.W.H. Cowley, J.D. Nichols, M.S. Blokhina, V.V. Kalegaev, Magnetospheric mapping of the dayside UV auroral oval at Saturn using simultaneous HST images, Cassini IMF data, and a global magnetic field model. Ann. Geophys. 29, 1233–1246 (2011). doi: 10.5194/angeo-29-1233-2011 ADSGoogle Scholar
  27. R.F. Benson, W. Calvert, Isis 1 observations at the source of auroral kilometric radiation. Geophys. Res. Lett. 6, 479–482 (1979). doi: 10.1029/GL006i006p00479 ADSGoogle Scholar
  28. A. Bhardwaj, G.R. Gladstone, Auroral emissions of the giant planets. Rev. Geophys. 38, 295–354 (2000). doi: 10.1029/1998RG000046 ADSGoogle Scholar
  29. A. Bhardwaj, G. Branduardi-Raymont, R.F. Elsner, G.R. Gladstone, G. Ramsay, P. Rodriguez, R. Soria, J.H. Waite, T.E. Cravens, Solar control on Jupiter’s equatorial X-ray emissions: 26-29 November 2003 XMM-Newton observation. Geophys. Res. Lett. 32, 3 (2005a). doi: 10.1029/2004GL021497 Google Scholar
  30. A. Bhardwaj, R.F. Elsner, J.H. Waite Jr., G.R. Gladstone, T.E. Cravens, P.G. Ford, The discovery of oxygen Kα X-ray emission from the rings of Saturn. Astrophys. J. Lett. 627, 73–76 (2005b). doi: 10.1086/431933 ADSGoogle Scholar
  31. A. Bhardwaj, R.F. Elsner, J.H. Waite Jr., G.R. Gladstone, T.E. Cravens, P.G. Ford Chandra, Observation of an X-ray flare at Saturn: Evidence of direct solar control on Saturn’s disk X-ray emissions. Astrophys. J. Lett. 624, 121–124 (2005c). doi: 10.1086/430521 ADSGoogle Scholar
  32. A. Boischot, Y. Leblanc, A. Lecacheux, B.M. Pedersen, M.L. Kaiser, Arc structure in Saturn’s radio dynamic spectra. Nature 292, 727 (1981). doi: 10.1038/292727a0 ADSGoogle Scholar
  33. B. Bonfond, D. Grodent, J.-C. Gérard, A. Radioti, J. Saur, S. Jacobsen, UV Io footprint leading spot: A key feature for understanding the UV Io footprint multiplicity? Geophys. Res. Lett. 35(5) (2008). doi: 10.1029/2007GL032418
  34. B. Bonfond, M.F. Vogt, J.-C. Gérard, D. Grodent, A. Radioti, V. Coumans, Quasi-periodic polar flares at Jupiter: A signature of pulsed dayside reconnections? Geophys. Res. Lett. 38, 2104 (2011). doi: 10.1029/2010GL045981 ADSGoogle Scholar
  35. B. Bonfond, D. Grodent, J.-C. Gérard, T. Stallard, J.T. Clarke, M. Yoneda, A. Radioti, J. Gustin, Auroral evidence of Io’s control over the magnetosphere of Jupiter. Geophys. Res. Lett. 39 (2012). doi: 10.1029/2011GL050253
  36. B. Bonfond, S. Hess, F. Bagenal, J.-C. Gérard, D. Grodent, A. Radioti, J. Gustin, J.T. Clarke, The multiple spots of the Ganymede auroral footprint. Geophys. Res. Lett. 40, 4977–4981 (2013). doi: 10.1002/grl.50989 ADSGoogle Scholar
  37. S.W. Bougher, J.H. Waite, T. Majeed, G.R. Gladstone, Jupiter thermospheric general circulation model (JTGCM): Global structure and dynamics driven by auroral and Joule heating. J. Geophys. Res. 110, 4008 (2005). doi: 10.1029/2003JE002230 Google Scholar
  38. G. Branduardi-Raymont, A. Bhardwaj, R.F. Elsner, G.R. Gladstone, G. Ramsay, P. Rodriguez, R. Soria, J.H. Waite Jr., T.E. Cravens, A study of Jupiter’s aurorae with XMM-Newton. Astron. Astrophys. 463, 761–774 (2007a). doi: 10.1051/0004-6361:20066406 ADSGoogle Scholar
  39. G. Branduardi-Raymont, A. Bhardwaj, R.F. Elsner, G.R. Gladstone, G. Ramsay, P. Rodriguez, R. Soria, J.H. Waite, T.E. Cravens, Latest results on Jovian disk X-rays from XMM-Newton. Planet. Space Sci. 55, 1126–1134 (2007b). doi: 10.1016/j.pss.2006.11.017 ADSGoogle Scholar
  40. G. Branduardi-Raymont, R.F. Elsner, M. Galand, D. Grodent, T.E. Cravens, P. Ford, G.R. Gladstone, J.H. Waite, Spectral morphology of the X-ray emission from Jupiter’s aurorae. J. Geophys. Res. 113, 2202 (2008). doi: 10.1029/2007JA012600 Google Scholar
  41. G. Branduardi-Raymont, A. Bhardwaj, R.F. Elsner, P. Rodriguez, X-rays from Saturn: A study with XMM-Newton and Chandra over the years 2002-05. Astron. Astrophys. 510, 73 (2010). doi: 10.1051/0004-6361/200913110 ADSGoogle Scholar
  42. G. Branduardi-Raymont, P.G. Ford, K.C. Hansen, L. Lamy, A. Masters, B. Cecconi, A.J. Coates, M.K. Dougherty, G.R. Gladstone, P. Zarka, Search for Saturn’s X-ray aurorae at the arrival of a solar wind shock. J. Geophys. Res. 118 (2013). doi: 10.1002/jgra.50112
  43. R.H. Brown, K.H. Baines, G. Bellucci, J.P. Bibring, B.J. Buratti, F. Capaccioni, P. Cerroni, R.N. Clark, A. Coradini, D.P. Cruikshank, P. Drossart, V. Formisano, R. Jaumann, Y. Langevin, D.L. Matson, T.B. McCord, V. Mennella, E. Miller, R.M. Nelson, P.D. Nicholson, B. Sicardy, C. Sotin, The Cassini visual and infrared mapping spectrometer (VIMS) investigation. Space Sci. Rev. 115(1–4), 111–168 (2004). doi: 10.1007/s11214-004-1453-x ADSGoogle Scholar
  44. E.J. Bunce, S.W.H. Cowley, J.A. Wild, Azimuthal magnetic fields in Saturn’s magnetosphere: Effects associated with plasma sub-corotation and the magnetopause-tail current system. Ann. Geophys. 21, 1709–1722 (2003). doi: 10.5194/angeo-21-1709-2003 ADSGoogle Scholar
  45. E.J. Bunce, S.W.H. Cowley, T.K. Yeoman, Jovian cusp processes: Implications for the polar aurora. J. Geophys. Res. 109, 9 (2004). doi: 10.1029/2003JA010280 Google Scholar
  46. E.J. Bunce, S.W.H. Cowley, S.E. Milan, Interplanetary magnetic field control of Saturn’s polar cusp aurora. Ann. Geophys. 23, 1405–1431 (2005a). doi: 10.5194/angeo-23-1405-2005 ADSGoogle Scholar
  47. E.J. Bunce, S.W.H. Cowley, D.M. Wright, A.J. Coates, M.K. Dougherty, N. Krupp, W.S. Kurth, A.M. Rymer, In situ observations of a solar wind compression-induced hot plasma injection in Saturn’s tail. Geophys. Res. Lett. 322, L20S04 (2005b). doi: 10.1029/2005GL022888 Google Scholar
  48. E.J. Bunce, C.S. Arridge, J.T. Clarke, A.J. Coates, S.W.H. Cowley, M.K. Dougherty, J.-C. Gérard, D. Grodent, K.C. Hansen, J.D. Nichols, D.J. Southwood, D.L. Talboys, Origin of Saturn’s aurora: Simultaneous observations by Cassini and the Hubble space telescope. J. Geophys. Res. 113 (2008). doi: 10.1029/2008JA013257
  49. B.F. Burke, K.L. Franklin, Observations of a variable radio source associated with the planet Jupiter. J. Geophys. Res. 60, 213–217 (1955). doi: 10.1029/JZ060i002p00213 ADSGoogle Scholar
  50. J.F. Carbary, The morphology of Saturn’s ultraviolet aurora. J. Geophys. Res. 117 (2012). doi: 10.1029/2012JA017670
  51. J.F. Carbary, Longitude dependences of Saturn’s ultraviolet aurora. Geophys. Res. Lett. 40(10), 1902–1906 (2013). doi: 10.1002/grl.50430 ADSGoogle Scholar
  52. J.F. Carbary, D.G. Mitchell, P. Brandt, E.C. Roelof, S.M. Krimigis, Statistical morphology of ENA emissions at Saturn. J. Geophys. Res. 113, 5210 (2008). doi: 10.1029/2007JA012873 Google Scholar
  53. J.A. Carter, S. Sembay, A.M. Read, A high charge state coronal mass ejection seen through solar wind charge exchange emission as detected by XMM-Newton. Mon. Not. R. Astron. Soc. 402, 867–878 (2010). doi: 10.1111/j.1365-2966.2009.15985.x ADSGoogle Scholar
  54. B. Cecconi, Goniopolarimetric techniques for low-frequency radio astronomy in space, in Observing Photons in Space, vol. 9, (2010), pp. 263–277 Google Scholar
  55. B. Cecconi, L. Lamy, P. Zarka, R. Prangé, W.S. Kurth, P. Louarn, Goniopolarimetric study of the revolution 29 perikrone using the Cassini radio and plasma wave science instrument high-frequency radio receiver. J. Geophys. Res. 114, 3215 (2009). doi: 10.1029/2008JA013830 Google Scholar
  56. B. Cecconi, S. Hess, A. Hérique, M.R. Santovito, D. Santos-Costa, P. Zarka, G. Alberti, D. Blankenship, J.-L. Bougeret, L. Bruzzone, W. Kofman, Natural radio emission of Jupiter as interferences for radar investigations of the icy satellites of Jupiter. Planet. Space Sci. 61, 32–45 (2012). doi: 10.1016/j.pss.2011.06.012 ADSGoogle Scholar
  57. J.-Y. Chaufray, T.K. Greathouse, G.R. Gladstone, J.H. Waite, J.-P. Maillard, T. Majeed, S.W. Bougher, E. Lellouch, P. Drossart, Spectro-imaging observations of Jupiter’s 2 μm auroral emission. II: Thermospheric winds. Icarus 211, 1233–1241 (2011). doi: 10.1016/j.icarus.2010.11.021 ADSGoogle Scholar
  58. J.T. Clarke, J. Ajello, G. Ballester, L. Ben Jaffel, J. Connerney, J.-C. Gérard, G.R. Gladstone, D. Grodent, W. Pryor, J. Trauger, J.H. Waite, Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter. Nature 415(6875), 997–1000 (2002) ADSGoogle Scholar
  59. J.T. Clarke, D. Grodent, S.W.H. Cowley, E.J. Bunce, P. Zarka, J.E.P. Connerney, T. Satoh, Jupiter’s aurora, in Jupiter. The Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon, (2004), pp. 639–670 Google Scholar
  60. J.T. Clarke, J.-C. Gérard, D. Grodent, S. Wannawichian, J. Gustin, J. Connerney, F. Crary, M. Dougherty, W. Kurth, S.W.H. Cowley, E.J. Bunce, T. Hill, J. Kim, Morphological differences between Saturn’s ultraviolet aurorae and those of Earth and Jupiter. Nature 433(7027), 717–719 (2005). doi: 10.1038/nature03331 ADSGoogle Scholar
  61. J.T. Clarke, J. Nichols, J.-C. Gerard, D. Grodent, K.C. Hansen, W. Kurth, G.R. Gladstone, J. Duval, S. Wannawichian, E. Bunce, S.W.H. Cowley, F. Crary, M. Dougherty, L. Lamy, D. Mitchell, W. Pryor, K. Retherford, T. Stallard, B. Zieger, P. Zarka, B. Cecconi, Response of Jupiter’s and Saturn’s auroral activity to the solar wind. J. Geophys. Res. 114 (2009). doi: 10.1029/2008JA013694
  62. J.E.P. Connerney, J.H. Waite, New model of Saturn’s ionosphere with an influx of water from the rings. Nature 312(5990), 136–138 (1984) ADSGoogle Scholar
  63. J.E.P. Connerney, R. Baron, T. Satoh, T. Owen, Images of excited \(\mathrm{H}_{3}^{+}\) at the foot of the Io flux tube in Jupiter’s atmosphere. Science 262, 1035–1038 (1993). doi: 10.1126/science.262.5136.1035 ADSGoogle Scholar
  64. J.E.P. Connerney, M.H. Acuña, N.F. Ness, T. Satoh, New models of Jupiter’s magnetic field constrained by the Io flux tube footprint. J. Geophys. Res. 103, 11929–11940 (1998). doi: 10.1029/97JA03726 ADSGoogle Scholar
  65. S.W.H. Cowley, E.J. Bunce, Origin of the main auroral oval in Jupiter’s coupled magnetosphere-ionosphere system. Planet. Space Sci. 49, 1067–1088 (2001). doi: 10.1016/S0032-0633(00)00167-7 ADSGoogle Scholar
  66. S.W.H. Cowley, A. Balogh, M.K. Dougherty, T.M. Edwards, R.J. Forsyth, R.J. Hynds, K. Staines, Ulysses observations of anti-sunward flow on Jovian polar cap field lines. Planet. Space Sci. 41, 987–998 (1993). doi: 10.1016/0032-0633(93)90103-9 ADSGoogle Scholar
  67. S.W.H. Cowley, E.J. Bunce, T.S. Stallard, S. Miller, Jupiter’s polar ionospheric flows: Theoretical interpretation. Geophys. Res. Lett. 30, 1220 (2003). doi: 10.1029/2002GL016030 ADSGoogle Scholar
  68. S.W.H. Cowley, E.J. Bunce, J.M. O’Rourke, A simple quantitative model of plasma flows and currents in Saturn’s polar ionosphere. J. Geophys. Res. 109 (2004a). doi: 10.1029/2003JA010375
  69. S.W.H. Cowley, E.J. Bunce, R. Prange, Saturn’s polar ionospheric flows and their relation to the main auroral oval. Ann. Geophys. 22(4), 1379–1394 (2004b) ADSGoogle Scholar
  70. S.W.H. Cowley, S.V. Badman, E.J. Bunce, J.T. Clarke, J.-C. Gérard, D. Grodent, C.M. Jackman, S.E. Milan, T.K. Yeoman, Reconnection in a rotation-dominated magnetosphere and its relation to Saturn’s auroral dynamics. J. Geophys. Res. 110(A2) (2005). doi: 10.1029/2004JA010796
  71. S.W.H. Cowley, C.S. Arridge, E.J. Bunce, J.T. Clarke, A.J. Coates, M.K. Dougherty, J.-C. Gérard, D. Grodent, J.D. Nichols, D.L. Talboys, Auroral current systems in Saturn’s magnetosphere: Comparison of theoretical models with Cassini and HST observations. Ann. Geophys. 26(9), 2613–2630 (2008) ADSGoogle Scholar
  72. F.J. Crary, On the generation of an electron beam by Io. J. Geophys. Res. 102, 37–50 (1997). doi: 10.1029/96JA02409 ADSGoogle Scholar
  73. F. Crary, J. Clarke, M. Dougherty, P. Hanlon, K. Hansen, J. Steinberg, B. Barraclough, A. Coates, J. Gerard, D. Grodent, W. Kurth, D. Mitchell, A. Rymer, D. Young, Solar wind dynamic pressure and electric field as the main factors controlling Saturn’s aurorae. Nature 433(7027), 720–722 (2005). doi: 10.1038/nature03333 ADSGoogle Scholar
  74. T.E. Cravens, Vibrationally excited molecular hydrogen in the upper atmosphere of Jupiter. J. Geophys. Res. 92, 11083–11100 (1987). doi: 10.1029/JA092iA10p11083 ADSGoogle Scholar
  75. T.E. Cravens, Comet Hyakutake x-ray source: Charge transfer of solar wind heavy ions. Geophys. Res. Lett. 24, 105–108 (1997). doi: 10.1029/96GL03780 ADSGoogle Scholar
  76. T.E. Cravens, Heliospheric X-ray emission associated with charge transfer of the solar wind with interstellar neutrals. Astrophys. J. Lett. 532, 153–156 (2000). doi: 10.1086/312574 ADSGoogle Scholar
  77. T.E. Cravens, N. Ozak, Auroral Ion Precipitation and Acceleration at the Outer Planets. Washington DC American Geophysical Union Geophysical Monograph Series, vol. 197 (2012), pp. 287–294. doi: 10.1029/2011GM001159 Google Scholar
  78. T.E. Cravens, E. Howell, J.H. Waite, G.R. Gladstone, Auroral oxygen precipitation at Jupiter. J. Geophys. Res. 100, 17153–17162 (1995). doi: 10.1029/95JA00970 ADSGoogle Scholar
  79. T.E. Cravens, J.H. Waite, T.I. Gombosi, N. Lugaz, G.R. Gladstone, B.H. Mauk, R.J. MacDowall, Implications of Jovian X-ray emission for magnetosphere-ionosphere coupling. J. Geophys. Res. 108, 1465 (2003). doi: 10.1029/2003JA010050 Google Scholar
  80. A. Dalgarno, M. Yan, W. Liu, Electron energy deposition in a gas mixture of atomic and molecular hydrogen and helium. Astrophys. J. Suppl. Ser. 125, 237–256 (1999). doi: 10.1086/313267 ADSGoogle Scholar
  81. P.A. Delamere, F. Bagenal, Solar wind interaction with Jupiter’s magnetosphere. J. Geophys. Res. 115, 10201 (2010). doi: 10.1029/2010JA015347 Google Scholar
  82. G.T. Delory, R.E. Ergun, C.W. Carlson, L. Muschietti, C.C. Chaston, W. Peria, J.P. McFadden, R. Strangeway, FAST observations of electron distributions within AKR source regions. Geophys. Res. Lett. 25, 2069–2072 (1998). doi: 10.1029/98GL00705 ADSGoogle Scholar
  83. K. Dennerl, X-rays from Venus observed with Chandra. Planet. Space Sci. 56, 1414–1423 (2008). doi: 10.1016/j.pss.2008.03.008 ADSGoogle Scholar
  84. K. Dennerl, High resolution X-ray spectroscopy of comets with Xmm-newton/rgs (2009). http://www.mssl.ucl.ac.uk/~gbr/workshop3/papers/comets_mssl_2009_kd.pdf
  85. K. Dennerl, Charge transfer reactions. Space Sci. Rev. 157, 57–91 (2010). doi: 10.1007/s11214-010-9720-5 ADSGoogle Scholar
  86. K. Dennerl, C.M. Lisse, A. Bhardwaj, V. Burwitz, J. Englhauser, H. Gunell, M. Holmström, F. Jansen, V. Kharchenko, P.M. Rodríguez-Pascual, First observation of Mars with XMM-Newton. High resolution X-ray spectroscopy with RGS. Astron. Astrophys. 451, 709–722 (2006). doi: 10.1051/0004-6361:20054253 ADSGoogle Scholar
  87. K. Dennerl, C.M. Lisse, A. Bhardwaj, D.J. Christian, S.J. Wolk, D. Bodewits, T.H. Zurbuchen, M. Combi, S. Lepri, Solar system X-rays from charge exchange processes. Astron. Nachr. 333, 324 (2012). doi: 10.1002/asna.201211663 ADSGoogle Scholar
  88. M.D. Desch, Radio emission signature of Saturn immersions in Jupiter’s magnetic tail. J. Geophys. Res. 88, 6904–6910 (1983). doi: 10.1029/JA088iA09p06904 ADSGoogle Scholar
  89. M.D. Desch, M.L. Kaiser, Voyager measurement of the rotation period of Saturn’s magnetic field. Geophys. Res. Lett. 8, 253–256 (1981). doi: 10.1029/GL008i003p00253 ADSGoogle Scholar
  90. M.D. Desch, H.O. Rucker, The relationship between Saturn kilometric radiation and the solar wind. J. Geophys. Res. 88, 8999–9006 (1983). doi: 10.1029/JA088iA11p08999 ADSGoogle Scholar
  91. M.D. Desch, H.O. Rucker, Saturn radio emission and the solar wind—Voyager-2 studies. Adv. Space Res. 5, 333–336 (1985). doi: 10.1016/0273-1177(85)90159-0 ADSGoogle Scholar
  92. M. Desroche, F. Bagenal, P.A. Delamere, N. Erkaev, Conditions at the magnetopause of Saturn and implications for the solar wind interaction. J. Geophys. Res. 118, 3087–3095 (2013). doi: 10.1002/jgra.50294 Google Scholar
  93. A.J. Dessler, Physics of the Jovian Magnetosphere (Cambridge University Press, Cambridge, 1983) Google Scholar
  94. M.K. Dougherty, K.K. Khurana, F.M. Neubauer, C.T. Russell, J. Saur, J.S. Leisner, M.E. Burton, Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer. Science 311(5766), 1406–1409 (2006). doi: 10.1126/science.1120985. http://www.sciencemag.org/content/311/5766/1406.abstract ADSGoogle Scholar
  95. M.K. Dougherty, L.W. Esposito, S.M. Krimigis, Saturn from Cassini-Huygens (Springer, Dordrecht Heidelberg London New York, 2009). doi: 10.1007/978-1-4020-9217-6 Google Scholar
  96. P. Drossart, J.P. Maillard, J. Caldwell, S.J. Kim, J.K.G. Watson, W.A. Majewski, J. Tennyson, S. Miller, S.K. Atreya, J.T. Clarke, J.H. Waite, R. Wagener, Detection of \(\mathrm{H}_{3}^{+}\) on Jupiter. Nature 340, 539–541 (1989) ADSGoogle Scholar
  97. J.W. Dungey, The structure of the exosphere or adventures in velocity space, in Geophysics, the Earth’s Environment, ed. by C. De Witt, J. Hieblot, L. Le Beau, (1963), p. 503 Google Scholar
  98. U.A. Dyudina, A.P. Ingersoll, S.P. Ewald, C.C. Porco, G. Fischer, W.S. Kurth, R.A. West, Detection of visible lightning on Saturn. Geophys. Res. Lett. 37, 9205 (2010). doi: 10.1029/2010GL043188 ADSGoogle Scholar
  99. R.F. Elsner, G.R. Gladstone, J.H. Waite, F.J. Crary, R.R. Howell, R.E. Johnson, P.G. Ford, A.E. Metzger, K.C. Hurley, E.D. Feigelson, G.P. Garmire, A. Bhardwaj, D.C. Grodent, T. Majeed, A.F. Tennant, M.C. Weisskopf, Discovery of soft X-ray emission from Io, Europa, and the Io plasma torus. Astrophys. J. 572, 1077–1082 (2002). doi: 10.1086/340434 ADSGoogle Scholar
  100. R.F. Elsner, N. Lugaz, J.H. Waite, T.E. Cravens, G.R. Gladstone, P. Ford, D. Grodent, A. Bhardwaj, R.J. MacDowall, M.D. Desch, T. Majeed, Simultaneous Chandra X ray, Hubble space telescope ultraviolet, and Ulysses radio observations of Jupiter’s aurora. J. Geophys. Res. 110, 1207 (2005). doi: 10.1029/2004JA010717 Google Scholar
  101. R.E. Ergun, C.W. Carlson, J.P. McFadden, G.T. Delory, R.J. Strangeway, P.L. Pritchett, Electron-cyclotron maser driven by charged-particle acceleration from magnetic field-aligned electric fields. Astrophys. J. 538, 456–466 (2000). doi: 10.1086/309094 ADSGoogle Scholar
  102. Y. Ezoe, K. Ishikawa, T. Ohashi, Y. Miyoshi, N. Terada, Y. Uchiyama, H. Negoro, Discovery of diffuse hard X-ray emission around Jupiter with Suzaku. Astrophys. J. Lett. 709, 178–182 (2010). doi: 10.1088/2041-8205/709/2/L178 ADSGoogle Scholar
  103. W.M. Farrell, M.L. Kaiser, M.D. Desch, A model of the lightning discharge at Jupiter. Geophys. Res. Lett. 26, 2601–2604 (1999). doi: 10.1029/1999GL900527 ADSGoogle Scholar
  104. G. Fischer, M.D. Desch, P. Zarka, M.L. Kaiser, D.A. Gurnett, W.S. Kurth, W. Macher, H.O. Rucker, A. Lecacheux, W.M. Farrell, B. Cecconi, Saturn lightning recorded by Cassini/RPWS in 2004. Icarus 183, 135–152 (2006). doi: 10.1016/j.icarus.2006.02.010 ADSGoogle Scholar
  105. G. Fischer, W.S. Kurth, U.A. Dyudina, M.L. Kaiser, P. Zarka, A. Lecacheux, A.P. Ingersoll, D.A. Gurnett, Analysis of a giant lightning storm on Saturn. Icarus 190, 528–544 (2007). doi: 10.1016/j.icarus.2007.04.002 ADSGoogle Scholar
  106. G. Fischer, D.A. Gurnett, W.S. Kurth, F. Akalin, P. Zarka, U.A. Dyudina, W.M. Farrell, M.L. Kaiser, Atmospheric electricity at Saturn. Space Sci. Rev. 137, 271–285 (2008). doi: 10.1007/s11214-008-9370-z ADSGoogle Scholar
  107. G. Fischer, D.A. Gurnett, P. Zarka, L. Moore, U.A. Dyudina, Peak electron densities in Saturn’s ionosphere derived from the low-frequency cutoff of Saturn lightning. J. Geophys. Res. 116, 4315 (2011). doi: 10.1029/2010JA016187 Google Scholar
  108. B.L. Fleshman, P.A. Delamere, F. Bagenal, T. Cassidy, The roles of charge exchange and dissociation in spreading Saturn’s neutral clouds. J. Geophys. Res. 117, 5007 (2012). doi: 10.1029/2011JE003996 Google Scholar
  109. D. Flower, Molecular Collisions in the Interstellar Medium (Cambridge University Press, Cambridge, 1990) Google Scholar
  110. J.L. Fox, M.I. Galand, R.E. Johnson, Energy deposition in planetary atmospheres by charged particles and solar photons. Space Sci. Rev. 139, 3–62 (2008). doi: 10.1007/s11214-008-9403-7 ADSGoogle Scholar
  111. K. Fukazawa, T. Ogino, R.J. Walker, A simulation study of dynamics in the distant Jovian magnetotail. J. Geophys. Res. 115 (2010). doi: 10.1029/2009JA015228
  112. M. Galand, S. Chakrabarti, Auroral processes in the solar system. Washington DC American Geophysical Union Geophysical Monograph Series 130, 55 (2002) ADSGoogle Scholar
  113. M. Galand, S. Chakrabarti, Proton aurora observed from the ground. J. Atmos. Terr. Phys. 68, 1488–1501 (2006). doi: 10.1016/j.jastp.2005.04.013 ADSGoogle Scholar
  114. M. Galand, D. Lummerzheim, Contribution of proton precipitation to space-based auroral FUV observations. J. Geophys. Res. 109, 3307 (2004). doi: 10.1029/2003JA010321 Google Scholar
  115. M. Galand, L. Moore, B. Charnay, I. Müller-Wodarg, M. Mendillo, Solar primary and secondary ionization at Saturn. J. Geophys. Res. 114, 6313 (2009). doi: 10.1029/2008JA013981 Google Scholar
  116. M. Galand, L. Moore, I. Müller-Wodarg, M. Mendillo, S. Miller, Response of Saturn’s auroral ionosphere to electron precipitation: Electron density, electron temperature, and electrical conductivity. J. Geophys. Res. 116, 9306 (2011). doi: 10.1029/2010JA016412 Google Scholar
  117. P.H.M. Galopeau, A. Lecacheux, Variations of Saturn’s radio rotation period measured at kilometer wavelengths. J. Geophys. Res. 105, 13089–13102 (2000). doi: 10.1029/1999JA005089 ADSGoogle Scholar
  118. P.H.M. Galopeau, P. Zarka, D.L. Quéau, Source location of Saturn’s kilometric radiation: The Kelvin-Helmholtz instability hypothesis. J. Geophys. Res. 1002, 26397–26410 (1995). doi: 10.1029/95JE02132 ADSGoogle Scholar
  119. N. Gehrels, E.C. Stone, Energetic oxygen and sulfur ions in the Jovian magnetosphere and their contribution to the auroral excitation. J. Geophys. Res. 88, 5537–5550 (1983). doi: 10.1029/JA088iA07p05537 ADSGoogle Scholar
  120. F. Genova, P. Zarka, C.H. Barrow, Voyager and Nancay observations of the Jovian radio-emission at different frequencies—Solar wind effect and source extent. Astron. Astrophys. 182, 159–162 (1987) ADSGoogle Scholar
  121. J.-C. Gérard, V. Singh, A model of energy deposition of energetic electrons and EUV emission in the Jovian and Saturnian atmospheres and implications. J. Geophys. Res. 87, 4525–4532 (1982). doi: 10.1029/JA087iA06p04525 ADSGoogle Scholar
  122. J.-C. Gérard, J. Gustin, D. Grodent, P. Delamere, J.T. Clarke, Excitation of the FUV Io tail on Jupiter: Characterization of the electron precipitation. J. Geophys. Res. 107, 1394 (2002). doi: 10.1029/2002JA009410 Google Scholar
  123. J.-C. Gérard, J. Gustin, D. Grodent, J.T. Clarke, A. Grard, Spectral observations of transient features in the FUV Jovian polar aurora. J. Geophys. Res. 108, 1319 (2003). doi: 10.1029/2003JA009901 Google Scholar
  124. J.-C. Gérard, D. Grodent, J. Gustin, A. Saglam, J.T. Clarke, J.T. Trauger, Characteristics of Saturn’s FUV aurora observed with the space telescope imaging spectrograph. J. Geophys. Res. 109(A9) (2004). doi: 10.1029/2004JA010513
  125. J.-C. Gérard, E.J. Bunce, D. Grodent, S.W.H. Cowley, J.T. Clarke, S.V. Badman, Signature of Saturn’s auroral cusp: Simultaneous Hubble space telescope FUV observations and upstream solar wind monitoring. J. Geophys. Res. 110 (2005). doi: 10.1029/2005JA011094
  126. J.-C. Gérard, B. Bonfond, J. Gustin, D. Grodent, J.T. Clarke, D. Bisikalo, V. Shematovich, Altitude of Saturn’s aurora and its implications for the characteristic energy of precipitated electrons. Geophys. Res. Lett. 36 (2009). doi: 10.1029/2008GL036554
  127. J.-C. Gérard, J. Gustin, W.R. Pryor, D. Grodent, B. Bonfond, A. Radioti, G.R. Gladstone, J.T. Clarke, J.D. Nichols, Remote sensing of the energy of auroral electrons in Saturn’s atmosphere: Hubble and Cassini spectral observations. Icarus 223(1) (2013). doi: 10.1016/j.icarus.2012.11.033
  128. G.R. Gladstone, J.H. Waite, D. Grodent, W.S. Lewis, F.J. Crary, R.F. Elsner, M.C. Weisskopf, T. Majeed, J.-M. Jahn, A. Bhardwaj, J.T. Clarke, D.T. Young, M.K. Dougherty, S.A. Espinosa, T.E. Cravens, A pulsating auroral X-ray hot spot on Jupiter. Nature 415, 1000–1003 (2002) ADSGoogle Scholar
  129. T.I. Gombosi, T.P. Armstrong, C.S. Arridge, K.K. Khurana, S.M. Krimigis, N. Krupp, A.M. Persoon, M.F. Thomsen, Saturn’s magnetospheric configuration, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis (Springer, Dordrecht Heidelberg London New York, 2009), pp. 203–255 Google Scholar
  130. A. Grocott, S.V. Badman, S.W.H. Cowley, S.E. Milan, J.D. Nichols, T.K. Yeoman, Magnetosonic Mach number dependence of the efficiency of reconnection between planetary and interplanetary magnetic fields. J. Geophys. Res. 114 (2009). doi: 10.1029/2009JA014330
  131. D. Grodent, J.H. Waite Jr., J.-C. Gérard, A self-consistent model of the Jovian auroral thermal structure. J. Geophys. Res. 106, 12933–12952 (2001). doi: 10.1029/2000JA900129 ADSGoogle Scholar
  132. D. Grodent, J.T. Clarke, J. Kim, J.H. Waite, S.W.H. Cowley, Jupiter’s main auroral oval observed with HST-STIS. J. Geophys. Res. 108, 1389 (2003a). doi: 10.1029/2003JA009921 Google Scholar
  133. D. Grodent, J.T. Clarke, J.H. Waite, S.W.H. Cowley, J.-C. Gérard, J. Kim, Jupiter’s polar auroral emissions. J. Geophys. Res. 108, 1366 (2003b). doi: 10.1029/2003JA010017 Google Scholar
  134. D. Grodent, J.-C. Gérard, J.T. Clarke, G.R. Gladstone, J.H. Waite, A possible auroral signature of a magnetotail reconnection process on Jupiter. J. Geophys. Res. 109, 5201 (2004). doi: 10.1029/2003JA010341 Google Scholar
  135. D. Grodent, J.-C. Gérard, S.W.H. Cowley, E.J. Bunce, J.T. Clarke, Variable morphology of Saturn’s southern ultraviolet aurora. J. Geophys. Res. 110 (2005). doi: 10.1029/2004JA010983
  136. D. Grodent, B. Bonfond, J.-C. GéRard, A. Radioti, J. Gustin, J.T. Clarke, J. Nichols, J.E.P. Connerney, Auroral evidence of a localized magnetic anomaly in Jupiter’s northern hemisphere. J. Geophys. Res. 113, 9201 (2008). doi: 10.1029/2008JA013185 Google Scholar
  137. D. Grodent, A. Radioti, B. Bonfond, J.-C. Gérard, On the origin of Saturn’s outer auroral emission. J. Geophys. Res. 115, 8219 (2010). doi: 10.1029/2009JA014901 Google Scholar
  138. D.A. Gurnett, W.S. Kurth, F.L. Scarf, The structure of the Jovian magnetotail from plasma wave observations. Geophys. Res. Lett. 7, 53–56 (1980). doi: 10.1029/GL007i001p00053 ADSGoogle Scholar
  139. D.A. Gurnett, W.S. Kurth, J.D. Menietti, A.M. Persoon, An unusual rotationally modulated attenuation band in the Jovian hectometric radio emission spectrum. Geophys. Res. Lett. 25, 1841–1844 (1998). doi: 10.1029/98GL01400 ADSGoogle Scholar
  140. D.A. Gurnett, W.S. Kurth, G.B. Hospodarsky, A.M. Persoon, P. Zarka, A. Lecacheux, S.J. Bolton, M.D. Desch, W.M. Farrell, M.L. Kaiser, H.-P. Ladreiter, H.O. Rucker, P. Galopeau, P. Louarn, D.T. Young, W.R. Pryor, M.K. Dougherty, Control of Jupiter’s radio emission and aurorae by the solar wind. Nature 415, 985–987 (2002) ADSGoogle Scholar
  141. D.A. Gurnett, W.S. Kurth, G.B. Hospodarsky, A.M. Persoon, T.F. Averkamp, B. Cecconi, A. Lecacheux, P. Zarka, P. Canu, N. Cornilleau-Wehrlin, P. Galopeau, A. Roux, C. Harvey, P. Louarn, R. Bostrom, G. Gustafsson, J.-E. Wahlund, M.D. Desch, W.M. Farrell, M.L. Kaiser, K. Goetz, P.J. Kellogg, G. Fischer, H.-P. Ladreiter, H. Rucker, H. Alleyne, A. Pedersen, Radio and plasma wave observations at Saturn from Cassini’s approach and first orbit. Science 307, 1255–1259 (2005). doi: 10.1126/science.1105356 ADSGoogle Scholar
  142. D.A. Gurnett, A. Lecacheux, W.S. Kurth, A.M. Persoon, J.B. Groene, L. Lamy, P. Zarka, J.F. Carbary, Discovery of a north-south asymmetry in Saturn’s radio rotation period. Geophys. Res. Lett. 36, 16102 (2009). doi: 10.1029/2009GL039621 ADSGoogle Scholar
  143. D.A. Gurnett, J.B. Groene, A.M. Persoon, J.D. Menietti, S.-Y. Ye, W.S. Kurth, R.J. MacDowall, A. Lecacheux, The reversal of the rotational modulation rates of the north and south components of Saturn kilometric radiation near equinox. Geophys. Res. Lett. 37, 24101 (2010a). doi: 10.1029/2010GL045796 ADSGoogle Scholar
  144. D.A. Gurnett, A.M. Persoon, A.J. Kopf, W.S. Kurth, M.W. Morooka, J.-E. Wahlund, K.K. Khurana, M.K. Dougherty, D.G. Mitchell, S.M. Krimigis, N. Krupp, A plasmapause-like density boundary at high latitudes in Saturn’s magnetosphere. Geophys. Res. Lett. 37, 16806 (2010b). doi: 10.1029/2010GL044466 ADSGoogle Scholar
  145. J. Gustin, P.D. Feldman, J.-C. Gérard, D. Grodent, A. Vidal-Madjar, L. Ben Jaffel, J.-M. Desert, H.W. Moos, D.J. Sahnow, H.A. Weaver, B.C. Wolven, J.M. Ajello, J.H. Waite, E. Roueff, H. Abgrall, Jovian auroral spectroscopy with FUSE: Analysis of self-absorption and implications for electron precipitation. Icarus 171, 336–355 (2004a). doi: 10.1016/j.icarus.2004.06.005 ADSGoogle Scholar
  146. J. Gustin, J.-C. Gérard, D. Grodent, S.W.H. Cowley, J.T. Clarke, A. Grard, Energy-flux relationship in the FUV Jovian aurora deduced from HST-STIS spectral observations. J. Geophys. Res. 109, 10205 (2004b). doi: 10.1029/2003JA010365 Google Scholar
  147. J. Gustin, J.-C. Gérard, G.R. Gladstone, D. Grodent, J.T. Clarke, Characteristics of Jovian morning bright FUV aurora from Hubble space Telescope/space telescope imaging spectrograph imaging and spectral observations. J. Geophys. Res. 111, 9220 (2006). doi: 10.1029/2006JA011730 Google Scholar
  148. J. Gustin, J.-C. Gérard, W.R. Pryor, P.D. Feldman, D. Grodent, G. Holsclaw, Characteristics of Saturn’s polar atmosphere and auroral electrons derived from HST/STIS, FUSE and Cassini/UVIS spectra. Icarus 200(1), 176–187 (2009). doi: 10.1016/j.icarus.2008.11.013 ADSGoogle Scholar
  149. J. Gustin, B. Bonfond, D. Grodent, J.-C. Gérard, Conversion from HST ACS and STIS auroral counts into brightness, precipitated power, and radiated power for H2 giant planets. J. Geophys. Res. 117, 7316 (2012). doi: 10.1029/2012JA017607 Google Scholar
  150. J. Gustin, J.-C. Gérard, D. Grodent, G.R. Gladstone, J.T. Clarke, W.R. Pryor, V. Dols, B. Bonfond, A. Radioti, L. Lamy, J.M. Ajello, Effects of methane on giant planet’s UV emissions and implications for the auroral characteristics. J. Mol. Spectrosc. 291, 108–117 (2013). doi: 10.1016/j.jms.2013.03.010 ADSGoogle Scholar
  151. C.J. Hansen, L. Esposito, A.I.F. Stewart, J. Colwell, A. Hendrix, W. Pryor, D. Shemansky, R. West, Enceladus’ water vapor plume. Science 311, 1422–1425 (2006). doi: 10.1126/science.1121254 ADSGoogle Scholar
  152. W. Harris, J.T. Clarke, M.A. McGrath, G.E. Ballester, Analysis of Jovian auroral H Ly-alpha emission (1981–1991). Icarus 123, 350–365 (1996). doi: 10.1006/icar.1996.0164 ADSGoogle Scholar
  153. S. Hess, F. Mottez, P. Zarka, Jovian S burst generation by Alfvén waves. J. Geophys. Res. 112, 11212 (2007a). doi: 10.1029/2006JA012191 Google Scholar
  154. S. Hess, P. Zarka, F. Mottez, Io Jupiter interaction, millisecond bursts and field-aligned potentials. Planet. Space Sci. 55, 89–99 (2007b). doi: 10.1016/j.pss.2006.05.016 ADSGoogle Scholar
  155. S. Hess, B. Cecconi, P. Zarka, Modeling of Io-Jupiter decameter arcs, emission beaming and energy source. Geophys. Res. Lett. 35, 13107 (2008). doi: 10.1029/2008GL033656 ADSGoogle Scholar
  156. S. Hess, F. Mottez, P. Zarka, Effect of electric potential structures on Jovian S-burst morphology. Geophys. Res. Lett. 36 (2009a). doi: 10.1029/2009GL039084
  157. S. Hess, P. Zarka, F. Mottez, V.B. Ryabov, Electric potential jumps in the Io-Jupiter flux tube. Planet. Space Sci. 57(1), 23–33 (2009b). doi: 10.1016/j.pss.2008.10.006 ADSGoogle Scholar
  158. S.L.G. Hess, A. Petin, P. Zarka, B. Bonfond, B. Cecconi, Lead angles and emitting electron energies of Io-controlled decameter radio arcs. Planet. Space Sci. 58(10), 1188–1198 (2010). doi: 10.1016/j.pss.2010.04.011 ADSGoogle Scholar
  159. S.L.G. Hess, B. Bonfond, P. Zarka, D. Grodent, Model of the Jovian magnetic field topology constrained by the Io auroral emissions. J. Geophys. Res. 116, 5217 (2011a). doi: 10.1029/2010JA016262 Google Scholar
  160. S.L.G. Hess, P.A. Delamere, F. Bagenal, N.M. Schneider, A.J. Steffl, Longitudinal modulation of hot electrons in the Io plasma torus. J. Geophys. Res. 116 (2011b). doi: 10.1029/2011JA016918
  161. S.L.G. Hess, E. Echer, P. Zarka, Solar wind pressure effects on Jupiter decametric radio emissions independent of Io. Planet. Space Sci. 70, 114–125 (2012). doi: 10.1016/j.pss.2012.05.011 ADSGoogle Scholar
  162. S.L.G. Hess, B. Bonfond, P.A. Delamere, How could the Io footprint disappear? Planet. Space Sci. 89, 102–110 (2013). doi: 10.1016/j.pss.2013.08.014 ADSGoogle Scholar
  163. S.L.G. Hess, E. Echer, P. Zarka, L. Lamy, P. Delamere, Multi-instrument study of the Jovian radio emissions triggered by solar wind shocks and inferred magnetospheric subcorotation rates. Planet. Space Sci. (2014, submitted) Google Scholar
  164. T.W. Hill, Inertial limit on corotation. J. Geophys. Res. 84, 6554–6558 (1979). doi: 10.1029/JA084iA11p06554 ADSGoogle Scholar
  165. T.W. Hill, The Jovian auroral oval. J. Geophys. Res. 106, 8101–8108 (2001). doi: 10.1029/2000JA000302 ADSGoogle Scholar
  166. T.W. Hill, V.M. Vasyliũnas, Jovian auroral signature of Io’s corotational wake. J. Geophys. Res. 107, 1464 (2002). doi: 10.1029/2002JA009514 Google Scholar
  167. M.E. Hill, D.K. Haggerty, R.L. McNutt, C.P. Paranicas, Energetic particle evidence for magnetic filaments in Jupiter’s magnetotail. J. Geophys. Res. 114 (2009). doi: 10.1029/2009JA014374
  168. Y. Hiraki, C. Tao, Parameterization of ionization rate by auroral electron precipitation in Jupiter. Ann. Geophys. 26, 77–86 (2008). doi: 10.5194/angeo-26-77-2008 ADSGoogle Scholar
  169. M. Horanyi, T.E. Cravens, J.H. Waite Jr., The precipitation of energetic heavy ions into the upper atmosphere of Jupiter. J. Geophys. Res. 93, 7251–7271 (1988). doi: 10.1029/JA093iA07p07251 ADSGoogle Scholar
  170. T.S. Huang, T.W. Hill, Corotation lag of the Jovian atmosphere, ionosphere, and magnetosphere. J. Geophys. Res. 94, 3761–3765 (1989). doi: 10.1029/JA094iA04p03761 ADSGoogle Scholar
  171. D.E. Huddleston, C.T. Russell, G. Le, A. Szabo, Magnetopause structure and the role of reconnection at the outer planets. J. Geophys. Res. 102(A11), 24289–24302 (1997) ADSGoogle Scholar
  172. D.L. Huestis, Hydrogen collisions in planetary atmospheres, ionospheres, and magnetospheres. Planet. Space Sci. 56, 1733–1743 (2008). doi: 10.1016/j.pss.2008.07.012 ADSGoogle Scholar
  173. Y. Hui, D.R. Schultz, V.A. Kharchenko, P.C. Stancil, T.E. Cravens, C.M. Lisse, A. Dalgarno, The Ion-induced charge-exchange X-ray emission of the Jovian auroras: Magnetospheric or solar wind origin? Astrophys. J. 702, 158–162 (2009). doi: 10.1088/0004-637X/702/2/L158 ADSGoogle Scholar
  174. Y. Hui, T.E. Cravens, N. Ozak, D.R. Schultz, What can be learned from the absence of auroral X-ray emission from Saturn? J. Geophys. Res. 115, 10239 (2010a). doi: 10.1029/2010JA015639 Google Scholar
  175. Y. Hui, D.R. Schultz, V.A. Kharchenko, A. Bhardwaj, G. Branduardi-Raymont, P.C. Stancil, T.E. Cravens, C.M. Lisse, A. Dalgarno, Comparative analysis and variability of the Jovian X-ray spectra detected by the Chandra and XMM-Newton observatories. J. Geophys. Res. 115, 7102 (2010b). doi: 10.1029/2009JA014854 Google Scholar
  176. K. Imai, L. Wang, T.D. Carr, Modeling Jupiter’s decametric modulation lanes. J. Geophys. Res. 102, 7127–7136 (1997). doi: 10.1029/96JA03960 ADSGoogle Scholar
  177. A.P. Ingersoll, A.R. Vasavada, B. Little, C.D. Anger, S.J. Bolton, C. Alexander, K.P. Klaasen, W.K. Tobiska, Imaging Jupiter’s aurora at visible wavelengths. Icarus 135, 251–264 (1998). doi: 10.1006/icar.1998.5971 ADSGoogle Scholar
  178. M. Ishimoto, M.R. Torr, Energetic He(+) precipitation in a mid-latitude aurora. J. Geophys. Res. 92, 3284–3292 (1987). doi: 10.1029/JA092iA04p03284 ADSGoogle Scholar
  179. C.M. Jackman, L. Lamy, M.P. Freeman, P. Zarka, B. Cecconi, W.S. Kurth, S.W.H. Cowley, M.K. Dougherty, On the character and distribution of lower-frequency radio emissions at Saturn and their relationship to substorm-like events. J. Geophys. Res. 114, 8211 (2009). doi: 10.1029/2008JA013997 Google Scholar
  180. C.M. Jackman, C.S. Arridge, J.A. Slavin, S.E. Milan, L. Lamy, M.K. Dougherty, A.J. Coates, In situ observations of the effect of a solar wind compression on Saturn’s magnetotail. J. Geophys. Res. 115, 10240 (2010). doi: 10.1029/2010JA015312 Google Scholar
  181. C.M. Jackman, J.A. Slavin, S.W.H. Cowley, Cassini observations of plasmoid structure and dynamics: Implications for the role of magnetic reconnection in magnetospheric circulation at Saturn. J. Geophys. Res. 116 (2011). doi: 10.1029/2011JA016682
  182. C.M. Jackman, N. Achilleos, S.W.H. Cowley, E.J. Bunce, A. Radioti, D. Grodent, S.V. Badman, M.K. Dougherty, W. Pryor, Auroral counterpart of magnetic field dipolarizations in Saturn’s tail. Planet. Space Sci. 82, 34–42 (2013) ADSGoogle Scholar
  183. S.P. Joy, M.G. Kivelson, R.J. Walker, K.K. Khurana, C.T. Russell, T. Ogino, Probabilistic models of the Jovian magnetopause and bow shock locations. J. Geophys. Res. 107, 1309 (2002). doi: 10.1029/2001JA009146 Google Scholar
  184. S. Jurac, J.D. Richardson, A self-consistent model of plasma and neutrals at Saturn: Neutral cloud morphology. J. Geophys. Res. 110, 9220 (2005). doi: 10.1029/2004JA010635 Google Scholar
  185. M.L. Kaiser, M.D. Desch, J.W. Warwick, J.B. Pearce, Voyager detection of nonthermal radio emission from Saturn. Science 209, 1238–1240 (1980). doi: 10.1126/science.209.4462.1238 ADSGoogle Scholar
  186. M.L. Kaiser, M.D. Desch, A. Lecacheux, Saturnian kilometric radiation—Statistical properties and beam geometry. Nature 292, 731–733 (1981). doi: 10.1038/292731a0 ADSGoogle Scholar
  187. M.L. Kaiser, M.D. Desch, J.E.P. Connerney, Saturn’s ionosphere—Inferred electron densities. J. Geophys. Res. 89, 2371–2376 (1984a). doi: 10.1029/JA089iA04p02371 ADSGoogle Scholar
  188. M.L. Kaiser, M.D. Desch, W.S. Kurth, A. Lecacheux, F. Genova, B.M. Pedersen, D.R. Evans, Saturn as a radio source, in Saturn, ed. by T. Gehrels, M.S. Matthews, (1984b), pp. 378–415 Google Scholar
  189. S. Kasahara, E.A. Kronberg, N. Krupp, T. Kimura, C. Tao, S.V. Badman, A. Retinò, M. Fujimoto, Magnetic reconnection in the Jovian tail: X-line evolution and consequent plasma sheet structures. J. Geophys. Res. 116, 11219 (2011). doi: 10.1029/2011JA016892 Google Scholar
  190. V. Kharchenko, W. Liu, A. Dalgarno, X ray and EUV emission spectra of oxygen ions precipitating into the Jovian atmosphere. J. Geophys. Res. 103, 26687–26698 (1998). doi: 10.1029/98JA02395 ADSGoogle Scholar
  191. V. Kharchenko, A. Dalgarno, D.R. Schultz, P.C. Stancil, Ion emission spectra in the Jovian X-ray aurora. Geophys. Res. Lett. 33, 11105 (2006). doi: 10.1029/2006GL026039 ADSGoogle Scholar
  192. V. Kharchenko, A. Bhardwaj, A. Dalgarno, D.R. Schultz, P.C. Stancil, Modeling spectra of the north and south Jovian X-ray auroras. J. Geophys. Res. 113, 8229 (2008). doi: 10.1029/2008JA013062 Google Scholar
  193. K.K. Khurana, M.G. Kivelson, V.M. Vasyliunas, N. Krupp, J. Woch, A. Lagg, B.H. Mauk, W.S. Kurth, The configuration of Jupiter’s magnetosphere, in Jupiter. The Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon, (2004), pp. 593–616 Google Scholar
  194. Y.H. Kim, J.L. Fox, The Jovian ionospheric E region. Geophys. Res. Lett. 18, 123–126 (1991). doi: 10.1029/90GL02587 ADSGoogle Scholar
  195. Y.H. Kim, J.L. Fox, The chemistry of hydrocarbon ions in the Jovian ionosphere. Icarus 112, 310–325 (1994). doi: 10.1006/icar.1994.1186 ADSGoogle Scholar
  196. Y.H. Kim, J.L. Fox, H.S. Porter, Densities and vibrational distribution of H(3+) in the Jovian auroral ionosphere. J. Geophys. Res. 97, 6093–6101 (1992). doi: 10.1029/92JE00454 ADSGoogle Scholar
  197. Y.H. Kim, W.D. Pesnell, J.M. Grebowsky, J.L. Fox, Meteoric ions in the ionosphere of Jupiter. Icarus 150, 261–278 (2001). doi: 10.1006/icar.2001.6590 ADSGoogle Scholar
  198. T. Kimura, F. Tsuchiya, H. Misawa, A. Morioka, H. Nozawa, M. Fujimoto, Periodicity analysis of Jovian quasi-periodic radio bursts based on Lomb-Scargle periodograms. J. Geophys. Res. 116, 3204 (2011). doi: 10.1029/2010JA016076 Google Scholar
  199. T. Kimura, L. Lamy, C. Tao, S.V. Badman, S. Kasahara, B. Cecconi, P. Zarka, A. Morioka, Y. Miyoshi, D. Maruno, Y. Kasaba, M. Fujimoto, Long-term modulations of Saturn’s auroral radio emissions by the solar wind and seasonal variations controlled by the solar ultraviolet flux. J. Geophys. Res. 118(11), 7019–7035 (2013). doi: 10.1002/2013JA018833 Google Scholar
  200. M.G. Kivelson, Moon-magnetosphere interactions: A tutorial. Adv. Space Res. 33, 2061 (2004). doi: 10.1016/j.asr.2003.08.042 ADSGoogle Scholar
  201. A.J. Kliore, I.R. Patel, G.F. Lindal, D.N. Sweetnam, H.B. Hotz, J.H. Waite, T. McDonough, Structure of the ionosphere and atmosphere of Saturn from Pioneer 11 Saturn radio occultation. J. Geophys. Res. 85, 5857–5870 (1980). doi: 10.1029/JA085iA11p05857 ADSGoogle Scholar
  202. A.J. Kliore, A.F. Nagy, E.A. Marouf, A. Anabtawi, E. Barbinis, D.U. Fleischman, D.S. Kahan, Midlatitude and high-latitude electron density profiles in the ionosphere of Saturn obtained by Cassini radio occultation observations. J. Geophys. Res. 114, 4315 (2009). doi: 10.1029/2008JA013900 Google Scholar
  203. S. Knight, Parallel electric fields. Planet. Space Sci. 21, 741–750 (1973). doi: 10.1016/0032-0633(73)90093-7 ADSGoogle Scholar
  204. P.S. Krstić, Inelastic processes from vibrationally excited states in slow H++H2 and H+H2+ collisions: Excitations and charge transfer. Phys. Rev. A 66, 042717 (2002). doi: 10.1103/PhysRevA.66.042717 ADSGoogle Scholar
  205. N. Krupp, J. Woch, A. Lagg, B. Wilken, S. Livi, D.J. Williams, Energetic particle bursts in the predawn Jovian magnetotail. Geophys. Res. Lett. 25, 1249–1252 (1998). doi: 10.1029/98GL00863 ADSGoogle Scholar
  206. N. Krupp, A. Lagg, S. Livi, B. Wilken, J. Woch, E.C. Roelof, D.J. Williams, Global flows of energetic ions in Jupiter’s equatorial plane: First-order approximation. J. Geophys. Res. 106, 26017–26032 (2001). doi: 10.1029/2000JA900138 ADSGoogle Scholar
  207. W.S. Kurth, D.A. Gurnett, J.T. Clarke, P. Zarka, M.D. Desch, M.L. Kaiser, B. Cecconi, A. Lecacheux, W.M. Farrell, P. Galopeau, J.-C. Gérard, D. Grodent, R. Prangé, M.K. Dougherty, F.J. Crary, An Earth-like correspondence between Saturn’s auroral features and radio emission. Nature 433, 722–725 (2005). doi: 10.1038/nature03334 ADSGoogle Scholar
  208. W.S. Kurth, E.J. Bunce, J.T. Clarke, F.J. Crary, D.C. Grodent, A.P. Ingersoll, U.A. Dyudina, L. Lamy, D.G. Mitchell, A.M. Persoon, W.R. Pryor, J. Saur, T. Stallard, Auroral processes, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis (Springer, Dordrecht Heidelberg London New York, 2009) Google Scholar
  209. H.P. Ladreiter, P. Zarka, A. Lacacheux, Direction finding study of Jovian hectometric and broadband kilometric radio emissions: Evidence for their auroral origin. Planet. Space Sci. 42, 919–931 (1994). doi: 10.1016/0032-0633(94)90052-3 ADSGoogle Scholar
  210. H.R. Lai, H.Y. Wei, C.T. Russell, C.S. Arridge, M.K. Dougherty, Reconnection at the magnetopause of Saturn: Perspective from FTE occurrence and magnetosphere size. J. Geophys. Res. 117 (2012). doi: 10.1029/2011JA017263
  211. H.A. Lam, N. Achilleos, S. Miller, J. Tennyson, L.M. Trafton, T.R. Geballe, G. Ballester, A baseline spectroscopic study of the infrared auroras of Jupiter. Icarus 127 (1997). doi: 10.1006/icar.1997.5698
  212. L. Lamy, Variability of southern and northern periodicities of Saturn kilometric radiation, in Planetary Radio Emissions, ed. by H.O. Rucker (Austrian Acad. Sci. Press, Vienna, 2011), pp. 39–50. doi: 10.1553/PRE7s39 Google Scholar
  213. L. Lamy, P. Zarka, B. Cecconi, S. Hess, R. Prangé, Modeling of Saturn kilometric radiation arcs and equatorial shadow zone. J. Geophys. Res. 113, 10213 (2008a). doi: 10.1029/2008JA013464 Google Scholar
  214. L. Lamy, P. Zarka, B. Cecconi, R. Prangé, W.S. Kurth, D.A. Gurnett, Saturn kilometric radiation: Average and statistical properties. J. Geophys. Res. 113, 7201 (2008b). doi: 10.1029/2007JA012900 Google Scholar
  215. L. Lamy, B. Cecconi, R. Prangé, P. Zarka, J.D. Nichols, J.T. Clarke, An auroral oval at the footprint of Saturn’s kilometric radio sources, colocated with the UV aurorae. J. Geophys. Res. 114, 10212 (2009). doi: 10.1029/2009JA014401 Google Scholar
  216. L. Lamy, P. Schippers, P. Zarka, B. Cecconi, C.S. Arridge, M.K. Dougherty, P. Louarn, N. André, W.S. Kurth, R.L. Mutel, D.A. Gurnett, A.J. Coates, Properties of Saturn kilometric radiation measured within its source region. Geophys. Res. Lett. 37, 12104 (2010). doi: 10.1029/2010GL043415 ADSGoogle Scholar
  217. L. Lamy, B. Cecconi, P. Zarka, P. Canu, P. Schippers, W.S. Kurth, R.L. Mutel, D.A. Gurnett, D. Menietti, P. Louarn, Emission and propagation of Saturn kilometric radiation: Magnetoionic modes, beaming pattern, and polarization state. J. Geophys. Res. 116, 4212 (2011). doi: 10.1029/2010JA016195 Google Scholar
  218. L. Lamy, R. Prangé, K.C. Hansen, J.T. Clarke, P. Zarka, B. Cecconi, J. Aboudarham, N. André, G. Branduardi-Raymont, R. Gladstone, M. Barthélémy, N. Achilleos, P. Guio, M.K. Dougherty, H. Melin, S.W.H. Cowley, T.S. Stallard, J.D. Nichols, G. Ballester, Earth-based detection of Uranus’ aurorae. Geophys. Res. Lett. 39, 7105 (2012). doi: 10.1029/2012GL051312 ADSGoogle Scholar
  219. L. Lamy, R. Prangé, W. Pryor, J. Gustin, S.V. Badman, H. Melin, T. Stallard, D.G. Mitchell, P.C. Brandt, Multi-spectral simultaneous diagnosis of Saturn’s aurorae throughout a planetary rotation. J. Geophys. Res. 118, 1–27 (2013). doi: 10.1002/jgra.50404 Google Scholar
  220. L.J. Lanzerotti, T.P. Armstrong, R.E. Gold, K.A. Anderson, S.M. Krimigis, R.P. Lin, M. Pick, E.C. Roelof, E.T. Sarris, G.M. Simnett, The hot plasma environment at Jupiter—ULYSSES results. Science 257, 1518–1524 (1992). doi: 10.1126/science.257.5076.1518 ADSGoogle Scholar
  221. G.F. Lindal, D.N. Sweetnam, V.R. Eshleman, The atmosphere of Saturn—An analysis of the Voyager radio occultation measurements. Astron. J. 90, 1136–1146 (1985) ADSGoogle Scholar
  222. T.A. Livengood, H.W. Moos, Jupiter’s north and south polar aurorae with IUE data. Geophys. Res. Lett. 17, 2265–2268 (1990). doi: 10.1029/GL017i012p02265 ADSGoogle Scholar
  223. D.A. Lorentzen, Latitudinal and longitudinal dispersion of energetic auroral protons. Ann. Geophys. 18, 81–89 (2000). doi: 10.1007/s00585-000-0081-3 ADSGoogle Scholar
  224. P. Louarn, D. Le Quéau, Generation of the auroral kilometric radiation in plasma cavities—II. The cyclotron maser instability in small size sources. Planet. Space Sci. 44, 211–224 (1996). doi: 10.1016/0032-0633(95)00122-0 ADSGoogle Scholar
  225. P. Louarn, A. Roux, S. Perraut, W. Kurth, D. Gurnett, A study of the large-scale dynamics of the Jovian magnetosphere using the Galileo plasma wave experiment. Geophys. Res. Lett. 25, 2905–2908 (1998). doi: 10.1029/98GL01774 ADSGoogle Scholar
  226. R.J. MacDowall, M.L. Kaiser, M.D. Desch, W.M. Farrell, R.A. Hess, R.G. Stone, Quasiperiodic Jovian radio bursts: Observations from the ulysses radio and plasma wave experiment. Planet. Space Sci. 41, 1059–1072 (1993). doi: 10.1016/0032-0633(93)90109-F ADSGoogle Scholar
  227. T. Majeed, J.C. McConnell, The upper ionospheres of Jupiter and Saturn. Planet. Space Sci. 39, 1715–1732 (1991). doi: 10.1016/0032-0633(91)90031-5 ADSGoogle Scholar
  228. A. Masters, J.P. Eastwood, M. Swisdak, M.F. Thomsen, C.T. Russell, N. Sergis, F.J. Crary, M.K. Dougherty, A.J. Coates, S.M. Krimigis, The importance of plasma β conditions for magnetic reconnection at Saturn’s magnetopause. Geophys. Res. Lett. 39 (2012). doi: 10.1029/2012GL051372
  229. K.I. Matcheva, D.J. Barrow, Small-scale variability in Saturn’s lower ionosphere. Icarus 221, 525–543 (2012). doi: 10.1016/j.icarus.2012.08.022 ADSGoogle Scholar
  230. B.H. Mauk, J.T. Clarke, D. Grodent, J.H. Waite, C.P. Paranicas, D.J. Williams, Transient aurora on Jupiter from injections of magnetospheric electrons. Nature 415, 1003–1005 (2002) ADSGoogle Scholar
  231. B.H. Mauk, D.C. Hamilton, T.W. Hill, G.B. Hospodarsky, R.E. Johnson, C. Paranicas, E. Roussos, C.T. Russell, D.E. Shemansky, E.C. Sittler, R.M. Thorne, Fundamental plasma processes in Saturn’s magnetosphere, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis, (2009). Chap. Fundamental plasma processes in Saturn’s magnetosphere. doi: 10.1007/978-1-4020-9217-6 Google Scholar
  232. H.J. McAndrews, C.J. Owen, M.F. Thomsen, B. Lavraud, A.J. Coates, M.K. Dougherty, D.T. Young, Evidence for reconnection at Saturn’s magnetopause. J. Geophys. Res. 113(A4) (2008). doi: 10.1029/2007JA012581
  233. D.J. McComas, F. Bagenal, Jupiter: A fundamentally different magnetospheric interaction with the solar wind. Geophys. Res. Lett. 34 (2007). doi: 10.1029/2007GL031078
  234. J.C. McConnell, J.B. Holberg, G.R. Smith, B.R. Sandel, D.E. Shemansky, A.L. Broadfoot, A new look at the ionosphere of Jupiter in light of the UVS occultation results. Planet. Space Sci. 30, 151–167 (1982). doi: 10.1016/0032-0633(82)90086-1 ADSGoogle Scholar
  235. M.B. McElroy, The ionospheres of the Major planets. Space Sci. Rev. 14, 460–473 (1973). doi: 10.1007/BF00214756 ADSGoogle Scholar
  236. H. Melin, S. Miller, T. Stallard, D. Grodent, Non-LTE effects on \(\mathrm{H}_{3}^{+}\) emission in the Jovian upper atmosphere. Icarus 178, 97–103 (2005). doi: 10.1016/j.icarus.2005.04.016 ADSGoogle Scholar
  237. H. Melin, S. Miller, T. Stallard, L.M. Trafton, T.R. Geballe, Variability in the \(\mathrm{H}_{3}^{+}\) emission of Saturn: Consequences for ionisation rates and temperature. Icarus 186(1), 234–241 (2007). doi: 10.1016/j.icarus.2006.08.014 ADSGoogle Scholar
  238. H. Melin, T. Stallard, S. Miller, J. Gustin G. M, S.V. Badman, W.R. Pryor, J. O’Donoghue, R.H. Brown, K.H. Baines, Simultaneous Cassini VIMS and UVIS observations of Saturn’s southern aurora: Comparing emissions from H, H2 and \(\mathrm{H}_{3}^{+}\) at a high spatial resolution. Geophys. Res. Lett. 38 (2011). doi: 10.1029/2011GL048457
  239. H. Menager, M. Barthélemy, J. Lilensten, H. Lyman, α line in Jovian aurorae: Electron transport and radiative transfer coupled modelling. Astron. Astrophys. 509, 56 (2010). doi: 10.1051/0004-6361/200912952 Google Scholar
  240. J.D. Menietti, D.A. Gurnett, G.B. Hospodarsky, C.A. Higgins, W.S. Kurth, P. Zarka, Modeling radio emission attenuation lanes observed by the Galileo and Cassini spacecraft. Planet. Space Sci. 51, 533–540 (2003). doi: 10.1016/S0032-0633(03)00078-3 ADSGoogle Scholar
  241. J.D. Menietti, R.L. Mutel, P. Schippers, S.-Y. Ye, D.A. Gurnett, L. Lamy, Analysis of Saturn kilometric radiation near a source center. J. Geophys. Res. 116, 12222 (2011). doi: 10.1029/2011JA017056 Google Scholar
  242. C.J. Meredith, S.W.H. Cowley, K.C. Hansen, J.D. Nichols, T.K. Yeoman, Simultaneous conjugate observations of small-scale structures in Saturn’s dayside ultraviolet auroras—Implications for physical origins. J. Geophys. Res. 118(5), 2244–2266 (2013). doi: 10.1002/jgra.50270 Google Scholar
  243. A.E. Metzger, D.A. Gilman, J.L. Luthey, K.C. Hurley, H.W. Schnopper, F.D. Seward, J.D. Sullivan, The detection of X rays from Jupiter. J. Geophys. Res. 88, 7731–7741 (1983). doi: 10.1029/JA088iA10p07731 ADSGoogle Scholar
  244. S. Miller, R.D. Joseph, J. Tennyson, Infrared emissions of \(\mathrm{H}_{3}^{+}\) in the atmosphere of Jupiter in the 2.1 and 4.0 micron region. Astrophys. J. Lett. 360, 55–58 (1990). doi: 10.1086/185811 ADSGoogle Scholar
  245. S. Miller, A. Aylward, G. Millward, Giant planet ionospheres and thermospheres: The importance of ion-neutral coupling. Space Sci. Rev. 116, 319–343 (2005). doi: 10.1007/s11214-005-1960-4 ADSGoogle Scholar
  246. S. Miller, T. Stallard, H. Melin, J. Tennyson, \(\mathrm{H}_{3}^{+}\) cooling in planetary atmospheres. Faraday Discuss. 147, 283 (2010). doi: 10.1039/c004152c ADSGoogle Scholar
  247. G. Millward, S. Miller, T. Stallard, A.D. Aylward, N. Achilleos, On the dynamics of the Jovian ionosphere and Thermosphere. III. The modelling of auroral conductivity. Icarus 160, 95–107 (2002). doi: 10.1006/icar.2002.6951 ADSGoogle Scholar
  248. G. Millward, S. Miller, T. Stallard, N. Achilleos, A.D. Aylward, On the dynamics of the Jovian ionosphere and thermosphere. Icarus 173, 200–211 (2005). doi: 10.1016/j.icarus.2004.07.027 ADSGoogle Scholar
  249. D.G. Mitchell, J.F. Carbary, S.W.H. Cowley, T.W. Hill, P. Zarka, The dynamics of Saturn’s magnetosphere, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis (Springer, Dordrecht Heidelberg London New York, 2009a). Chap. The dynamics of Saturn’s magnetosphere. doi: 10.1007/978-1-4020-9217-6 Google Scholar
  250. D.G. Mitchell, S.M. Krimigis, C. Paranicas, P.C. Brandt, J.F. Carbary, E.C. Roelof, W.S. Kurth, D.A. Gurnett, J.T. Clarke, J.D. Nichols, J.-C. Gérard, D.C. Grodent, M.K. Dougherty, W.R. Pryor, Recurrent energization of plasma in the midnight-to-dawn quadrant of Saturn’s magnetosphere, and its relationship to auroral UV and radio emissions. Planet. Space Sci. 57, 1732–1742 (2009b). doi: 10.1016/j.pss.2009.04.002 ADSGoogle Scholar
  251. L.E. Moore, M. Mendillo, Are plasma depletions in Saturn’s ionosphere a signature of time-dependent water input? Geophys. Res. Lett. 34(12) (2007). doi: 10.1029/2007GL029381
  252. L.E. Moore, M. Mendillo, I.C.F. Müller-Wodarg, D.L. Murr, Modeling of global variations and ring shadowing in Saturn’s ionosphere. Icarus 172, 503–520 (2004). doi: 10.1016/j.icarus.2004.07.007 ADSGoogle Scholar
  253. L. Moore, A.F. Nagy, A.J. Kliore, I. Müller-Wodarg, J.D. Richardson, M. Mendillo, Cassini radio occultations of Saturn’s ionosphere: Model comparisons using a constant water flux. Geophys. Res. Lett. 33, 22202 (2006). doi: 10.1029/2006GL027375 ADSGoogle Scholar
  254. L. Moore, M. Galand, I. Müller-Wodarg, R. Yelle, M. Mendillo, Plasma temperatures in Saturn’s ionosphere. J. Geophys. Res. 113, 10306 (2008). doi: 10.1029/2008JA013373 Google Scholar
  255. L. Moore, I. Müller-Wodarg, M. Galand, A. Kliore, M. Mendillo, Latitudinal variations in Saturn’s ionosphere: Cassini measurements and model comparisons. J. Geophys. Res. 115, 11317 (2010). doi: 10.1029/2010JA015692 Google Scholar
  256. L. Moore, G. Fischer, I. Müller-Wodarg, M. Galand, M. Mendillo, Diurnal variation of electron density in Saturn’s ionosphere: Model comparisons with Saturn electrostatic discharge (SED) observations. Icarus 221, 508–516 (2012). doi: 10.1016/j.icarus.2012.08.010 ADSGoogle Scholar
  257. J.I. Moses, S.F. Bass, The effects of external material on the chemistry and structure of Saturn’s ionosphere. J. Geophys. Res. 105, 7013–7052 (2000). doi: 10.1029/1999JE001172 ADSGoogle Scholar
  258. F. Mottez, S. Hess, P. Zarka, Explanation of dominant oblique radio emission at Jupiter and comparison to the terrestrial case. Planet. Space Sci. 58, 1414–1422 (2010). doi: 10.1016/j.pss.2010.05.012 ADSGoogle Scholar
  259. I.C.F. Müller-Wodarg, M. Mendillo, R.V. Yelle, A.D. Aylward, A global circulation model of Saturn’s thermosphere. Icarus 180, 147–160 (2006). doi: 10.1016/j.icarus.2005.09.002 ADSGoogle Scholar
  260. I.C.F. Müller-Wodarg, L. Moore G. M, M. Mendillo, Magnetosphere–atmosphere coupling at Saturn: 1—Response of thermosphere and ionosphere to steady state polar forcing. Icarus 221(2) (2012). doi: 10.1016/j.icarus.2012.08.034
  261. R.L. Mutel, J.D. Menietti, D.A. Gurnett, W. Kurth, P. Schippers, C. Lynch, L. Lamy, C. Arridge, B. Cecconi, CMI growth rates for Saturnian kilometric radiation. Geophys. Res. Lett. 37, 19105 (2010). doi: 10.1029/2010GL044940 ADSGoogle Scholar
  262. A.F. Nagy, A.J. Kliore, E. Marouf, R. French, M. Flasar, N.J. Rappaport, A. Anabtawi, S.W. Asmar, D. Johnston, E. Barbinis, G. Goltz, D. Fleischman, First results from the ionospheric radio occultations of Saturn by the Cassini spacecraft. J. Geophys. Res. 111, 6310 (2006). doi: 10.1029/2005JA011519 Google Scholar
  263. A.F. Nagy, A.J. Kliore, M. Mendillo, S. Miller, L. Moore, J.I. Moses, I. Müller-Wodarg, D.E. Shemansky, Upper atmosphere and ionosphere of Saturn, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis, (2009) Google Scholar
  264. N.F. Ness, M.H. Acuna, R.P. Lepping, J.E.P. Connerney, K.W. Behannon, L.F. Burlaga, F.M. Neubauer, Magnetic field studies by Voyager 1—Preliminary results at Saturn. Science 212, 211–217 (1981). doi: 10.1126/science.212.4491.211 ADSGoogle Scholar
  265. F.M. Neubauer, Nonlinear standing Alfven wave current system at Io—Theory. J. Geophys. Res. 85, 1171–1178 (1980). doi: 10.1029/JA085iA03p01171 ADSGoogle Scholar
  266. J.D. Nichols, Magnetosphere-ionosphere coupling at Jupiter-like exoplanets with internal plasma sources: Implications for detectability of auroral radio emissions. Mon. Not. R. Astron. Soc. 414, 2125–2138 (2011). doi: 10.1111/j.1365-2966.2011.18528.x ADSGoogle Scholar
  267. J.D. Nichols, S.W.H. Cowley, Magnetosphere-ionosphere coupling currents in Jupiter’s middle magnetosphere: Dependence on the effective ionospheric Pedersen conductivity and iogenic plasma mass outflow rate. Ann. Geophys. 21, 1419–1441 (2003). doi: 10.5194/angeo-21-1419-2003 ADSGoogle Scholar
  268. J. Nichols, S. Cowley, Magnetosphere-ionosphere coupling currents in Jupiter’s middle magnetosphere: Effect of precipitation-induced enhancement of the ionospheric Pedersen conductivity. Ann. Geophys. 22, 1799–1827 (2004). doi: 10.5194/angeo-22-1799-2004 ADSGoogle Scholar
  269. J.D. Nichols, J.T. Clarke, J.C. Gérard, D. Grodent, Observations of Jovian polar auroral filaments. Geophys. Res. Lett. 36 (2009a). doi: 10.1029/2009GL037578
  270. J.D. Nichols, J.T. Clarke, J.C. Gérard, D. Grodent, K.C. Hansen, Variation of different components of Jupiter’s auroral emission. J. Geophys. Res. 114, 6210 (2009b). doi: 10.1029/2009JA014051 Google Scholar
  271. J.D. Nichols, B. Cecconi, J.T. Clarke, S.W.H. Cowley, J.-C. Gérard, A. Grocott, D. Grodent, L. Lamy, P. Zarka, Variation of Saturn’s UV aurora with SKR phase. Geophys. Res. Lett. 37 (2010a). doi: 10.1029/2010GL044057
  272. J.D. Nichols, S.W.H. Cowley, L. Lamy, Dawn-dusk oscillation of Saturn’s conjugate auroral ovals. Geophys. Res. Lett. 372, 24102 (2010b). doi: 10.1029/2010GL045818 ADSGoogle Scholar
  273. J. O’Donoghue, T.S. Stallard, H. Melin, G.H. Jones, S.W.H. Cowley, S. Miller, K.H. Baines, J.S.D. Blake, The domination of Saturn’s low-latitude ionosphere by ring ‘rain’. Nature 496(7444), 193–195 (2013). doi: 10.1038/nature12049 ADSGoogle Scholar
  274. J. O’Donoghue, T.S. Stallard, H. Melin, S.W.H. Cowley, S.V. Badman, L. Moore, S. Miller, C. Tao, K.H. Baines, J.S.D. Blake, Conjugate observations of Saturn’s northern and southern \(\mathrm{H}_{3}^{+}\) aurorae. Icarus 229, 214–220 (2014). doi: 10.1016/j.icarus.2013.11.009 ADSGoogle Scholar
  275. N. Ozak, D.R. Schultz, T.E. Cravens, V. Kharchenko, Y.-W. Hui, Auroral X-ray emission at Jupiter: Depth effects. J. Geophys. Res. 115, 11306 (2010). doi: 10.1029/2010JA015635 Google Scholar
  276. L. Pallier, R. Prangé, More about the structure of the high latitude Jovian aurorae. Planet. Space Sci. 49, 1159–1173 (2001). doi: 10.1016/S0032-0633(01)00023-X ADSGoogle Scholar
  277. L. Pallier, R. Prangé, Detection of the southern counterpart of the Jovian northern polar cusp: Shared properties. Geophys. Res. Lett. 31, 6701 (2004). doi: 10.1029/2003GL018041 ADSGoogle Scholar
  278. M. Panchenko, H. Rucker, W. Farrell, Periodic bursts of Jovian non-Io decametric radio emission. Planet. Space Sci. 77, 3–11 (2013) ADSGoogle Scholar
  279. J.D. Patterson, T.P. Armstrong, C.M. Laird, D.L. Detrick, A.T. Weatherwax, Correlation of solar energetic protons and polar cap absorption. J. Geophys. Res. 106, 149–164 (2001). doi: 10.1029/2000JA002006 ADSGoogle Scholar
  280. J.J. Perry, Y.H. Kim, J.L. Fox, H.S. Porter, Chemistry of the Jovian auroral ionosphere. J. Geophys. Res. 104, 16541–16566 (1999). doi: 10.1029/1999JE900022 ADSGoogle Scholar
  281. R. Prangé, D. Rego, J.-C. Gerard, Auroral Lyman alpha and H2 bands from the giant planets. 2: Effect of the anisotropy of the precipitating particles on the interpretation of the ‘color ratio’. J. Geophys. Res. 100, 7513–7521 (1995). doi: 10.1029/94JE03176 ADSGoogle Scholar
  282. R. Prangé, D. Rego, D. Southwood, P. Zarka, S. Miller, W. Ip, Rapid energy dissipation and variability of the lo-Jupiter electrodynamic circuit. Nature 379, 323–325 (1996). doi: 10.1038/379323a0 ADSGoogle Scholar
  283. R. Prangé, L. Pallier, K.C. Hansen, R. Howard, A. Vourlidas, R. Courtin, C. Parkinson, An interplanetary shock traced by planetary auroral storms from the Sun to Saturn. Nature 432, 78–81 (2004). doi: 10.1038/nature02986 ADSGoogle Scholar
  284. W.R. Pryor, A.M. Rymer, D.G. Mitchell, T.W. Hill, D.T. Young, J. Saur, G.H. Jones, S. Jacobsen, S.W.H. Cowley, B.H. Mauk, A.J. Coates, J. Gustin, D. Grodent, J.-C. Gérard, L. Lamy, J.D. Nichols, S.M. Krimigis, L.W. Esposito, M.K. Dougherty, A.J. Jouchoux, A.I.F. Stewart, W.E. McClintock, G.M. Holsclaw, J.M. Ajello, J.E. Colwell, A.R. Hendrix, F.J. Crary, J.T. Clarke, X. Zhou, The auroral footprint of Enceladus on Saturn. Nature 472, 331–333 (2011). doi: 10.1038/nature09928 ADSGoogle Scholar
  285. A. Radioti, J.-C. Gérard, D. Grodent, B. Bonfond, N. Krupp, J. Woch, Discontinuity in Jupiter’s main auroral oval. J. Geophys. Res. 113, 1215 (2008a). doi: 10.1029/2007JA012610 Google Scholar
  286. A. Radioti, D. Grodent, J.-C. Gérard, B. Bonfond, J.T. Clarke, Auroral polar dawn spots: Signatures of internally driven reconnection processes at Jupiter’s magnetotail. Geophys. Res. Lett. 35, 3104 (2008b). doi: 10.1029/2007GL032460 ADSGoogle Scholar
  287. A. Radioti, D. Grodent, J.-C. Gérard, E. Roussos, C. Paranicas, B. Bonfond, D.G. Mitchell, N. Krupp, S. Krimigis, J.T. Clarke, Transient auroral features at Saturn: Signatures of energetic particle injections in the magnetosphere. J. Geophys. Res. 114, 3210 (2009). doi: 10.1029/2008JA013632 Google Scholar
  288. A. Radioti, D. Grodent, J.-C. Gérard, S.E. Milan, B. Bonfond, J. Gustin, W.R. Pryor, Bifurcations of the main auroral ring at Saturn: Ionospheric signatures of consecutive reconnection events at the magnetopause. J. Geophys. Res. 116 (2011a). doi: 10.1029/2011JA016661
  289. A. Radioti, D. Grodent, J.-C. Gérard, M.F. Vogt, M. Lystrup, B. Bonfond, Nightside reconnection at Jupiter: Auroral and magnetic field observations from 26 July 1998. J. Geophys. Res. 116, 3221 (2011b). doi: 10.1029/2010JA016200 Google Scholar
  290. A. Radioti, M. Lystrup, B. Bonfond, J.-C. Gérard, Jupiter’s aurora in ultraviolet and infrared: Simultaneous observations with the Hubble space telescope and the NASA infrared telescope facility. J. Geophys. Res. 118(5), 2286–2295 (2013a). doi: 10.1002/jgra.50245 Google Scholar
  291. A. Radioti, E. Roussos, D. Grodent, J.-C. Gérard, N. Krupp, D.G. Mitchell, J. Gustin, B. Bonfond, W. Pryor, Signatures of magnetospheric injections in Saturn’s aurora. J. Geophys. Res. 118, 1922–1933 (2013b). doi: 10.1002/jgra.50161 Google Scholar
  292. L.C. Ray, S. Hess, Modelling the Io-related DAM emission by modifying the beaming angle. J. Geophys. Res. 113, 11218 (2008). doi: 10.1029/2008JA013669 Google Scholar
  293. L.C. Ray, R.E. Ergun, P.A. Delamere, F. Bagenal, Magnetosphere-ionosphere coupling at Jupiter: Effect of field-aligned potentials on angular momentum transport. J. Geophys. Res. 115, 9211 (2010). doi: 10.1029/2010JA015423 Google Scholar
  294. L.C. Ray, R.E. Ergun, P.A. Delamere, F. Bagenal, Magnetosphere-ionosphere coupling at Jupiter: A parameter space study. J. Geophys. Res. 117, 1205 (2012a). doi: 10.1029/2011JA016899 Google Scholar
  295. L.C. Ray, M. Galand, L.E. Moore, B.L. Fleshman, Characterizing the limitations to the coupling between Saturn’s ionosphere and middle magnetosphere. J. Geophys. Res. 117, 7210 (2012b). doi: 10.1029/2012JA017735 Google Scholar
  296. J.C. Raymond, X-rays from charge transfer in astrophysics: Overview. Astron. Nachr. 333, 290 (2012). doi: 10.1002/asna.201211677 ADSGoogle Scholar
  297. E. Raynaud, E. Lellouch, J.-P. Maillard, G.R. Gladstone, J.H. Waite, B. Bézard, P. Drossart, T. Fouchet, Spectro-imaging observations of Jupiter’s 2-μm auroral emission. I. \(\mathrm{H}_{3}^{+}\) distribution and temperature. Icarus 171, 133–152 (2004). doi: 10.1016/j.icarus.2004.04.020 ADSGoogle Scholar
  298. M.H. Rees, Physics and Chemistry of the Upper Atmosphere (Cambridge University Press, Cambridge, 1989) Google Scholar
  299. D. Rego, R. Prange, J.-C. Gerard, Auroral Lyman α and H2 bands from the giant planets: 1. Excitation by proton precipitation in the Jovian atmosphere. J. Geophys. Res. 99, 17075–17094 (1994). doi: 10.1029/93JE03432 ADSGoogle Scholar
  300. D. Rego, R. Prangé, L. Ben Jaffel, Auroral Lyman α and H2 bands from the giant planets 3. Lyman α spectral profile including charge exchange and radiative transfer effects and H2 color ratios. J. Geophys. Res. 104, 5939–5954 (1999). doi: 10.1029/1998JE900048 ADSGoogle Scholar
  301. D. Rego, S. Miller, N. Achilleos, R. Prangé, R.D. Joseph, Latitudinal profiles of the Jovian IR emissions of \(\mathrm{H}_{3}^{+}\) at 4 μm with the NASA infrared telescope facility: Energy inputs and thermal balance. Icarus 147, 366–385 (2000). doi: 10.1006/icar.2000.6444 ADSGoogle Scholar
  302. M.J. Reiner, J. Fainberg, R.G. Stone, Source characteristics of Jovian hectometric radio emissions. J. Geophys. Res. 98, 18767–18777 (1993a). doi: 10.1029/93JE01779 ADSGoogle Scholar
  303. M.J. Reiner, J. Fainberg, R.G. Stone, M.L. Kaiser, M.D. Desch, R. Manning, P. Zarka, B.-M. Pedersen, Source characteristics of Jovian narrow-band kilometric radio emissions. J. Geophys. Res. 98, 13163 (1993b). doi: 10.1029/93JE00536 ADSGoogle Scholar
  304. A. Roux, A. Hilgers, H. de Féraudy, D. Le Quéau, P. Louarn, S. Perraut, A. Bahnsen, M. Jespersen, E. Ungstrup, M. André, Auroral kilometric radiation sources—In situ and remote observations from Viking. J. Geophys. Res. 98, 11657 (1993). doi: 10.1029/92JA02309 ADSGoogle Scholar
  305. H.O. Rucker, M. Panchenko, K.C. Hansen, U. Taubenschuss, M.Y. Boudjada, W.S. Kurth, M.K. Dougherty, J.T. Steinberg, P. Zarka, P.H.M. Galopeau, D.J. McComas, C.H. Barrow, Saturn kilometric radiation as a monitor for the solar wind? Adv. Space Res. 42, 40–47 (2008). doi: 10.1016/j.asr.2008.02.008 ADSGoogle Scholar
  306. B.R. Sandel, D.E. Shemansky, A.L. Broadfoot, J.B. Holberg, G.R. Smith, J.C. McConnell, D.F. Strobel, S.K. Atreya, T.M. Donahue, H.W. Moos, D.M. Hunten, R.B. Pomphrey, S. Linick, Extreme ultraviolet observations from the Voyager 2 encounter with Saturn. Science 215, 548–553 (1982). doi: 10.1126/science.215.4532.548 ADSGoogle Scholar
  307. T. Satoh, J.E.P. Connerney, Jupiter’s \(\mathrm{H}_{3}^{+}\) emissions viewed in corrected Jovimagnetic coordinates. Icarus 141, 236–252 (1999). doi: 10.1006/icar.1999.6173 ADSGoogle Scholar
  308. P. Schippers, C.S. Arridge, J.D. Menietti, D.A. Gurnett, L. Lamy, B. Cecconi, D.G. Mitchell, N. André, W.S. Kurth, S. Grimald, M.K. Dougherty, A.J. Coates, N. Krupp, D.T. Young, Auroral electron distributions within and close to the Saturn kilometric radiation source region. J. Geophys. Res. 116, 05203 (2011). doi: 10.1029/2011JA016461 Google Scholar
  309. L. Scurry, C.T. Russell, Proxy studies of energy transfer to the magnetosphere. J. Geophys. Res. 96, 9541–9548 (1991). doi: 10.1029/91JA00569 ADSGoogle Scholar
  310. J.A. Simpson, J.D. Anglin, A. Balogh, J.R. Burrows, S.W.H. Cowley, P. Ferrando, B. Heber, R.J. Hynds, H. Kunow, R.G. Marsden, Energetic charged-particle phenomena in the Jovian magnetosphere—First results from the ULYSSES COSPIN collaboration. Science 257, 1543–1550 (1992). doi: 10.1126/science.257.5076.1543 ADSGoogle Scholar
  311. R.P. Singhal, S.C. Chakravarty, A. Bhardwaj, B. Prasad, Energetic electron precipitation in Jupiter’s upper atmosphere. J. Geophys. Res. 97, 18245 (1992). doi: 10.1029/92JE01894 ADSGoogle Scholar
  312. E.C. Sittler, N. Andre, M. Blanc, M. Burger, R.E. Johnson, A. Coates, A. Rymer, D. Reisenfeld, M.F. Thomsen, A. Persoon, M. Dougherty, H.T. Smith, R.A. Baragiola, R.E. Hartle, D. Chornay, M.D. Shappirio, D. Simpson, D.J. McComas, D.T. Young, Ion and neutral sources and sinks within Saturn’s inner magnetosphere: Cassini results. Planet. Space Sci. 56, 3–18 (2008). doi: 10.1016/j.pss.2007.06.006 ADSGoogle Scholar
  313. T.G. Slanger, T.E. Cravens, J. Crovisier, S. Miller, D.F. Strobel, Photoemission phenomena in the solar system. Space Sci. Rev. 139, 267–310 (2008). doi: 10.1007/s11214-008-9387-3 ADSGoogle Scholar
  314. C.G.A. Smith, A.D. Aylward, Coupled rotational dynamics of Saturn’s thermosphere and magnetosphere: A thermospheric modelling study. Ann. Geophys. 26, 1007–1027 (2008). doi: 10.5194/angeo-26-1007-2008 ADSGoogle Scholar
  315. C.G.A. Smith, A.D. Aylward, Coupled rotational dynamics of Jupiter’s thermosphere and magnetosphere. Ann. Geophys. 27, 199–230 (2009). doi: 10.5194/angeo-27-199-2009 ADSGoogle Scholar
  316. E.J. Smith, R.W. Fillius, J.H. Wolfe, Compression of Jupiter’s magnetosphere by the solar wind. J. Geophys. Res. 83, 4733–4742 (1978). doi: 10.1029/JA083iA10p04733 ADSGoogle Scholar
  317. C.G.A. Smith, S. Miller, A.D. Aylward, Magnetospheric energy inputs into the upper atmospheres of the giant planets. Ann. Geophys. 23, 1943–1947 (2005). doi: 10.5194/angeo-23-1943-2005 ADSGoogle Scholar
  318. C.G.A. Smith, A.D. Aylward, G.H. Millward, S. Miller, L.E. Moore, An unexpected cooling effect in Saturn’s upper atmosphere. Nature 445, 399–401 (2007a). doi: 10.1038/nature05518 ADSGoogle Scholar
  319. H.T. Smith, R.E. Johnson, E.C. Sittler, M. Shappirio, D. Reisenfeld, O.J. Tucker, M. Burger, F.J. Crary, D.J. McComas, D.T. Young, Enceladus: The likely dominant nitrogen source in Saturn’s magnetosphere. Icarus 188, 356–366 (2007b). doi: 10.1016/j.icarus.2006.12.007 ADSGoogle Scholar
  320. S.C. Solomon, Auroral electron transport using the Monte Carlo method. Geophys. Res. Lett. 20, 185–188 (1993). doi: 10.1029/93GL00081 ADSGoogle Scholar
  321. S.C. Solomon, Auroral particle transport using Monte Carlo and hybrid methods. J. Geophys. Res. 106, 107–116 (2001). doi: 10.1029/2000JA002011 ADSGoogle Scholar
  322. D.J. Southwood, M.G. Kivelson, The source of Saturn’s periodic radio emission. J. Geophys. Res. 114, 9201 (2009). doi: 10.1029/2008JA013800 Google Scholar
  323. T. Stallard, S. Miller, G.E. Ballester, D. Rego, R.D. Joseph, L.M. Trafton, The \(\mathrm{H}_{3}^{+}\) latitudinal profile of Saturn. Astrophys. J. Lett. 521, 149–152 (1999). doi: 10.1086/312189 ADSGoogle Scholar
  324. T. Stallard, S. Miller, G. Millward, R.D. Joseph, On the dynamics of the Jovian ionosphere and thermosphere. I. The measurement of ion winds. Icarus 154, 475–491 (2001). doi: 10.1006/icar.2001.6681 ADSGoogle Scholar
  325. T. Stallard, S. Miller, G. Millward, R.D. Joseph, On the dynamics of the Jovian ionosphere and thermosphere. II. The measurement of \(\mathrm{H}_{3}^{+}\) vibrational temperature, column density, and total emission. Icarus 156, 498–514 (2002). doi: 10.1006/icar.2001.6793 ADSGoogle Scholar
  326. T.S. Stallard, S. Miller, S.W.H. Cowley, E.J. Bunce, Jupiter’s polar ionospheric flows: Measured intensity and velocity variations poleward of the main auroral oval. Geophys. Res. Lett. 30, 1221 (2003). doi: 10.1029/2002GL016031 ADSGoogle Scholar
  327. T. Stallard, S. Miller, H. Melin, M. Lystrup, M.K. Dougherty, N. Achilleos, Saturn’s auroral/polar \({H}_{3}^{+}\) infrared emission I. General morphology and ion velocity structure. Icarus 189(1), 1–13 (2007a). doi: 10.1016/j.icarus.2006.12.027 ADSGoogle Scholar
  328. T. Stallard, C. Smith, S. Miller, H. Melin, M. Lystrup, A. Aylward, N. Achilleos, M.K. Dougherty, Saturn’s auroral/polar \(\mathrm{H}_{3}^{+}\) infrared emission—II. A comparison with plasma flow models. Icarus 191(2), 678–690 (2007b). doi: 10.1016/j.icarus.2007.05.016 ADSGoogle Scholar
  329. T. Stallard, S. Miller, M. Lystrup, N. Achilleos, E.J. Bunce, C.S. Arridge, M.K. Dougherty, S.W.H. Cowley, S.V. Badman, D.L. Talboys, R.H. Brown, K.H. Baines, B.J. Buratti, R.N. Clark, C. Sotin, P.D. Nicholson, P. Drossart, Complex structure within Saturn’s infrared aurora. Nature 456(7219), 214–217 (2008a). doi: 10.1038/nature07440 ADSGoogle Scholar
  330. T. Stallard, S. Miller, H. Melin, M. Lystrup, S.W.H. Cowley, E.J. Bunce, N. Achilleos, M. Dougherty, Jovian-like aurorae on Saturn. Nature 453(7198), 1083–1085 (2008b). doi: 10.1038/nature07077 ADSGoogle Scholar
  331. T. Stallard, H. Melin, S.W.H. Cowley, S. Miller, M.B. Lystrup, Location and magnetospheric mapping of Saturn’s mid-latitude infrared auroral oval. Astrophys. J. Lett. 722, 85–89 (2010). doi: 10.1088/2041-8205/722/1/L85 ADSGoogle Scholar
  332. T.S. Stallard, A. Masters, S. Miller, H. Melin, E.J. Bunce, C.S. Arridge, N. Achilleos, M.K. Dougherty, S.W.H. Cowley, Saturn’s auroral/polar \(\mathrm{H}_{3}^{+}\) infrared emission: The effect of solar wind compression. J. Geophys. Res. 117, 12302 (2012a). doi: 10.1029/2012JA018201 Google Scholar
  333. T.S. Stallard, H. Melin, S. Miller, J. O’Donoghue, S.W.H. Cowley, S.V. Badman, A. Adriani, R.H. Brown, K.H. Baines, Temperature changes and energy inputs in giant planet atmospheres: What we are learning from \(\mathrm{H}_{3}^{+}\). Philos. Trans. R. Soc. Lond. A 370, 5213–5224 (2012b). doi: 10.1098/rsta.2012.0028 ADSGoogle Scholar
  334. T.S. Stallard, H. Melin, S. Miller, S.V. Badman, R.H. Brown, K.H. Baines, Peak emission altitude of Saturn’s \(\mathrm{H}_{3}^{+}\) aurora. Geophys. Res. Lett. 39(15), L15103 (2012c). doi: 10.1029/2012GL052806 ADSGoogle Scholar
  335. A.J. Steffl, P.A. Delamere, F. Bagenal, Cassini UVIS observations of the Io plasma torus. III. Observations of temporal and azimuthal variability. Icarus 180, 124–140 (2006). doi: 10.1016/j.icarus.2005.07.013 ADSGoogle Scholar
  336. A.J. Steffl, P.A. Delamere, F. Bagenal, Cassini UVIS observations of the Io plasma torus. IV. Modeling temporal and azimuthal variability. Icarus 194, 153–165 (2008). doi: 10.1016/j.icarus.2007.09.019 ADSGoogle Scholar
  337. R.G. Stone, B.M. Pedersen, C.C. Harvey, P. Canu, N. Cornilleau-Wehrlin, M.D. Desch, C. de Villedary, J. Fainberg, W.M. Farrell, K. Goetz, ULYSSES radio and plasma wave observations in the Jupiter environment. Science 257, 1524–1531 (1992). doi: 10.1126/science.257.5076.1524 ADSGoogle Scholar
  338. C. Tao, H. Fujiwara, Y. Kasaba, Neutral wind control of the Jovian magnetosphere-ionosphere current system. J. Geophys. Res. 114, 8307 (2009). doi: 10.1029/2008JA013966 Google Scholar
  339. C. Tao, H. Fujiwara, Y. Kasaba, Jovian magnetosphere-ionosphere current system characterized by diurnal variation of ionospheric conductance. Planet. Space Sci. 58, 351–364 (2010). doi: 10.1016/j.pss.2009.10.005 ADSGoogle Scholar
  340. C. Tao, S.V. Badman, M. Fujimoto, UV and IR auroral emission model for the outer planets: Jupiter and Saturn comparison. Icarus 213, 581–592 (2011). doi: 10.1016/j.icarus.2011.04.001 ADSGoogle Scholar
  341. C. Tao, S.V. Badman, T. Uno, M. Fujimoto, On the feasibility of characterising Jovian auroral electrons via \(\mathrm{H}_{3}^{+}\) infrared line emission analysis. Icarus 221, 236–247 (2012). doi: 10.1016/j.icarus.2012.07.015 ADSGoogle Scholar
  342. C. Tao, S.V. Badman, M. Fujimoto, Characteristic time scales of Uv and Ir auroral emissions at Jupiter and Saturn and their possible observable effects, in Proc. of the 12th Symposium on Planetary Science (TERRAPUB, Japan, 2013) Google Scholar
  343. T. Terasawa, K. Maezawa, S. Machida, Solar wind effect on Jupiter’s non-Io-related radio emission. Nature 273, 131 (1978). doi: 10.1038/273131a0 ADSGoogle Scholar
  344. J.R. Thieman, M.L. Goldstein, Arcs in Saturn’s radio spectra. Nature 292, 728–731 (1981). doi: 10.1038/292728a0 ADSGoogle Scholar
  345. M.F. Thomsen, D.B. Reisenfeld, D.M. Delapp, R.L. Tokar, D.T. Young, F.J. Crary, E.C. Sittler, M.A. McGraw, J.D. Williams, Survey of ion plasma parameters in Saturn’s magnetosphere. J. Geophys. Res. 115, 10220 (2010). doi: 10.1029/2010JA015267 Google Scholar
  346. A.T. Tomás, J. Woch, N. Krupp, A. Lagg, K.-H. Glassmeier, W.S. Kurth, Energetic electrons in the inner part of the Jovian magnetosphere and their relation to auroral emissions. J. Geophys. Res. 109, 6203 (2004). doi: 10.1029/2004JA010405 Google Scholar
  347. J.T. Trauger, J.T. Clarke, G.E. Ballester, R.W. Evans, C.J. Burrows, D. Crisp, J.S. Gallagher, R.E. Griffiths, J.J. Hester, J.G. Hoessel, J.A. Holtzman, J.E. Krist, J.R. Mould, R. Sahai, P.A. Scowen, K.R. Stapelfeldt, A.M. Watson, Saturn’s hydrogen aurora: Wide field and planetary camera 2 imaging from the Hubble space telescope. J. Geophys. Res. 103(E9), 20237–20244 (1998). doi: 10.1029/98JE01324 ADSGoogle Scholar
  348. R.A. Treumann, Planetary radio emission mechanisms: A tutorial, in Radio Astronomy at Long Wavelengths, ed. by R.G. Stone, K.W. Weiler, M.L. Goldstein, J.-L. Bougeret. Washington DC American Geophysical Union Geophysical Monograph Series, vol. 119, (2000) Google Scholar
  349. R.A. Treumann, The electron-cyclotron maser for astrophysical application. Astron. Astrophys. Rev. 13, 229–315 (2006). doi: 10.1007/s00159-006-0001-y ADSGoogle Scholar
  350. A.R. Vasavada, A.H. Bouchez, A.P. Ingersoll, B. Little, C.D. Anger (Galileo SSI Team), Jupiter’s visible aurora and Io footprint. J. Geophys. Res. 104, 27133–27142 (1999). doi: 10.1029/1999JE001055 ADSGoogle Scholar
  351. V.M. Vasyliunas, Plasma distribution and flow, in Physics of the Jovian Magnetosphere, ed. by A.J. Dessler (Cambridge University Press, Cambridge, 1983), pp. 395–453 Google Scholar
  352. M.F. Vogt, M.G. Kivelson, K.K. Khurana, S.P. Joy, R.J. Walker, Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations. J. Geophys. Res. 115 (2010). doi: 10.1029/2009JA015098
  353. M.F. Vogt, M.G. Kivelson, K.K. Khurana, R.J. Walker, B. Bonfond, D. Grodent, A. Radioti, Improved mapping of Jupiter’s auroral features to magnetospheric sources. J. Geophys. Res. 116, 3220 (2011). doi: 10.1029/2010JA016148 Google Scholar
  354. J.H. Waite Jr., The ionosphere of Saturn. Ph.D. thesis, Michigan Univ., Ann Arbor (1981) Google Scholar
  355. J.H. Waite Jr., J.T. Clarke, T.E. Cravens, C.M. Hammond, The Jovian aurora—Electron or ion precipitation? J. Geophys. Res. 93, 7244–7250 (1988). doi: 10.1029/JA093iA07p07244 ADSGoogle Scholar
  356. J.H. Waite Jr., F. Bagenal, F. Seward, C. Na, G.R. Gladstone, T.E. Cravens, K.C. Hurley, J.T. Clarke, R. Elsner, S.A. Stern, ROSAT observations of the Jupiter aurora. J. Geophys. Res. 99, 14799 (1994). doi: 10.1029/94JA01005 ADSGoogle Scholar
  357. J.H. Waite Jr., G.R. Gladstone, K. Franke, W.S. Lewis, A.C. Fabian, W.N. Brandt, C. Na, F. Haberl, J.T. Clarke, K.C. Hurley, M. Sommer, S. Bolton, ROSAT observations of X-ray emissions from Jupiter during the impact of comet Shoemaker-Levy 9. Science 268, 1598–1601 (1995). doi: 10.1126/science.268.5217.1598 ADSGoogle Scholar
  358. J.H. Waite Jr., W.S. Lewis, G.R. Gladstone, T.E. Cravens, A.N. Maurellis, P. Drossart, J.E.P. Connerney, S. Miller, H.A. Lam, Outer planet ionospheres—A review of recent research and a look toward the future. Adv. Space Res. 20, 243 (1997). doi: 10.1016/S0273-1177(97)00542-5 ADSGoogle Scholar
  359. J.H. Waite, T.E. Cravens, J. Kozyra, A.F. Nagy, S.K. Atreya, R.H. Chen, Electron precipitation and related aeronomy of the Jovian thermosphere and ionosphere. J. Geophys. Res. 88, 6143–6163 (1983). doi: 10.1029/JA088iA08p06143 ADSGoogle Scholar
  360. J.H. Waite, G.R. Gladstone, W.S. Lewis, P. Drossart, T.E. Cravens, A.N. Maurellis, B.H. Mauk, S. Miller, Equatorial X-ray emissions: Implications for Jupiter’s high exospheric temperatures. Science 276, 104–108 (1997). doi: 10.1126/science.276.5309.104 ADSGoogle Scholar
  361. J.H. Waite, G.R. Gladstone, W.S. Lewis, R. Goldstein, D.J. McComas, P. Riley, R.J. Walker, P. Robertson, S. Desai, J.T. Clarke, D.T. Young, An auroral flare at Jupiter. Nature 410, 787–789 (2001) ADSGoogle Scholar
  362. R.J. Walker, C.T. Russell, Flux transfer events at the Jovian magnetopause. J. Geophys. Res. 90, 7397–7404 (1985). doi: 10.1029/JA090iA08p07397 ADSGoogle Scholar
  363. J.W. Warwick, J.B. Pearce, D.R. Evans, T.D. Carr, J.J. Schauble, J.K. Alexander, M.L. Kaiser, M.D. Desch, M. Pedersen, A. Lecacheux, G. Daigne, A. Boischot, C.H. Barrow, Planetary radio astronomy observations from Voyager 1 near Saturn. Science 212, 239–243 (1981). doi: 10.1126/science.212.4491.239 ADSGoogle Scholar
  364. J.W. Warwick, D.R. Evans, J.H. Romig, J.K. Alexander, M.D. Desch, M.L. Kaiser, M.G. Aubier, Y. Leblanc, A. Lecacheux, B.M. Pedersen, Planetary radio astronomy observations from Voyager 2 near Saturn. Science 215, 582–587 (1982). doi: 10.1126/science.215.4532.582 ADSGoogle Scholar
  365. R.J. Wilson, R.L. Tokar, M.G. Henderson, Thermal ion flow in Saturn’s inner magnetosphere measured by the Cassini plasma spectrometer: A signature of the Enceladus torus? Geophys. Res. Lett. 36, 23104 (2009). doi: 10.1029/2009GL040225 ADSGoogle Scholar
  366. J. Woch, N. Krupp, A. Lagg, B. Wilken, S. Livi, D.J. Williams, Quasi-periodic modulations of the Jovian magnetotail. Geophys. Res. Lett. 25, 1253–1256 (1998). doi: 10.1029/98GL00861 ADSGoogle Scholar
  367. J. Woch, N. Krupp, A. Lagg, A. Tomás, The structure and dynamics of the Jovian energetic particle distribution. Adv. Space Res. 33, 2030–2038 (2004). doi: 10.1016/j.asr.2003.04.050 ADSGoogle Scholar
  368. B.C. Wolven, P.D. Feldman, Self-absorption by vibrationally excited H2 in the Astro-2 Hopkins ultraviolet telescope spectrum of the Jovian aurora. Geophys. Res. Lett. 25, 1537–1540 (1998). doi: 10.1029/98GL01063 ADSGoogle Scholar
  369. C.S. Wu, Kinetic cyclotron and synchrotron maser instabilities—Radio emission processes by direct amplification of radiation. Space Sci. Rev. 41, 215–298 (1985). doi: 10.1007/BF00190653 ADSGoogle Scholar
  370. C.S. Wu, L.C. Lee, A theory of the terrestrial kilometric radiation. Astrophys. J. 230, 621–626 (1979). doi: 10.1086/157120 ADSGoogle Scholar
  371. R.V. Yelle, S. Miller, Jupiter’s thermosphere and ionosphere, in Jupiter. The Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon, (2004), pp. 185–218 Google Scholar
  372. M. Yoneda, M. Kagitani, S. Okano, Short-term variability of Jupiter’s extended sodium nebula. Icarus 204(2), 589–596 (2009). doi: 10.1016/j.icarus.2009.07.023 ADSGoogle Scholar
  373. M. Yoneda, F. Tsuchiya, H. Misawa, B. Bonfond, C. Tao, M. Kagitani, S. Okano, Io’s volcanism controls Jupiter’s radio emissions. Geophys. Res. Lett. 40(4), 671–675 (2013) ADSGoogle Scholar
  374. P. Zarka, On detection of radio bursts associated with Jovian and Saturnian lightning. Astron. Astrophys. 146, 15–18 (1985) ADSGoogle Scholar
  375. P. Zarka, The auroral radio emissions from planetary magnetospheres—What do we know, what don’t we know, what do we learn from them? Adv. Space Res. 12, 99–115 (1992). doi: 10.1016/0273-1177(92)90383-9 ADSGoogle Scholar
  376. P. Zarka, Auroral radio emissions at the outer planets: Observations and theories. J. Geophys. Res. 103, 20159–20194 (1998). doi: 10.1029/98JE01323 ADSGoogle Scholar
  377. P. Zarka, Radio and plasma waves at the outer planets. Adv. Space Res. 33, 2045–2060 (2004). doi: 10.1016/j.asr.2003.07.055 ADSGoogle Scholar
  378. P. Zarka, Plasma interactions of exoplanets with their parent star and associated radio emissions. Planet. Space Sci. 55, 598–617 (2007). doi: 10.1016/j.pss.2006.05.045 ADSGoogle Scholar
  379. P. Zarka, F. Genova, Low-frequency Jovian emission and solar wind magnetic sector structure. Nature 306, 767–768 (1983). doi: 10.1038/306767a0 ADSGoogle Scholar
  380. P. Zarka, T. Farges, B.P. Ryabov, M. Abada-Simon, L. Denis, A scenario for Jovian S-bursts. Geophys. Res. Lett. 23, 125–128 (1996). doi: 10.1029/95GL03780 ADSGoogle Scholar
  381. P. Zarka, L. Lamy, B. Cecconi, R. Prangé, H.O. Rucker, Modulation of Saturn’s radio clock by solar wind speed. Nature 450, 265–267 (2007). doi: 10.1038/nature06237 ADSGoogle Scholar
  382. B. Zieger, K.C. Hansen, Statistical validation of a solar wind propagation model from 1 to 10 au. J. Geophys. Res. 113(A8) (2008). doi: 10.1029/2008JA013046

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Sarah V. Badman
    • 1
    • 2
    Email author
  • Graziella Branduardi-Raymont
    • 3
  • Marina Galand
    • 4
  • Sébastien L. G. Hess
    • 5
  • Norbert Krupp
    • 6
  • Laurent Lamy
    • 7
  • Henrik Melin
    • 1
  • Chihiro Tao
    • 8
    • 9
  1. 1.Department of Physics and AstronomyUniversity of LeicesterLeicesterUK
  2. 2.Department of PhysicsLancaster UniversityLancasterUK
  3. 3.Mullard Space Science LaboratoryUniversity College LondonDorkingUK
  4. 4.Department of PhysicsImperial CollegeLondonUK
  5. 5.LATMOSUniversité Versailles-St QuentinGuyancourtFrance
  6. 6.Max-Planck-Institut für SonnensystemforschungGöttingenGermany
  7. 7.LESIA, Observatoire de Paris, CNRSUniversité Pierre et Marie Curie, Université Paris DiderotMeudonFrance
  8. 8.LPPCNRS-Ecole Polytechnique-UPMCPalaiseauFrance
  9. 9.IRAP, CNRSUniversité de ToulouseToulouseFrance

Personalised recommendations