Advertisement

Space Science Reviews

, Volume 213, Issue 1–4, pp 219–287 | Cite as

Magnetospheric Science Objectives of the Juno Mission

  • F. BagenalEmail author
  • A. Adriani
  • F. Allegrini
  • S. J. Bolton
  • B. Bonfond
  • E. J. Bunce
  • J. E. P. Connerney
  • S. W. H. Cowley
  • R. W. Ebert
  • G. R. Gladstone
  • C. J. Hansen
  • W. S. Kurth
  • S. M. Levin
  • B. H. Mauk
  • D. J. McComas
  • C. P. Paranicas
  • D. Santos-Costa
  • R. M. Thorne
  • P. Valek
  • J. H. Waite
  • P. Zarka
Article

Abstract

In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets.

Keywords

Jupiter Magnetosphere Juno 

Notes

Acknowledgements

We acknowledge all the outstanding contributions from the many people who made the Juno mission a reality. We thank Philippe Louarn (IRAP, Toulouse, France) for assistance and Tom Stallard (University of Leicester) for the IR image in Fig. 17. FB would like to thank Steve Bartlett for making several of the graphics, Sarah Vines (SWRI) for proofing, plus others at the University of Colorado for their help with producing materials: Laura Brower, Emma Bunnell, Dinesh Costlow, Frank Crary, Adam Shinn, Christopher Fowler, Drake Ranquist, Andrew Sturner and Rob Wilson. Further information and plots for Juno orbits can be found at http://lasp.colorado.edu/mop/resources/juno/.

References

  1. Adriani et al., Space Sci. Rev. (2014, this issue) Google Scholar
  2. I.I. Alexeev, E.S. Belenkaya, Modeling of the Jovian magnetosphere. Ann. Geophys. 23, 809–826 (2005) ADSCrossRefGoogle Scholar
  3. Anderson et al., Space Sci. Rev. (2014, this issue) Google Scholar
  4. S.V. Badman, S.W.H. Cowley, Significance of Dungey-cycle flows in Jupiter’s and Saturn’s magnetospheres, and their identification on closed equatorial field lines. Ann. Geophys. 25, 941–951 (2007) ADSCrossRefGoogle Scholar
  5. F. Bagenal, Giant planet magnetospheres. Annu. Rev. Earth Planet. Sci. 20, 289–328 (1992) ADSCrossRefGoogle Scholar
  6. F. Bagenal, The magnetosphere of Jupiter: coupling the equator to the poles. J. Atmos. Sol.-Terr. Phys. 69, 387–402 (2007) ADSCrossRefGoogle Scholar
  7. F. Bagenal, Comparative planetary environments, in Heliophysics: Plasma Physics of the Local Cosmos, ed. by C.J. Schrijver, G.L. Siscoe (Cambridge University Press, Cambridge, 2009) Google Scholar
  8. F. Bagenal, P.A. Delamere, Flow of mass and energy in the magnetospheres of Jupiter and Saturn. J. Geophys. Res. 116, 5209 (2011) CrossRefGoogle Scholar
  9. F. Bagenal, T.E. Dowling, W.B. McKinnon (eds.), Jupiter: Planet, Satellites, Magnetosphere (Cambridge University Press, Cambridge, 2004) Google Scholar
  10. A. Bahnsen, M. Jespersen, E. Ungstrup, B.M. Pedersen, L. Eliasson, Viking observations at the source region of auroral kilometric radiation. J. Geophys. Res. 94, 6643–6654 (1989) ADSCrossRefGoogle Scholar
  11. S.J. Bame, B.L. Barraclough, W.C. Feldman, G.R. Gisler, J.T. Gosling, D.J. McComas, J.L. Phillips, M.F. Thomsen, B.E. Goldstein, M. Neugebauer, Jupiter’s magnetosphere: plasma description from the Ulysses flyby. Science 257, 1539–1543 (1992) ADSCrossRefGoogle Scholar
  12. D.D. Barbosa, F.L. Scarf, W.S. Kurth, D.A. Gurnett, Broadband electrostatic noise and field-aligned currents in Jupiter’s middle magnetosphere. J. Geophys. Res. 86, 8357–8369 (1981) ADSCrossRefGoogle Scholar
  13. J.W. Belcher, The low-energy plasma in the Jovian magnetosphere, in Physics of the Jovian Magnetosphere, ed. by A.J. Dessler (Cambridge Univ. Press, Cambridge, 1983) Google Scholar
  14. E.S. Belenkaya, The Jovian magnetospheric magnetic and electric fields: effects of the interplanetary magnetic field. Planet. Space Sci. 52, 499–511 (2004) ADSCrossRefGoogle Scholar
  15. E.S. Belenkaya, S.Y. Bobrovnikov, I.I. Alexeev, V.V. Kalegaev, S.W.H. Cowley, A model of Jupiter’s magnetospheric magnetic field with variable magnetopause flaring. Planet. Space Sci. 53, 863–872 (2005) ADSCrossRefGoogle Scholar
  16. E.S. Belenkaya, P.A. Bespalov, S.S. Davydenko, V.V. Kalegaev, Magnetic field influence on aurorae and the Jovian plasma disk radial structure. Ann. Geophys. 24, 973–988 (2006) ADSCrossRefGoogle Scholar
  17. E.K. Bigg, Influence of the satellite Io on Jupiter’s decametric emission. Nature 203, 1008–1010 (1964) ADSCrossRefGoogle Scholar
  18. S. Bolton, R. Thorne, S. Bourdarie, I. DePater, B. Mauk, Jupiter’s inner radiation belts, in Jupiter: Planet, Satellites, Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge University Press, Cambridge, 2004) Google Scholar
  19. Bolton et al., Space Sci. Rev. (2014, this issue) Google Scholar
  20. B. Bonfond, D. Grodent, J.-C. Gérard, A. Radioti, J. Saur, S. Jacobsen, UV Io footprint leading spot: a key feature for understanding the UV Io footprint multiplicity? Geophys. Res. Lett. 35, 5107 (2008) ADSCrossRefGoogle Scholar
  21. B. Bonfond, D. Grodent, J.-C. Gérard, A. Radioti, V. Dols, P.A. Delamere, J.T. Clarke, The Io UV footprint: location, inter-spot distances and tail vertical extent. J. Geophys. Res. 114, 7224 (2009) CrossRefGoogle Scholar
  22. B.D. Bonfond, M.F. Vogt, J.-C. Gérard, D. Grodent, A. Radioti, V. Coumans, Quasiperiodic polar flares at Jupiter: a signature of pulsed dayside reconnections? Geophys. Res. Lett. 380, L02104 (2011) ADSGoogle Scholar
  23. B. Bonfond, D. Grodent, J.-C. Gérard, T. Stallard, J.T. Clarke, M. Yoneda, A. Radioti, J. Gustin, Auroral evidence of Io’s control over the magnetosphere of Jupiter. Geophys. Res. Lett. 39, 1105 (2012) ADSCrossRefGoogle Scholar
  24. G. Branduardi-Raymont, A. Bhardwaj, R.F. Elsner, G.R. Gladstone, G. Ramsay, P. Rodriguez, R. Soria, J.H. Waite, T.E. Cravens, Latest results on Jovian disk X-rays from XMM-Newton. Planet. Space Sci. 55, 1126–1134 (2007a) ADSCrossRefGoogle Scholar
  25. G. Branduardi-Raymont, A. Bhardwaj, R.F. Elsner, G.R. Gladstone, G. Ramsay, P. Rodriguez, R. Soria, J.H. Waite Jr., T.E. Cravens, A study of Jupiter’s aurorae with XMM-Newton. Astron. Astrophys. 463, 761–774 (2007b) ADSCrossRefGoogle Scholar
  26. G. Branduardi-Raymont, R.F. Elsner, M. Galand, D. Grodent, T.E. Cravens, P. Ford, G.R. Gladstone, J.H. Waite, Spectral morphology of the X-ray emission from Jupiter’s aurorae. J. Geophys. Res. 109, 2202 (2008) Google Scholar
  27. G. Branduardi-Raymont, A. Bhardwaj, R.F. Elsner, P. Rodriguez, X-rays from Saturn: a study with XMM-Newton and Chandra over the years 2002-05. Astron. Astrophys. 510, A74 (2010) CrossRefGoogle Scholar
  28. E.J. Bunce, S.W.H. Cowley, T.K. Yeoman, Jovian cusp processes: implications for the polar aurora. J. Geophys. Res. 109, A09513 (2004) CrossRefGoogle Scholar
  29. B.F. Burke, K.L. Franklin, Observations of a variable radio source associated with the planet Jupiter. J. Geophys. Res. 60, 213–217 (1955) ADSCrossRefGoogle Scholar
  30. C.W. Carlson, R.F. Pfaff, J.G. Watzin, The Fast Auroral SnapshoT (FAST) mission. Geophys. Res. Lett. 25, 2013–2016 (1998) ADSCrossRefGoogle Scholar
  31. C.W. Carlson, J.P. McFadden, P. Turin, D.W. Curtis, A. Magoncelli, The electron and ion plasma experiment for Fast. Space Sci. Rev. 98, 33–66 (2001) ADSCrossRefGoogle Scholar
  32. T. Carr, M. Desch, J. Alexander, Phenomenology of magnetospheric radio emissions, in Physics of the Jovian Magnetosphere, ed. by A.J. Dessler (Cambridge University Press, Cambridge, 1983) Google Scholar
  33. G. Caudal, A self-consistent model of Jupiter’s magnetodisc including the effects of centrifugal force and pressure. J. Geophys. Res. 91, 4201–4221 (1986) ADSCrossRefGoogle Scholar
  34. G. Caudal, J.E.P. Connerney, Plasma pressure in the environment of Jupiter, inferred from Voyager 1 magnetometer observations. J. Geophys. Res. 94, 15,055–15,061 (1989) ADSCrossRefGoogle Scholar
  35. E. Chané, J. Saur, S. Poedts, Modeling Jupiter’s magnetosphere: influence of the internal sources. J. Geophys. Res. 118, 2157–2172 (2013) CrossRefGoogle Scholar
  36. S. Chapman, V.C.A. Ferraro, A new theory of magnetic storms. Nature 126, 129–130 (1930) ADSzbMATHCrossRefGoogle Scholar
  37. J. Clarke, D. Grodent, S. Cowley, E. Bunce, P. Zarka, J. Connerney, T. Satoh, Jupiter’s aurora, in Jupiter: Planet, Satellites, Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge University Press, Cambridge, 2004) Google Scholar
  38. J.T. Clarke, J. Nichols, J.-C. Gérard, D. Grodent, K.C. Hansen, W. Kurth, G.R. Gladstone, J. Duval, S. Wannawichian, E. Bunce, S.W.H. Cowley, F. Crary, M. Dougherty, L. Lamy, D. Mitchell, W. Pryor, K. Retherford, T. Stallard, B. Zieger, P. Zarka, B. Cecconi, Response of Jupiter’s and Saturn’s auroral activity to the solar wind. J. Geophys. Res. 114, 5210 (2009) CrossRefGoogle Scholar
  39. J.E.P. Connerney, The magnetic field of Jupiter: a generalized inverse approach. J. Geophys. Res. 86, 7679–7693 (1981) ADSCrossRefGoogle Scholar
  40. J.E.P. Connerney, Doing more with Jupiter’s magnetic field, in Planetary Radio Emissions III, ed. by H.O. Rucker, S.J. Bauer, M.L. Kaiser (1992) Google Scholar
  41. J.E.P. Connerney, Planetary magnetism, in Planets and Satellites, ed. by G. Schubert, T. Spohn. Treatise in Geophysics, vol. 10 (Elsevier, Oxford, 2007) Google Scholar
  42. J.E.P. Connerney, R. Baron, T. Satoh, T. Owen, Images of excited H3+ at the foot of the Io flux tube in Jupiter’s atmosphere. Science 262, 1035–1038 (1993) ADSCrossRefGoogle Scholar
  43. J.E.P. Connerney, M.H. Acuna, N.F. Ness, T. Satoh, New models of Jupiter’s magnetic field constrained by the Io flux tube footprint. J. Geophys. Res. 103, 11929–11940 (1998) ADSCrossRefGoogle Scholar
  44. Connerney et al., Space Sci. Rev. (2014, this issue) Google Scholar
  45. S.W.H. Cowley, E.J. Bunce, Origin of the main auroral oval in Jupiter’s coupled magnetosphere-ionosphere system. Planet. Space Sci. 49, 1067–1088 (2001) ADSCrossRefGoogle Scholar
  46. S.W.H. Cowley, E.J. Bunce, Corotation-driven magnetosphere-ionosphere coupling currents in Saturn’s magnetosphere and their relation to the auroras. Ann. Geophys. 21, 1691–1707 (2003) ADSCrossRefGoogle Scholar
  47. S.W.H. Cowley, E.J. Bunce, T.S. Stallard, S. Miller, Jupiter’s polar ionospheric flows: theoretical interpretation. Geophys. Res. Lett. 30, 1220 (2003) ADSCrossRefGoogle Scholar
  48. S.W.H. Cowley, I.I. Alexeev, E.S. Belenkaya, E.J. Bunce, C.E. Cottis, V.V. Kalegaev, J.D. Nichols, R. Prange, F.J. Wilson, A simple axisymmetric model of magnetosphere-ionosphere coupling currents in Jupiter’s polar ionosphere. J. Geophys. Res. 110, 11209 (2005) CrossRefGoogle Scholar
  49. S.W.H. Cowley, J.D. Nichols, D.J. Andrews, Modulation of Jupiter’s plasma flow, polar currents, and auroral precipitation by solar wind-induced compressions and expansions of the magnetosphere: a simple theoretical model. Ann. Geophys. 25, 1433–1463 (2007) ADSCrossRefGoogle Scholar
  50. S.W.H. Cowley, S.V. Badman, S.M. Imber, S.E. Milan, Comment on “Jupiter: a fundamentally different magnetospheric interaction with the solar wind” by D.J. McComas and F. Bagenal. Geophys. Res. Lett. 35, 10101 (2008a) ADSCrossRefGoogle Scholar
  51. S.W.H. Cowley, A.J. Deason, E.J. Bunce, Axi-symmetric models of auroral current systems in Jupiter’s magnetosphere with predictions for the Juno mission. Ann. Geophys. 26, 4051–4074 (2008b) ADSCrossRefGoogle Scholar
  52. T.E. Cravens, N. Ozak, Auroral ion precipitation and acceleration at the outer planets, in Auroral Phenomenology and Magnetospheric Processes, ed. by A. Keiling, E. Donovan, F. Bagenal, T. Karlsson. AGU Monograph Series (AGU, Washington, 2012) Google Scholar
  53. T.E. Cravens, J.H. Waite, T.I. Gombosi, N. Lugaz, G.R. Gladstone, B.H. Mauk, R.J. MacDowall, Implications of Jovian X-ray emission for magnetosphere-ionosphere coupling. J. Geophys. Res. 108, 1465 (2003) CrossRefGoogle Scholar
  54. P.A. Delamere, F. Bagenal, Modeling variability of plasma conditions in the Io torus. J. Geophys. Res. 108, 1276 (2003) CrossRefGoogle Scholar
  55. P.A. Delamere, F. Bagenal, Solar wind interaction with Jupiter’s magnetosphere. J. Geophys. Res. 115, 10201 (2010) Google Scholar
  56. P.A. Delamere, F. Bagenal, Magnetotail structure of the giant magnetospheres: implications of the viscous interaction with the solar wind. J. Geophys. Res. 118, 1–9 (2013) Google Scholar
  57. P.A. Delamere, A. Steffl, F. Bagenal, Modeling temporal variability of plasma conditions in the Io torus during the Cassini era. J. Geophys. Res. 109, 10216 (2004) CrossRefGoogle Scholar
  58. P.A. Delamere, R.J. Wilson, A. Masters, Kelvin-Helmholtz instability at Saturn’s magnetopause: hybrid simulations. J. Geophys. Res. 116, 10222 (2011) CrossRefGoogle Scholar
  59. P.A. Delamere, R.J. Wilson, S. Eriksson, F. Bagenal, Magnetic signatures of Kelvin-Helmholtz vortices on Saturn’s magnetopause: global survey. J. Geophys. Res. 118, 393–404 (2013) CrossRefGoogle Scholar
  60. M. Desroche, F. Bagenal, P.A. Delamere, N. Erkaev, Conditions at the expanded Jovian magnetopause and implications for the solar wind interaction. J. Geophys. Res. 117, 7202 (2012) CrossRefGoogle Scholar
  61. M. Desroche, F. Bagenal, P.A. Delamere, N. Erkaev, Conditions at the magnetopause of Saturn and implications for the solar wind interaction. J. Geophys. Res. 118 (2013) Google Scholar
  62. A. Dessler (ed.), Physics of the Jovian Magnetosphere (Cambridge University Press, Cambridge, 1983) Google Scholar
  63. A. Dessler, V.M. Vasyliūnas, The magnetic anomaly model of the Jovian magnetosphere: predictions for Voyager. Geophys. Res. Lett. 6, 37–40 (1979) ADSCrossRefGoogle Scholar
  64. M.K. Dougherty, L.W. Esposito, S.M. Krimigis (eds.), Saturn from Cassini-Huygens (Springer, Berlin, 2009) Google Scholar
  65. F.D. Drake, S. Hvatum, Non-thermal microwave radiation from Jupiter. Astrophys. J. 64, 329–330 (1959) Google Scholar
  66. J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47–48 (1961) ADSCrossRefGoogle Scholar
  67. R.W. Ebert, D.J. McComas, F. Bagenal, H.A. Elliott, Location, structure, and motion of Jupiter’s dusk magnetospheric boundary from 1625 to 2550 R J. J. Geophys. Res. 115, 12223 (2010) CrossRefGoogle Scholar
  68. E. Echer, P. Zarka, W.D. Gonzalez, A. Morioka, L. Denis, Solar wind effects on Jupiter non-Io DAM emissions during Ulysses distant encounter (2003–2004). Astron. Astrophys. 519, A84 (2010) ADSCrossRefGoogle Scholar
  69. R.F. Elsner, N. Lugaz, J.H. Waite, T.E. Cravens, G.R. Gladstone, P. Ford, D. Grodent, A. Bhardwaj, R.J. MacDowall, M.D. Desch, T. Majeed, Simultaneous Chandra X ray, Hubble Space Telescope ultraviolet, and Ulysses radio observations of Jupiter’s aurora. J. Geophys. Res. 110, 1207 (2005a) CrossRefGoogle Scholar
  70. R.F. Elsner, B.D. Ramsey, J.H. Waite, P. Rehak, R.E. Johnson, J.F. Cooper, D.A. Swartz, X-ray probes of magnetospheric interactions with Jupiter’s auroral zones, the Galilean satellites, and the Io plasma torus. Icarus 178, 417–428 (2005b) ADSCrossRefGoogle Scholar
  71. R.E. Ergun, L. Ray, P.A. Delamere, F. Bagenal, V. Dols, Y.-J. Su, Generation of parallel electric fields in the Jupiter-Io torus wake region. J. Geophys. Res. 114, 5201 (2009) CrossRefGoogle Scholar
  72. G.B. Field, The source of radiation from Jupiter at decimeter wavelengths. J. Geophys. Res. 64, 1169–1177 (1959) ADSCrossRefGoogle Scholar
  73. K. Fukazawa, T. Ogino, R.J. Walker, Dynamics of the Jovian magnetosphere for northward interplanetary magnetic field (IMF). Geophys. Res. Lett. 32, 3202 (2005) ADSCrossRefGoogle Scholar
  74. K. Fukazawa, T. Ogino, R.J. Walker, Configuration and dynamics of the Jovian magnetosphere. J. Geophys. Res. 111, 10207 (2006) CrossRefGoogle Scholar
  75. K. Fukazawa, T. Ogino, R.J. Walker, A simulation study of dynamics in the distant Jovian magnetotail. J. Geophys. Res. 115, 9219 (2010) CrossRefGoogle Scholar
  76. P.H.M. Galopeau, P. Zarka, D. Le Queau, Source location of Saturn’s kilometric radiation: the Kelvin-Helmholtz instability hypothesis. J. Geophys. Res. 100, 26397–26410 (1995) ADSCrossRefGoogle Scholar
  77. H.B. Garrett, S.M. Levin, S.J. Bolton, R.W. Evans, B. Bhattacharya, A revised model of Jupiter’s inner electron belts: updating the Divine radiation model. Geophys. Res. Lett. 32, 4104 (2005) ADSCrossRefGoogle Scholar
  78. Y.S. Ge, C.T. Russell, K.K. Khurana, Reconnection sites in Jupiter’s magnetotail and relation to Jovian auroras. Planet. Space Sci. 58, 1455–1469 (2010) ADSCrossRefGoogle Scholar
  79. G.R. Gladstone, J.H. Waite, D. Grodent, W.S. Lewis, F.J. Crary, R.F. Elsner, M.C. Weisskopf, T. Majeed, J.-M. Jahn, A. Bhardwaj, J.T. Clarkek, D.T. Young, M.K. Dougherty, S.A. Espinosa, T.E. Cravens, A pulsating auroral X-ray hot spot on Jupiter. Science 415, 1000–1003 (2002) Google Scholar
  80. G.R. Gladstone, S.A. Stern, S. Alan, D.C.S. Slater, M. Versteeg, M.W. Davis, K.D. Retherford, L.A. Young, A.J. Steffl, H. Throop, J.W. Parker, H.A. Weaver, A.F. Cheng, G.S. Orton, J.T. Clarke, J.D. Nichols, Jupiter’s nightside airglow and aurora. Science 318, 229 (2007) ADSCrossRefGoogle Scholar
  81. Gladstone et al., Space Sci. Rev. (2014, this issue) Google Scholar
  82. C.K. Goertz, Detached plasma in Saturn’s front side magnetosphere. Geophys. Res. Lett. 10, 455–458 (1983) ADSCrossRefGoogle Scholar
  83. C.K. Goertz, B.A. Randall, M.F. Thomsen, D.E. Jones, E.J. Smith, Evidence for open field lines in Jupiter’s magnetosphere. J. Geophys. Res. 81, 3393–3397 (1976) ADSCrossRefGoogle Scholar
  84. T.I. Gombosi, T.P. Armstrong, C.S. Arridge, K.K. Khurana, S.M. Krimigis, N. Krupp, A.M. Persoon, M.F. Thomsen, Saturn’s magnetospheric configuration, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis (Springer, Berlin, 2009) Google Scholar
  85. A. Grocott, S.V. Badman, S.W.H. Cowley, S.E. Milan, J.D. Nichols, T.K. Yeoman, Magnetosonic Mach number dependence of the efficiency of reconnection between planetary and interplanetary magnetic fields. J. Geophys. Res. 114, 7219 (2009) CrossRefGoogle Scholar
  86. D. Grodent, J.T. Clarke, J. Kim, J.H. Waite Jr., S.W.H. Cowley, Jupiter’s main auroral oval observed with HST-STIS. J. Geophys. Res. 108, 1389 (2003a) CrossRefGoogle Scholar
  87. D. Grodent, J.T. Clarke, J.H. Waite, S.W.H. Cowley, J.-C. Gerard, J. Kim, Jupiter’s polar auroral emissions. J. Geophys. Res. 108, 1366 (2003b) CrossRefGoogle Scholar
  88. D. Grodent, J.-C. Gerard, J.T. Clarke, G.R. Gladstone, J.H. Waite, A possible auroral signature of a magnetotail reconnection process on Jupiter. J. Geophys. Res. 109, 5201 (2004) CrossRefGoogle Scholar
  89. D. Grodent, B. Bonfond, J.-C. Gerard, A. Radioti, J. Gustin, J.T. Clarke, J. Nichols, J.E.P. Connerney, Auroral evidence of a localized magnetic anomaly in Jupiter’s northern hemisphere. J. Geophys. Res. 113, 9201 (2008) Google Scholar
  90. J. Gustin, S.W.H. Cowley, J.-C. Gérard, G.R. Gladstone, D. Grodent, J.T. Clarke, Characteristics of Jovian morning bright FUV aurora from Hubble Space Telescope/Space Telescope Imaging Spectrograph imaging and spectral observations. J. Geophys. Res. 111, A09220 (2006) ADSCrossRefGoogle Scholar
  91. J. Gustin, J.-C. Gerard, D. Grodent, G. Gladstone, J. Clarke, W. Pryor, V. Dols, B. Bonfond, A. Radioti, L. Lamy, J. Ajello, Effects of methane on giant planets UV emissions and implications for the auroral characteristics. J. Mol. Spectrosc. (2013) Google Scholar
  92. Hansen et al., Space Sci. Rev. (2014, this issue) Google Scholar
  93. S. Hess, P. Zarka, F. Mottez, Io–Jupiter interaction, millisecond bursts and field-aligned potentials. Planet. Space Sci. 55, 89–99 (2007a) ADSCrossRefGoogle Scholar
  94. S. Hess, F. Mottez, P. Zarka, Jovian S burst generation by Alfvén waves. J. Geophys. Res. 112, A11212 (2007b) ADSCrossRefGoogle Scholar
  95. S. Hess, F. Mottez, P. Zarka, T. Chust, Generation of the Jovian radio decametric arcs from the Io flux tube. J. Geophys. Res. 113, A03209 (2008a) ADSCrossRefGoogle Scholar
  96. S. Hess, B. Cecconi, P. Zarka, Modeling of Io-Jupiter decameter arcs, emission beaming and energy source. Geophys. Res. Lett. 35, L13107 (2008b) ADSCrossRefGoogle Scholar
  97. S. Hess, F. Mottez, P. Zarka, Effect of electric potential structures on Jovian S-burst morphology. Geophys. Res. Lett. 36, L14101 (2009) ADSCrossRefGoogle Scholar
  98. S.L.G. Hess, P. Delamere, V. Dols, B. Bonfond, D. Swift, Power transmission and particle acceleration along the Io flux tube. J. Geophys. Res. 115, 6205 (2010a) Google Scholar
  99. S.L.G. Hess, A. Petin, P. Zarka, B. Bonfond, B. Cecconi, Lead angles and emitting electron energies of Io-controlled decameter radio arcs. Planet. Space Sci. 58, 1188–1198 (2010b) ADSCrossRefGoogle Scholar
  100. S.L.G. Hess, B. Bonfond, P. Zarka, D. Grodent, Model of the Jovian magnetic field topology constrained by the Io auroral emissions. J. Geophys. Res. 116, 5217 (2011) CrossRefGoogle Scholar
  101. S.L.G. Hess, E. Echer, P. Zarka, Solar wind pressure effects on Jupiter decametric radio emissions independent of Io. Planet. Space Sci. 70, 114–125 (2012) ADSCrossRefGoogle Scholar
  102. C.A. Higgins, T.D. Carr, F. Reyes, A new determination of Jupiter’s radio rotation period. Geophys. Res. Lett. 23, 2653–2656 (1996) ADSCrossRefGoogle Scholar
  103. C.A. Higgins, T.D. Carr, F. Reyes, W.B. Greenman, G.R. Lebo, A redefinition of Jupiter’s rotation period. J. Geophys. Res. 102, 22033–22042 (1997) ADSCrossRefGoogle Scholar
  104. T.W. Hill, Inertial limit on corotation. J. Geophys. Res. 84, 6554–6558 (1979) ADSCrossRefGoogle Scholar
  105. T.W. Hill, The Jovian auroral oval. J. Geophys. Res. 106, 8101–8108 (2001) ADSCrossRefGoogle Scholar
  106. T.W. Hill, D.H. Pontius, Plasma injection near Io. J. Geophys. Res. 103, 19879 (1998) ADSCrossRefGoogle Scholar
  107. T.W. Hill, V.M. Vasyliūnas, Jovian auroral signature of Io’s corotational wake. J. Geophys. Res. 107, 1464 (2002) CrossRefGoogle Scholar
  108. T.W. Hill, A.J. Dessler, C.K. Goertz, Magnetospheric models, in Physics of the Jovian Magnetosphere, ed. by A.J. Dessler (Cambridge Univ. Press, Cambridge, 1983), pp. 353–394 CrossRefGoogle Scholar
  109. G.B. Hospodarsky, W.S. Kurth, B. Cecconi, D.A. Gurnett, M.L. Kaiser, M.D. Desch, P. Zarka, Simultaneous observations of Jovian quasi-periodic radio emissions by the Galileo and Cassini spacecraft. J. Geophys. Res. 109, A09S07 (2004) ADSCrossRefGoogle Scholar
  110. T.S. Huang, T.W. Hill, Corotation lag of the Jovian atmosphere, ionosphere, and magnetosphere. J. Geophys. Res. 94, 3761–3765 (1989) ADSCrossRefGoogle Scholar
  111. D.E. Huddleston, C.T. Russell, M.G. Kivelson, K.K. Khurana, L. Bennett, Location and shape of the Jovian magnetopause and bow shock. J. Geophys. Res. 103, 20075–20082 (1998) ADSCrossRefGoogle Scholar
  112. Y. Hui, D.R. Schultz, V.A. Kharchenko, A. Bhardwaj, G. Branduardi-Raymont, P.C. Stancil, T.E. Cravens, C.M. Lisse, A. Dalgarno, Comparative analysis and variability of the Jovian X-ray spectra detected by the Chandra and XMM-Newton observatories. J. Geophys. Res. 115, 7102 (2010) CrossRefGoogle Scholar
  113. C.M. Jackman, N. Achilleos, E.J. Bunce, S.W.H. Cowley, M.K. Dougherty, G.H. Jones, S.E. Milan, Interplanetary magnetic field conditions at ∼9 AU during the declining phase of the solar cycle and its implications for Saturn’s magnetospheric dynamics. J. Geophys. Res. 109 (2004) Google Scholar
  114. Janssen et al., Space Sci. Rev. (2014, this issue) Google Scholar
  115. X. Jia, M.G. Kivelson, K.K. Khurana, R. Walker, Magnetic fields of the satellites of Jupiter and Saturn. Space Sci. Rev. 152, 271–305 (2009) ADSCrossRefGoogle Scholar
  116. S.T. Jones, Y.-J. Su, Role of dispersive Alfvén waves in generating parallel electric fields along the Io-Jupiter fluxtube. J. Geophys. Res. 113, A12205 (2008) ADSCrossRefGoogle Scholar
  117. S.P. Joy, M.G. Kivelson, R.J. Walker, K.K. Khurana, C.T. Russell, T. Ogino, Probabilistic models of the Jovian magnetopause and bow shock locations. J. Geophys. Res. 107, 1309 (2002) CrossRefGoogle Scholar
  118. S.J. Kanani, C.S. Arridge, G.H. Jones, A.N. Fazakerley, H.J. McAndrews, N. Sergis, S.M. Krimigis, M.K. Dougherty, A.J. Coates, D.T. Young, K.C. Hansen, N. Krupp, A new form of Saturn’s magnetopause using a dynamic pressure balance model, based on in situ, multi-instrument Cassini measurements. J. Geophys. Res. 115, 6207 (2010) CrossRefGoogle Scholar
  119. S. Kasahara, E.A. Kronberg, T. Kimura, C. Tao, S.V. Badman, A. Masters, A. Retino, N. Krupp, M. Fujimoto, Asymmetric distribution of reconnection jet fronts in the Jovian nightside magnetosphere. J. Geophys. Res. 118, 375–384 (2013) CrossRefGoogle Scholar
  120. A. Keiling, E. Donovan, F. Bagenal, T. Karlsson (eds.), Auroral Phenomenology and Magnetospheric Processes (AGU, Washington, 2012) Google Scholar
  121. K.K. Khurana, Euler potential models of Jupiter’s magnetospheric field. J. Geophys. Res. 102, 11295–11306 (1997) ADSCrossRefGoogle Scholar
  122. K.K. Khurana, Influence of solar wind on Jupiter’s magnetosphere deduced from currents in the equatorial plane. J. Geophys. Res. 106, 25999–26016 (2001) ADSCrossRefGoogle Scholar
  123. K.K. Khurana, M.G. Kivelson, On Jovian plasma sheet structure. J. Geophys. Res. 94, 11791–11803 (1989) ADSCrossRefGoogle Scholar
  124. K.K. Khurana, H.K. Schwarzl, Global structure of Jupiter’s magnetospheric current sheet. J. Geophys. Res. 110, 7227 (2005) CrossRefGoogle Scholar
  125. K. Khurana, M.G. Kivelson, V. Vasyliunas, N. Krupp, J. Woch, A. Lagg, B. Mauk, W. Kurth, The configuration of Jupiter’s magnetosphere, in Jupiter: Planet, Satellites, Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge University Press, Cambridge, 2004) Google Scholar
  126. T. Kimura, F. Tsuchiya, H. Misawa, A. Morioka, H. Nozawa, Occurrence statistics and ray tracing study of Jovian quasiperiodic radio bursts observed from low latitudes. J. Geophys. Res. 115, A05217 (2010) ADSGoogle Scholar
  127. M.G. Kivelson, Planetary magnetospheres, in Handbook of the Solar-Terrestrial Environment, ed. by Y. Kamide, A.C.-L. Chian (2007) Google Scholar
  128. M. Kivelson, F. Bagenal, Planetary magnetospheres, in Encyclopedia of the Solar System, ed. by McFadden, Weissman, Johnson (2007) Google Scholar
  129. M.G. Kivelson, D.J. Southwood, Dynamical consequences of two modes of centrifugal instability in Jupiter’s outer magnetosphere. J. Geophys. Res. 110, 12209 (2005) CrossRefGoogle Scholar
  130. M.G. Kivelson, K.K. Khurana, R.J. Walker, Sheared magnetic field structure in Jupiter’s dusk magnetosphere: implications for return currents. J. Geophys. Res. 107, 1116 (2002) CrossRefGoogle Scholar
  131. M.G. Kivelson, F. Bagenal, W.S. Kurth, F.M. Neubauer, C. Paranicas, J. Saur, Magnetospheric interactions with satellites, in Jupiter: Planet, Satellites, Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge University Press, Cambridge, 2004) Google Scholar
  132. S. Knight, Parallel electric fields. Planet. Space Sci. 21, 741–750 (1973) ADSCrossRefGoogle Scholar
  133. S.M. Krimigis, C.O. Bostrom, E.P. Keath, R.D. Zwickl, J.F. Carbary, T.P. Armstrong, W.I. Axford, C.Y. Fan, G. Gloeckler, L.J. Lanzerotti, Hot plasma environment at Jupiter—Voyager 2 results. Science 206, 977–984 (1979) ADSCrossRefGoogle Scholar
  134. E.A. Kronberg, J. Woch, N. Krupp, A. Lagg, K.K. Khurana, K.-H. Glassmeier, Mass release at Jupiter: substorm-like processes in the Jovian magnetotail. J. Geophys. Res. 110, 3211 (2005) CrossRefGoogle Scholar
  135. E.A. Kronberg, K.-H. Glassmeier, J. Woch, N. Krupp, A. Lagg, M.K. Dougherty, A possible intrinsic mechanism for the quasi-periodic dynamics of the Jovian magnetosphere. J. Geophys. Res. 112, 5203 (2007) Google Scholar
  136. E.A. Kronberg, J. Woch, N. Krupp, A. Lagg, P.W. Daly, A. Korth, Comparison of periodic substorms at Jupiter and Earth. J. Geophys. Res. 113, 4212 (2008) CrossRefGoogle Scholar
  137. N. Krupp, V. Vasyliunas, J. Woch, A. Lagg, K. Khurana, M. Kivelson, B. Mauk, E. Roelof, D. Williams, S. Krimigis, W. Kurth, L. Frank, W. Paterson, Dynamics of the Jovian magnetosphere, in Jupiter: Planet, Satellites, Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge University Press, Cambridge, 2004) Google Scholar
  138. W.S. Kurth, Comparative observations of plasma waves at the outer planets. Adv. Space Res. 12, 83–90 (1992) ADSCrossRefGoogle Scholar
  139. W.S. Kurth, D.A. Gurnett, Plasma waves in planetary magnetospheres. J. Geophys. Res. 96, 18977 (1991) ADSCrossRefGoogle Scholar
  140. W.S. Kurth, E.J. Bunce, J.T. Clarke, F.J. Crary, D.C. Grodent, A.P. Ingersoll, U.A. Dyudina, L. Lamy, D.G. Mitchell, A.M. Persoon, W.R. Pryor, J. Saur, T. Stallard, Auroral processes, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis (Springer, Berlin, 2009) Google Scholar
  141. Kurth et al., Space Sci. Rev. (2014, this issue) Google Scholar
  142. H.P. Ladreiter, P. Zarka, A. Lacacheux, Direction finding study of Jovian hectometric and broadband kilometric radio emissions: evidence for their auroral origin. Planet. Space Sci. 42, 919–931 (1994) ADSCrossRefGoogle Scholar
  143. L. Lamy, P. Schippers, P. Zarka, B. Cecconi, C.S. Arridge, M.K. Dougherty, P. Louarn, N. André, W.S. Kurth, R.L. Mutel, D.A. Gurnett, A.J. Coates, Properties of Saturn kilometric radiation measured within its source region. Geophys. Res. Lett. 39, L12104 (2010) ADSGoogle Scholar
  144. G.F. Lindal, G.E. Wood, G.S. Levy, J.D. Anderson, D.N. Sweetnam, H.B. Hotz, B.J. Buckles, D.P. Holmes, P.E. Doms, V.R. Eshleman, G.L. Tyler, T.A. Croft, The atmosphere of Jupiter—an analysis of the Voyager radio occultation measurements. J. Geophys. Res. 86, 8721–8727 (1981) ADSCrossRefGoogle Scholar
  145. P. Louarn, A. Roux, S. Perraut, W. Kurth, D. Gurnett, A study of the large scale dynamics of the Jovian magnetosphere using the Galileo plasma wave experiment. Geophys. Res. Lett. 25, 2905–2908 (1998) ADSCrossRefGoogle Scholar
  146. P. Louarn, A. Roux, S. Perraut, W.S. Kurth, D.A. Gurnett, A study of the Jovian “energetic magnetospheric events” observed by Galileo: role in the radial plasma transport. J. Geophys. Res. 105, 13073–13088 (2000) ADSCrossRefGoogle Scholar
  147. P. Louarn, B. Mauk, D.J. Williams, C. Zimmer, M.G. Kivelson, W.S. Kurth, D.A. Gurnett, A. Roux, A multi-instrument study of a Jovian magnetospheric disturbance. J. Geophys. Res. 106, 29883 (2001) ADSCrossRefGoogle Scholar
  148. A. Masters, N. Achilleos, C. Bertucci, M.K. Dougherty, S.J. Kanani, C.S. Arridge, H.J. McAndrews, A.J. Coates, Surface waves on Saturn’s dawn flank magnetopause driven by the Kelvin-Helmholtz instability. Planet. Space Sci. 57, 1769–1778 (2009) ADSCrossRefGoogle Scholar
  149. A. Masters, N. Achilleos, M.G. Kivelson, N. Sergis, M.K. Dougherty, M.F. Thomsen, C.S. Arridge, S.M. Krimigis, H.J. McAndrews, S.J. Kanani, N. Krupp, A.J. Coates, Cassini observations of a Kelvin-Helmholtz vortex in Saturn’s outer magnetosphere. J. Geophys. Res. 115, 7225 (2010) CrossRefGoogle Scholar
  150. A. Masters, D.G. Mitchell, A.J. Coates, M.K. Dougherty, Saturn’s low-latitude boundary layer: 1. Properties and variability. J. Geophys. Res. 116, 6210 (2011a) CrossRefGoogle Scholar
  151. A. Masters, A.P. Walsh, A.N. Fazakerley, A.J. Coates, M.K. Dougherty, Saturn’s low-latitude boundary layer: 2. Electron structure. J. Geophys. Res. 116, 6211 (2011b) Google Scholar
  152. A. Masters, J.P. Eastwood, M. Swisdak, M.F. Thomsen, C.T. Russell, N. Sergis, F.J. Crary, M.K. Dougherty, A.J. Coates, S.M. Krimigis, The importance of plasma β conditions for magnetic reconnection at Saturn’s magnetopause. Geophys. Res. Lett. 39, 8103 (2012) ADSCrossRefGoogle Scholar
  153. B. Mauk, F. Bagenal, Auroral phenomenology and magnetospheric processes: Earth and other planets, in Auroral Phenomenology and Magnetospheric Processes, ed. by Keiling, Donovan, Bagenal, Karlsson. AGU Monograph Series (AGU, Washington, 2012) Google Scholar
  154. B.H. Mauk, J. Saur, Equatorial electron beams and auroral structuring at Jupiter. J. Geophys. Res. 112, 10221 (2007) CrossRefGoogle Scholar
  155. B.H. Mauk, D.G. Mitchell, R.W. McEntire, C.P. Paranicas, E.C. Roelof, D.J. Williams, S.M. Krimigis, A. Lagg, Energetic ion characteristics and neutral gas interactions in Jupiter’s magnetosphere. J. Geophys. Res. 109, 9 (2004) CrossRefGoogle Scholar
  156. B.H. Mauk, D.C. Hamilton, T.W. Hill, G.B. Hospodarsky, R.E. Johnson, C. Paranicas, E. Roussos, C.T. Russell, D.E. Shemansky, E.C. Sittler, R.M. Thorne, Fundamental plasma processes in Saturn’s magnetosphere, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis (Springer, Berlin, 2009) Google Scholar
  157. Mauk et al., Space Sci. Rev. (2014, this issue) Google Scholar
  158. D.J. McComas, F. Bagenal, Jupiter: a fundamentally different magnetospheric interaction with the solar wind. Geophys. Res. Lett. 34, 20106 (2007) ADSCrossRefGoogle Scholar
  159. D.J. McComas, F. Allegrini, F. Bagenal, F. Crary, R.W. Ebert, H. Elliott, A. Stern, P. Valek, Diverse plasma populations and structures in Jupiter’s magnetotail. Science 318, 217 (2007) ADSCrossRefGoogle Scholar
  160. D.J. McComas, F. Bagenal, Reply to comment by S.W.H. Cowley et al. on “Jupiter: a fundamentally different magnetospheric interaction with the solar wind”. Geophys. Res. Lett. 35, 10103 (2008) ADSCrossRefGoogle Scholar
  161. D.J. McComas, N. Angold, H.A. Elliott, G. Livadiotis, N.A. Schwadron, R.M. Skoug, C.W. Smith, Weakest solar wind of the space age and the current “mini” solar maximum. Astrophys. J. 779, 2 (2013) ADSCrossRefGoogle Scholar
  162. D.J. McComas, N. Alexander, F. Allegrini, F. Bagenal, C. Beebe, G. Clark, F. Crary, M.I. Desai, A. De Los Santos, D. Demkee, J. Dickinson, D. Everett, T. Finley, A. Gribanova, R. Hill, J. Johnson, C. Kofoed, C. Loeffler, P. Louarn, M. Maple, W. Mills, C. Pollock, M. Reno, B. Rodriguez, J. Rouzaud, D. Santos-Costa, P. Valek, S. Weidner, P. Wilson, R.J. Wilson, D. White, The Jovian Auroral Distributions Experiment (JADE) on the Juno Mission to Jupiter. Space Sci. Rev. (2014a, this issue). doi: 10.1007/s11214-013-9990-9
  163. D.J. McComas, F. Bagenal, R.W. Ebert, Bimodal size of Jupiter’s magnetosphere. J. Geophys. Res. (2014b, in review) Google Scholar
  164. J.P. McFadden, C.W. Carlson, R.E. Ergun, Microstructure of the auroral acceleration region as observed by FAST. J. Geophys. Res. 104, 14453–14480 (1999) ADSCrossRefGoogle Scholar
  165. R.L. McNutt Jr., J.W. Belcher, J.D. Sullivan, F. Bagenal, H.S. Bridge, Departure from rigid co-rotation of plasma in Jupiter’s dayside magnetosphere. Nature 280, 803 (1979) ADSCrossRefGoogle Scholar
  166. R.L. McNutt, D.K. Haggerty, M.E. Hill, S.M. Krimigis, S. Livi, G.C. Ho, R.S. Gurnee, B.H. Mauk, D.G. Mitchell, E.C. Roelof, D.J. McComas, F. Bagenal, H.A. Elliott, L.E. Brown, M. Kusterer, J. Vandegriff, S.A. Stern, H.A. Weaver, J.R. Spencer, J.M. Moore, Energetic particles in the Jovian magnetotail. Science 318, 220 (2007) ADSCrossRefGoogle Scholar
  167. D.G. Mitchell, J.F. Carbary, S.W.H. Cowley, T.W. Hill, P. Zarka, The dynamics of Saturn’s magnetosphere, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis (Springer, Berlin, 2009) Google Scholar
  168. F. Mottez, S.L.G. Hess, P. Zarka, Explanation of dominant oblique radio emission at Jupiter and comparison to the Terrestrial case. Planet. Space Sci. 58, 1414–1422 (2010) ADSCrossRefGoogle Scholar
  169. R.L. Mutel, J.D. Menietti, D.A. Gurnett, W. Kurth, P. Schippers, C. Lynch, L. Lamy, C. Arridge, B. Cecconi, CMI growth rates for saturnian kilometric radiation. Geophys. Res. Lett. 37, L19105 (2010) ADSCrossRefGoogle Scholar
  170. J.D. Nichols, Magnetosphere-ionosphere coupling in Jupiter’s middle magnetosphere: computations including a self-consistent current sheet magnetic field model. J. Geophys. Res. 116, 10232 (2011) CrossRefGoogle Scholar
  171. J. Nichols, S. Cowley, Magnetosphere-ionosphere coupling currents in Jupiter’s middle magnetosphere: effect of precipitation-induced enhancement of the ionospheric Pedersen conductivity. Ann. Geophys. 22, 1799–1827 (2004) ADSCrossRefGoogle Scholar
  172. J.D. Nichols, S.W.H. Cowley, Magnetosphere-ionosphere coupling currents in Jupiter’s middle magnetosphere: effect of magnetosphere-ionosphere decoupling due to field-aligned auroral voltages. Ann. Geophys. 23, 799–808 (2005) ADSCrossRefGoogle Scholar
  173. J.D. Nichols, S.W.H. Cowley, D.J. McComas, Magnetopause reconnection rate estimates for Jupiter’s magnetosphere based on interplanetary measurements at ∼5 AU. Ann. Geophys. 24, 393–406 (2006) ADSCrossRefGoogle Scholar
  174. J.D. Nichols, E.J. Bunce, J.T. Clarke, S.W.H. Cowley, J.-C. Gerard, D. Grodent, W.R. Pryor, Response of Jupiter’s UV auroras to interplanetary conditions as observed by the Hubble Space Telescope during the Cassini flyby campaign. J. Geophys. Res. 112, A02203 (2007) ADSGoogle Scholar
  175. J.D. Nichols, J.T. Clarke, J.C. Gerard, D. Grodent, Observations of Jovian polar auroral filaments. Geophys. Res. Lett. 36, 8101 (2009a) ADSCrossRefGoogle Scholar
  176. J.D. Nichols, J.T. Clarke, J.C. Gerard, D. Grodent, K.C. Hansen, Variation of different components of Jupiter’s auroral emission. J. Geophys. Res. 114, 6210 (2009b) Google Scholar
  177. T.G. Northrop, T.J. Birmingham, Adiabatic charged particle motion in rapidly rotating magnetospheres. J. Geophys. Res. 87, 661–669 (1982) ADSCrossRefGoogle Scholar
  178. N. Ozak, D.R. Schultz, T.E. Cravens, V. Kharchenko, Y.-W. Hui, Auroral X-ray emission at Jupiter: depth effects. J. Geophys. Res. 115, 11306 (2010) CrossRefGoogle Scholar
  179. L. Pallier, R. Prangé, More about the structure of the high latitude Jovian aurorae. Planet. Space Sci. 49, 1159–1173 (2001) ADSCrossRefGoogle Scholar
  180. L. Pallier, R. Prangé, Detection of the southern counterpart of the Jovian northern polar cusp: shared properties. Geophys. Res. Lett. 31, L06701 (2004) ADSCrossRefGoogle Scholar
  181. G. Paschmann, S. Haaland, R. Treumann (eds.), Auroral Plasma Physics. Space Sci. Rev. 103 (2002) Google Scholar
  182. D.H. Pontius Jr., T.W. Hill, Departure from corotation of the Io plasma torus: local plasma production. Geophys. Res. Lett. 9, 1321–1324 (1982) ADSCrossRefGoogle Scholar
  183. R. Prange, P. Zarka, G.E. Ballester, T.A. Livengood, L. Denis, T.D. Carr, F. Reyes, S.J. Bame, H.W. Moos, Correlated variations of UV and radio emissions during an outstanding Jovian auroral event. J. Geophys. Res. 98, 18779–18791 (1993) ADSCrossRefGoogle Scholar
  184. J. Queinnec, P. Zarka, Io-controlled decameter arcs and Io-Jupiter interaction. J. Geophys. Res. 103, 26649–26666 (1998) ADSCrossRefGoogle Scholar
  185. A. Radioti, D. Grodent, J.-C. Gerard, B. Bonfond, J.T. Clarke, Auroral polar dawn spots: signatures of internally driven reconnection processes at Jupiter’s magnetotail. Geophys. Res. Lett. 35, 3104 (2008) ADSCrossRefGoogle Scholar
  186. A. Radioti, D. Grodent, J.-C. Gerard, B. Bonfond, Auroral signatures of flow bursts released during magnetotail reconnection at Jupiter. J. Geophys. Res. 115, 7214 (2010) CrossRefGoogle Scholar
  187. A. Radioti, D. Grodent, J.-C. Gerard, M.F. Vogt, M. Lystrup, B. Bonfond, Nightside reconnection at Jupiter: auroral and magnetic field observations from 26 July 1998. J. Geophys. Res. 116, 3221 (2011) CrossRefGoogle Scholar
  188. L.C. Ray, R.E. Ergun, P.A. Delamere, F. Bagenal, Magnetosphere-ionosphere coupling at Jupiter: effect of field-aligned potentials on angular momentum transport. J. Geophys. Res. 115, 9211 (2010) CrossRefGoogle Scholar
  189. L.C. Ray, R.E. Ergun, P.A. Delamere, F. Bagenal, Magnetosphere-ionosphere coupling at Jupiter: a parameter space study. J. Geophys. Res. 117, A01205 (2012) ADSCrossRefGoogle Scholar
  190. L.C. Ray, N. Achilleos, Y.N. Yates, Including field-aligned potentials in the coupling between Jupiter’s thermosphere, ionosphere, and magnetosphere. Planet. Space Sci. 62 (2014, submitted) Google Scholar
  191. M.J. Reiner, J. Fainberg, R.G. Stone, M.L. Kaiser, M.D. Desch, R. Manning, P. Zarka, B.-M. Pedersen, Source characteristics of Jovian narrow-band kilometric radio emissions. J. Geophys. Res. 98, 13163–13176 (1993) ADSCrossRefGoogle Scholar
  192. E. Roussos, N. Krupp, C.P. Paranicas, P. Kollmann, D.G. Mitchell, S.M. Krimigis, T.P. Armstrong, D.R. Went, M.K. Dougherty, G.H. Jones, and short-term variability of Saturn’s ionic radiation belts. J. Geophys. Res. 116, 2217 (2011) CrossRefGoogle Scholar
  193. A. Roux, A. Hilgers, H. de Feraudy, D. Le Queau, P. Louarn, S. Perraut, A. Bahnsen, M. Jespersen, E. Ungstrup, M. Andre, Auroral kilometric radiation sources—in situ and remote observations from Viking. J. Geophys. Res. 98, 11657–11670 (1993) ADSCrossRefGoogle Scholar
  194. C.T. Russell, Outer planet magnetospheres: a tutorial. Adv. Space Res. 33, 2004–2020 (2004) ADSCrossRefGoogle Scholar
  195. C.T. Russell, New horizons in planetary magnetospheres. Adv. Space Res. 37, 1467–1481 (2006) ADSCrossRefGoogle Scholar
  196. C.T. Russell, K.K. Khurana, M.G. Kivelson, D.E. Huddleston, Substorms at Jupiter: Galileo observations of transient reconnection in the near tail. Adv. Space Res. 26, 1499–1504 (2000) ADSCrossRefGoogle Scholar
  197. C.T. Russell, Z.J. Yu, M.G. Kivelson, The rotation period of Jupiter. Geophys. Res. Lett. 28, 1911–1912 (2001) ADSCrossRefGoogle Scholar
  198. V.B. Ryabov, B.P. Ryabov, D.M. Vavriv, P. Zarka, R. Kozhin, V.V. Vinogradov, V.A. Shevchenko, Jupiter S-bursts: narrow-band origin of microsecond subpulses. J. Geophys. Res. 112, A09206 (2007) ADSCrossRefGoogle Scholar
  199. D. Santos-Costa, S.J. Bolton, Discussing the processes constraining the Jovian synchrotron radio emission’s features. Planet. Space Sci. 56, 326–345 (2008) ADSCrossRefGoogle Scholar
  200. D. Santos-Costa, S.A. Bourdarie, Modeling the inner Jovian electron radiation belt including non-equatorial particles. Planet. Space Sci. 49, 303–312 (2001) ADSCrossRefGoogle Scholar
  201. D. Santos-Costa, S.J. Bolton, R.M. Thorne, Y. Miyoshi, S.M. Levin, Investigating the origins of the Jovian decimetric emission’s variability. J. Geophys. Res. 113, 1204 (2008) CrossRefGoogle Scholar
  202. J. Saur, A. Pouquet, W.H. Matthaeus, An acceleration mechanism for the generation of the main auroral oval on Jupiter. Geophys. Res. Lett. 30, 1260 (2003) ADSCrossRefGoogle Scholar
  203. J. Saur, F.M. Neubauer, J.E.P. Connerney, P. Zarka, M.G. Kivelson, Plasma interaction of Io with its plasma torus, in Jupiter: Planet, Satellites, Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge University Press, Cambridge, 2004) Google Scholar
  204. A.W. Schardt, C.K. Goertz, High-energy particles, in Physics of the Jovian Magnetosphere, ed. by A.J. Dessler (Cambridge University Press, Cambridge, 1983) Google Scholar
  205. P. Schippers, C.S. Arridge, J.D. Menietti, D.A. Gurnett, L. Lamy, B. Cecconi, D.G. Mitchell, N. André, W.S. Kurth, S. Grimald, M.K. Dougherty, A.J. Coates, N. Krupp, D.T. Young, Auroral electron distributions within and close to the Saturn kilometric radiation source region. J. Geophys. Res. 116, A05203 (2011) ADSCrossRefGoogle Scholar
  206. N. Sergis, S.M. Krimigis, E.C. Roelof, C.S. Arridge, A.M. Rymer, D.G. Mitchell, D.C. Hamilton, N. Krupp, M.F. Thomsen, M.K. Dougherty, A.J. Coates, D.T. Young, Particle pressure, inertial force, and ring current density profiles in the magnetosphere of Saturn, based on Cassini measurements. Geophys. Res. Lett. 37, 2102 (2010) ADSCrossRefGoogle Scholar
  207. G.L. Siscoe, Towards a comparative theory of magnetospheres, in Solar System Plasma Physics, vol. 2, ed. by Parker, Kennel, Lanzerotti (North-Holland, Amsterdam, 1979) Google Scholar
  208. J.A. Slavin, E.J. Smith, J.R. Spreiter, S.S. Stahara, Solar wind flow about the outer planets: gas dynamic modeling of the Jupiter and Saturn bow shocks. J. Geophys. Res. 90, 6275–6286 (1985) ADSCrossRefGoogle Scholar
  209. C.G.A. Smith, A.D. Aylward, Coupled rotational dynamics of Jupiter’s thermosphere and magnetosphere. Ann. Geophys. 23, 199–230 (2009) ADSCrossRefGoogle Scholar
  210. D. Southwood, M. Kivelson, A new perspective concerning the influence of the solar wind on Jupiter. J. Geophys. Res. 106, 6123–6130 (2001) ADSCrossRefGoogle Scholar
  211. T. Stallard, S. Miller, G. Millward, R.D. Joseph, On the dynamics of the Jovian ionosphere and thermosphere. I: the measurement of ion winds. Icarus 154, 475–491 (2001) ADSCrossRefGoogle Scholar
  212. T.S. Stallard, S. Miller, S.W.H. Cowley, E.J. Bunce, Jupiter’s polar ionospheric flows: measured intensity and velocity variations poleward of the main auroral oval. Geophys. Res. Lett. 30, 1221 (2003) ADSCrossRefGoogle Scholar
  213. T. Stallard, S. Miller, H. Melin, Clues on Ionospheric Electrodynamics from IR Aurora at Jupiter and Saturn. Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets. Geophys. Mono. Series, vol. 197 (2012), pp. 215–224 CrossRefGoogle Scholar
  214. A.J. Steffl, A.I.F. Stewart, F. Bagenal, Cassini UVIS observations of the Io plasma torus. I: initial results. Icarus 172, 78–90 (2004a) ADSCrossRefGoogle Scholar
  215. A.J. Steffl, F. Bagenal, A.I.F. Stewart, Cassini UVIS observations of the Io plasma torus. II: radial variations. Icarus 172, 91–103 (2004b) ADSCrossRefGoogle Scholar
  216. A.J. Steffl, P.A. Delamere, F. Bagenal, Cassini UVIS observations of the Io plasma torus. III: observations of temporal and azimuthal variability. Icarus 180, 124–140 (2006) ADSCrossRefGoogle Scholar
  217. A.J. Steffl, P.A. Delamere, F. Bagenal, Cassini UVIS observations of the Io plasma torus. IV: modeling temporal and azimuthal variability. Icarus 194, 153–165 (2008) ADSCrossRefGoogle Scholar
  218. Y.-J. Su, R.E. Ergun, F. Bagenal, P.A. Delamere, Io-related Jovian auroral arcs: modeling parallel electric fields. J. Geophys. Res. 108, 1094 (2003) Google Scholar
  219. C. Tao, H. Fujiwara, Y. Kasaba, Neutral wind control of the Jovian magnetosphere-ionosphere current system. J. Geophys. Res. 114, 8307–8323 (2009) Google Scholar
  220. C. Tao, S.V. Badman, M. Fujimoto, UV and IR auroral emission model for the outer planets: Jupiter and Saturn comparison. Icarus 213, 581–592 (2011) ADSCrossRefGoogle Scholar
  221. C. Tao, S.V. Badman, T. Uno, M. Fujimoto, On the feasibility of characterizing Jovian auroral electrons via \(\mathrm{H}_{3}^{+}\) infrared line-emission analysis. Icarus 221, 236–247 (2012) ADSCrossRefGoogle Scholar
  222. N. Thomas, F. Bagenal, T. Hill, J. Wilson, The Io neutral clouds and plasma torus, in Jupiter: Planet, Satellites, Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge University Press, Cambridge, 2004) Google Scholar
  223. J.H. Trainor, F.B. McDonald, D.E. Stillwell, B.J. Teegarden, W.R. Webber, Jovian protons and electrons: Pioneer 11. Science 188, 462–465 (1975) ADSCrossRefGoogle Scholar
  224. J.A. Van Allen, F. Bagenal, Planetary magnetospheres and the interplanetary medium, beatty, in The New Solar System, ed. by Collins-Petersen, Chaikin (Cambridge University Press, Cambridge, 1999) Google Scholar
  225. A.R. Vasavada, A.H. Bouchez, A.P. Ingersoll, B. Little, C.D. Anger (Galileo SSI Team), Jupiter’s visible aurora and Io footprint. J. Geophys. Res. 104, 27133–27142 (1999) ADSCrossRefGoogle Scholar
  226. V.M. Vasyliūnas, Plasma distribution and flow, in Physics of the Jovian Magnetosphere, ed. by A.J. Dessler (Cambridge University Press, Cambridge, 1983) Google Scholar
  227. V.M. Vasyliūnas, Role of the plasma acceleration time in the dynamics of the Jovian magnetosphere. Geophys. Res. Lett. 21, 401–404 (1994) ADSCrossRefGoogle Scholar
  228. V.M. Vasyliūnas, Comparative magnetospheres: lessons for Earth. Adv. Space Res. 33, 2113–2120 (2004) ADSCrossRefGoogle Scholar
  229. V.M. Vasyliūnas, Fundamentals of planetary magnetospheres, in Heliophysics: Plasma Physics of the Local Cosmos, ed. by C.J. Schrijver, G.L. Siscoe (Cambridge University Press, Cambridge, 2009) Google Scholar
  230. V.M. Vasyliūnas, Comparative magnetospheres: lessons for Earth. Space Sci. Rev. 158, 91–118 (2011) ADSCrossRefGoogle Scholar
  231. M.F. Vogt, M.G. Kivelson, K.K. Khurana, S.P. Joy, R.J. Walker, Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations. J. Geophys. Res. 115, 6219 (2010) Google Scholar
  232. M.F. Vogt, M.G. Kivelson, K.K. Khurana, R.J. Walker, B. Bonfond, D. Grodent, A. Radioti, Improved mapping of Jupiter’s auroral features to magnetospheric sources. J. Geophys. Res. 116, 3220 (2011) CrossRefGoogle Scholar
  233. M.F. Vogt, M.G. Kivelson, K.K. Khurana, R.J. Walker, M. Ashour-Abdalla, E.J. Bunce, Simulating the effect of centrifugal forces in Jupiter’s magnetosphere. J. Geophys. Res. (2013) Google Scholar
  234. J.H. Waite, G.R. Gladstone, W.S. Lewis, R. Goldstein, D.J. McComas, P. Riley, R.J. Walker, P. Robertson, S. Desai, J.T. Clarke, D.T. Young, An auroral flare at Jupiter. Nature 410, 787–789 (2001) ADSCrossRefGoogle Scholar
  235. R.J. Walker, T. Ogino, A simulation study of currents in the Jovian magnetosphere. Planet. Space Sci. 51, 295–307 (2003) ADSCrossRefGoogle Scholar
  236. R.J. Walker, C.T. Russell, Flux transfer events at the Jovian magnetopause. J. Geophys. Res. 90, 7397–7404 (1985) ADSCrossRefGoogle Scholar
  237. R. Walker, C. Russell, Solar wind interactions with magnetized planets, in Introduction to Space Physics, ed. by R. Kivelson (Cambridge University Press, Cambridge, 1995) Google Scholar
  238. J. Woch, N. Krupp, A. Lagg, Particle bursts in the Jovian magnetosphere: evidence for a near-Jupiter neutral line. Geophys. Res. Lett. 29, 1138 (2002) ADSCrossRefGoogle Scholar
  239. J.N. Yates, N. Achilleos, P. Guio, Influence of upstream solar wind on thermospheric flows at Jupiter. Planet. Space Sci. 61, 15–31 (2012) ADSCrossRefGoogle Scholar
  240. Z.J. Yu, C.T. Russell, Rotation period of Jupiter from the observation of its magnetic field. Geophys. Res. Lett. 36, 20202 (2009) ADSCrossRefGoogle Scholar
  241. P. Zarka, Auroral radio emissions at the outer planets: observations and theories. J. Geophys. Res. 103, 20159–20194 (1998) ADSCrossRefGoogle Scholar
  242. P. Zarka, Radio emissions from the planets and their moons, in Radio Astronomy at Long Wavelengths, ed. by Stone, Weiler, Goldstein, Bougeret (AGU, Washington, 2000) Google Scholar
  243. P. Zarka, Radio and plasma waves at the outer planets. Adv. Space Res. 33, 2045–2060 (2004) ADSCrossRefGoogle Scholar
  244. P. Zarka, R.A. Treumann, B.P. Ryabov, V.B. Ryabov, Magnetically-driven planetary radio emissions and application to extrasolar planets. Astrophys. Space Sci. 277, 293300 (2001a) CrossRefGoogle Scholar
  245. P. Zarka, J. Queinnec, F.J. Crary, Low-frequency limit of Jovian radio emissions and implications on source locations and Io plasma wake. Planet. Space Sci. 49, 1137–1149 (2001b) ADSCrossRefGoogle Scholar
  246. P. Zarka, B. Cecconi, W.S. Kurth, Jupiter’s low-frequency radio spectrum from Cassini/radio and plasma wave science (RPWS) absolute flux density measurements. J. Geophys. Res. 109, A09S15 (2004) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • F. Bagenal
    • 1
    Email author
  • A. Adriani
    • 2
  • F. Allegrini
    • 13
    • 3
  • S. J. Bolton
    • 3
  • B. Bonfond
    • 4
  • E. J. Bunce
    • 5
  • J. E. P. Connerney
    • 6
  • S. W. H. Cowley
    • 5
  • R. W. Ebert
    • 3
  • G. R. Gladstone
    • 3
  • C. J. Hansen
    • 7
  • W. S. Kurth
    • 8
  • S. M. Levin
    • 9
  • B. H. Mauk
    • 10
  • D. J. McComas
    • 13
    • 3
  • C. P. Paranicas
    • 10
  • D. Santos-Costa
    • 3
  • R. M. Thorne
    • 11
  • P. Valek
    • 13
    • 3
  • J. H. Waite
    • 3
  • P. Zarka
    • 12
  1. 1.University of ColoradoBoulderUSA
  2. 2.INAF-IAPSRomeItaly
  3. 3.Southwest Research InstituteSan AntonioUSA
  4. 4.Laboratory for Planetary and Atmospheric PhysicsUniversity of LiègeLiègeBelgium
  5. 5.University of LeicesterLeicesterUK
  6. 6.Goddard Space Flight CenterGreenbeltUSA
  7. 7.Planetary Science InstituteTucsonUSA
  8. 8.University of IowaIowa CityUSA
  9. 9.Jet Propulsion LabPasadenaUSA
  10. 10.Applied Physics Lab.The Johns Hopkins UniversityLaurelUSA
  11. 11.Atmospheric SciencesUCLALos AngelesUSA
  12. 12.LESIAObservatoire de Paris-CNRS-UPMC-UPDnMeudonFrance
  13. 13.University of TexasSan AntonioUSA

Personalised recommendations