Space Science Reviews

, Volume 196, Issue 1–4, pp 167–199 | Cite as

Sub-photosphere to Solar Atmosphere Connection

  • Rudolf Komm
  • Ineke De Moortel
  • Yuhong Fan
  • Stathis Ilonidis
  • Oskar Steiner


Magnetic fields extend from the solar interior through the atmosphere. The formation and evolution of active regions can be studied by measuring subsurface flows with local helioseismology. The emergence of magnetic flux from the solar convection zone is associated with acoustic perturbation signatures. In near-surface layers, the average dynamics can be determined for emerging regions. MHD simulations of the emergence of a twisted flux tube show how magnetic twist and free energy are transported from the interior into the corona and the dynamic signatures associated with such transport in the photospheric and sub-photospheric layers. The subsurface twisted flux tube does not emerge into the corona as a whole in emerging active regions. Shear flows at the polarity inversion line and coherent vortical motions in the subsurface flux tubes are the major means by which twist is transported into the corona, leading to the formation of sigmoid-shaped coronal magnetic fields capable of driving solar eruptions. The transport of twist can be followed from the interior by using the kinetic helicity of subsurface flows as a proxy of magnetic helicity; this quantity holds great promise for improving the understanding of eruptive phenomena. Waves are not only vital for studying the link between the solar interior and the surface but for linking the photosphere with the corona as well. Acoustic waves that propagate from the surface into the magnetically structured, dynamic atmosphere undergo mode conversion and refraction. These effects enable atmospheric seismology to determine the topography of magnetic canopies in the solar atmosphere. Inclined magnetic fields lower the cut-off frequency so that low frequency waves can leak into the outer atmosphere. Recent high resolution, high cadence observations of waves and oscillations in the solar atmosphere, have lead to a renewed interest in the potential role of waves as a heating mechanism. In light of their potential contribution to the heating of the solar atmosphere, some of the recent observations of waves and oscillations and ongoing modelling efforts are reviewed.


Helioseismology Solar magnetic fields Solar interior Solar activity Magnetohydrodynamics in astrophysics 



RK acknowledges support from NSF/SHINE Award No. 1062054 and NASA grant NNX11AQ57G to the National Solar Observatory, which is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation. IDM acknowledges support from a Royal Society University Research Fellowship. YF acknowledges support from NASA LWS grant NNX09AJ89G to NCAR. NCAR is sponsored by the National Science Foundation. SI acknowledges support from NASA contract NAS5-02139 to Stanford University.


  1. W.P. Abbett, The magnetic connection between the convection zone and corona in the quiet Sun. Astrophys. J. 665, 1469–1488 (2007). doi: 10.1086/519788 ADSCrossRefGoogle Scholar
  2. P. Antolin, K. Shibata, The role of torsional Alfvén waves in coronal heating. Astrophys. J. 712, 494–510 (2010). doi: 10.1088/0004-637X/712/1/494 ADSCrossRefGoogle Scholar
  3. P. Antolin, E. Verwichte, Transverse oscillations of loops with coronal rain observed by Hinode/Solar optical telescope. Astrophys. J. 736, 121 (2011). doi: 10.1088/0004-637X/736/2/121 ADSCrossRefGoogle Scholar
  4. V. Archontis, T. Török, Eruption of magnetic flux ropes during flux emergence. Astron. Astrophys. 492, 35–38 (2008). doi: 10.1051/0004-6361:200811131 ADSCrossRefGoogle Scholar
  5. V. Archontis, F. Moreno-Insertis, K. Galsgaard, A. Hood, E. O’Shea, Emergence of magnetic flux from the convection zone into the corona. Astron. Astrophys. 426, 1047–1063 (2004). doi: 10.1051/0004-6361:20035934 ADSCrossRefGoogle Scholar
  6. V. Archontis, A.W. Hood, A. Savcheva, L. Golub, E. Deluca, On the structure and evolution of complexity in sigmoids: a flux emergence model. Astrophys. J. 691, 1276–1291 (2009). doi: 10.1088/0004-637X/691/2/1276 ADSCrossRefGoogle Scholar
  7. D. Banerjee, D. Pérez-Suárez, J.G. Doyle, Signatures of Alfvén waves in the polar coronal holes as seen by EIS/Hinode. Astron. Astrophys. 501, 15–18 (2009). doi: 10.1051/0004-6361/200912242 ADSCrossRefGoogle Scholar
  8. S. Bao, H. Zhang, Patterns of current helicity for the twenty-second solar cycle. Astrophys. J. Lett. 496, 43 (1998). doi: 10.1086/311232 ADSCrossRefGoogle Scholar
  9. G. Barnes, K.D. Leka, Evaluating the performance of solar flare forecasting methods. Astrophys. J. Lett. 688, 107–110 (2008). doi: 10.1086/595550 ADSCrossRefGoogle Scholar
  10. N. Bel, B. Leroy, Analytical study of magnetoacoustic gravity waves. Astron. Astrophys. 55, 239 (1977) ADSzbMATHGoogle Scholar
  11. M.A. Berger, G.B. Field, The topological properties of magnetic helicity. J. Fluid Mech. 147, 133–148 (1984). doi: 10.1017/S0022112084002019 MathSciNetADSCrossRefGoogle Scholar
  12. A.C. Birch, D.C. Braun, Y. Fan, An estimate of the detectability of rising flux tubes. Astrophys. J. Lett. 723, 190–194 (2010). doi: 10.1088/2041-8205/723/2/L190 ADSCrossRefGoogle Scholar
  13. A.C. Birch, D.C. Braun, K.D. Leka, G. Barnes, B. Javornik, Helioseismology of pre-emerging active regions. II. Average emergence properties. Astrophys. J. 762, 131 (2013). doi: 10.1088/0004-637X/762/2/131 ADSCrossRefGoogle Scholar
  14. D.S. Bloomfield, R.T.J. McAteer, M. Mathioudakis, F.P. Keenan, The influence of magnetic field on oscillations in the solar chromosphere. Astrophys. J. 652, 812–819 (2006). doi: 10.1086/508409 ADSCrossRefGoogle Scholar
  15. T.J. Bogdan, P.G. Judge, Observational aspects of sunspot oscillations. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 364, 313–331 (2006). doi: 10.1098/rsta.2005.1701 ADSCrossRefGoogle Scholar
  16. T.J. Bogdan, M. Carlsson, V.H. Hansteen, A. McMurry, C.S. Rosenthal, M. Johnson, S. Petty-Powell, E.J. Zita, R.F. Stein, S.W. McIntosh, Å. Nordlund, Waves in the magnetized solar atmosphere. II. Waves from localized sources in magnetic flux concentrations. Astrophys. J. 599, 626–660 (2003). doi: 10.1086/378512 ADSCrossRefzbMATHGoogle Scholar
  17. J.A. Bonet, I. Márquez, J. Sánchez Almeida, I. Cabello, V. Domingo, Convectively driven vortex flows in the Sun. Astrophys. J. Lett. 687, 131–134 (2008). doi: 10.1086/593329 ADSCrossRefGoogle Scholar
  18. D.C. Braun, Sunspot seismology: new observations and prospects, in GONG 1994. Helio- and Astro-Seismology from the Earth and Space, ed. by R.K. Ulrich, E.J. Rhodes Jr., W. Dappen. Astronomical Society of the Pacific Conference Series, vol. 76, 1995, p. 250 Google Scholar
  19. D.C. Braun, Helioseismic holography of an artificial submerged sound speed perturbation and implications for the detection of pre-emergence signatures of active regions. Sol. Phys. (2012a). doi: 10.1007/s11207-012-0185-4 Google Scholar
  20. D.C. Braun, Comment on “Detection of emerging sunspot regions in the solar interior”. Science 336, 296 (2012b). doi: 10.1126/science.1215425 ADSCrossRefGoogle Scholar
  21. D.C. Braun, C. Lindsey, Helioseismic imaging of the farside and the interior, in GONG+ 2002. Local and Global Helioseismology: The Present and Future, ed. by H. Sawaya-Lacoste. ESA Special Publication, vol. 517, 2003, pp. 15–22 Google Scholar
  22. D.C. Braun, C. Lindsey, Y. Fan, S.M. Jefferies, Local acoustic diagnostics of the solar interior. Astrophys. J. 392, 739–745 (1992). doi: 10.1086/171477 ADSCrossRefGoogle Scholar
  23. D.C. Braun, A.C. Birch, C. Lindsey, Local helioseismology of near-surface flows, in SOHO 14 Helio- and Asteroseismology: Towards a Golden Future, ed. by D. Danesy. ESA Special Publication, vol. 559, 2004, p. 337 Google Scholar
  24. D.C. Braun, A.C. Birch, M. Rempel, T.L. Duvall, Helioseismology of a realistic magnetoconvective sunspot simulation. Astrophys. J. 744, 77 (2012). doi: 10.1088/0004-637X/744/1/77 ADSCrossRefGoogle Scholar
  25. T.M. Brown, T.J. Bogdan, B.W. Lites, J.H. Thomas, Localized sources of propagating acoustic waves in the solar photosphere. Astrophys. J. Lett. 394, 65–68 (1992). doi: 10.1086/186473 ADSCrossRefGoogle Scholar
  26. D.S. Brown, R.W. Nightingale, D. Alexander, C.J. Schrijver, T.R. Metcalf, R.A. Shine, A.M. Title, C.J. Wolfson, Observations of rotating sunspots from TRACE. Sol. Phys. 216, 79–108 (2003). doi: 10.1023/A:1026138413791 ADSCrossRefGoogle Scholar
  27. A. Cacciani, S.M. Jefferies, W. Finsterle, P. Rapex, A. Knox, C. Giebink, V. di Martino, A new instrument for sounding the solar atmosphere, in GONG+ 2002. Local and Global Helioseismology: The Present and Future, ed. by H. Sawaya-Lacoste. ESA Special Publication, vol. 517, 2003, pp. 243–245 Google Scholar
  28. P.S. Cally, Local magnetohelioseismology of active regions. Mon. Not. R. Astron. Soc. 358, 353–362 (2005). doi: 10.1111/j.1365-2966.2005.08742.x ADSCrossRefGoogle Scholar
  29. P.S. Cally, Dispersion relations, rays and ray splitting in magnetohelioseismology. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 364, 333–349 (2006). doi: 10.1098/rsta.2005.1702 ADSCrossRefGoogle Scholar
  30. P.S. Cally, What to look for in the seismology of solar active regions. Astron. Nachr. 328, 286 (2007). doi: 10.1002/asna.200610731 ADSCrossRefGoogle Scholar
  31. P.S. Cally, M. Goossens, Three-dimensional MHD wave propagation and conversion to Alfvén waves near the solar surface. I. Direct numerical solution. Sol. Phys. 251, 251–265 (2008). doi: 10.1007/s11207-008-9142-7 ADSCrossRefGoogle Scholar
  32. P.S. Cally, S.C. Hansen, Benchmarking fast-to-Alfvén mode conversion in a cold magnetohydrodynamic plasma. Astrophys. J. 738, 119 (2011). doi: 10.1088/0004-637X/738/2/119 ADSCrossRefGoogle Scholar
  33. A. Canou, T. Amari, V. Bommier, B. Schmieder, G. Aulanier, H. Li, Evidence for a pre-eruptive twisted flux rope using the themis vector magnetograph. Astrophys. J. Lett. 693, 27–30 (2009). doi: 10.1088/0004-637X/693/1/L27 ADSCrossRefGoogle Scholar
  34. M. Carlsson, V.H. Hansteen, B.V. Gudiksen, Chromospheric heating and structure as determined from high resolution 3D simulations. Mem. Soc. Astron. Ital. 81, 582 (2010) ADSGoogle Scholar
  35. H.-K. Chang, D.-Y. Chou, M.-T. Sun, In search of emerging magnetic flux underneath the solar surface with acoustic imaging. Astrophys. J. Lett. 526, 53–56 (1999). doi: 10.1086/312366 ADSCrossRefGoogle Scholar
  36. M.C.M. Cheung, M. Rempel, A.M. Title, M. Schüssler, Simulation of the formation of a solar active region. Astrophys. J. 720, 233–244 (2010). doi: 10.1088/0004-637X/720/1/233 ADSCrossRefGoogle Scholar
  37. J.W. Cirtain, L. Golub, L. Lundquist, A. van Ballegooijen, A. Savcheva, M. Shimojo, E. DeLuca, S. Tsuneta, T. Sakao, K. Reeves, M. Weber, R. Kano, N. Narukage, K. Shibasaki, Evidence for Alfvén waves in solar x-ray jets. Science 318, 1580 (2007). doi: 10.1126/science.1147050 ADSCrossRefGoogle Scholar
  38. A. De Groof, M. Goossens, Fast and Alfvén waves driven by azimuthal footpoint motions. II. Random driver. Astron. Astrophys. 386, 691–698 (2002). doi: 10.1051/0004-6361:20020204 ADSCrossRefGoogle Scholar
  39. I. De Moortel, V.M. Nakariakov, Magnetohydrodynamic waves and coronal seismology: an overview of recent results. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 370, 3193–3216 (2012). doi: 10.1098/rsta.2011.0640 ADSCrossRefGoogle Scholar
  40. B. De Pontieu, S.W. McIntosh, Quasi-periodic propagating signals in the solar corona: the signature of magnetoacoustic waves or high-velocity upflows? Astrophys. J. 722, 1013–1029 (2010). doi: 10.1088/0004-637X/722/2/1013 ADSCrossRefGoogle Scholar
  41. B. De Pontieu, R. Erdélyi, S.P. James, Solar chromospheric spicules from the leakage of photospheric oscillations and flows. Nature 430, 536–539 (2004). doi: 10.1038/nature02749 ADSCrossRefGoogle Scholar
  42. B. De Pontieu, R. Erdélyi, I. De Moortel, How to channel photospheric oscillations into the corona. Astrophys. J. 624, 61–64 (2005). doi: 10.1086/430345 CrossRefGoogle Scholar
  43. B. De Pontieu, S.W. McIntosh, M. Carlsson, V.H. Hansteen, T.D. Tarbell, C.J. Schrijver, A.M. Title, R.A. Shine, S. Tsuneta, Y. Katsukawa, K. Ichimoto, Y. Suematsu, T. Shimizu, S. Nagata, Chromospheric Alfvénic waves strong enough to power the solar wind. Science 318, 1574 (2007). doi: 10.1126/science.1151747 ADSCrossRefGoogle Scholar
  44. B. De Pontieu, S.W. McIntosh, V.H. Hansteen, C.J. Schrijver, Observing the roots of solar coronal heating in the chromosphere. Astrophys. J. Lett. 701, 1–6 (2009). doi: 10.1088/0004-637X/701/1/L1 ADSCrossRefGoogle Scholar
  45. B. De Pontieu, S.W. McIntosh, M. Carlsson, V.H. Hansteen, T.D. Tarbell, P. Boerner, J. Martinez-Sykora, C.J. Schrijver, A.M. Title, The origins of hot plasma in the solar corona. Science 331, 55 (2011). doi: 10.1126/science.1197738 ADSCrossRefGoogle Scholar
  46. B. De Pontieu, M. Carlsson, L.H.M. Rouppe van der Voort, R.J. Rutten, V.H. Hansteen, H. Watanabe, Ubiquitous torsional motions in type II spicules. Astrophys. J. Lett. 752, 12 (2012). doi: 10.1088/2041-8205/752/1/L12 ADSCrossRefGoogle Scholar
  47. T.L. Duvall Jr., S.M. Jefferies, J.W. Harvey, M.A. Pomerantz, Time-distance helioseismology. Nature 362, 430–432 (1993). doi: 10.1038/362430a0 ADSCrossRefGoogle Scholar
  48. R. Erdélyi, Magnetic coupling of waves and oscillations in the lower solar atmosphere: can the tail wag the dog? Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 364, 351–381 (2006). doi: 10.1098/rsta.2005.1703 ADSCrossRefMathSciNetGoogle Scholar
  49. R. Erdélyi, M. Goossens, Magnetohydrodynamic waves and seismology of the solar atmosphere. Space Sci. Rev. 158, 167–168 (2011). doi: 10.1007/s11214-011-9800-1 ADSCrossRefGoogle Scholar
  50. Y. Fan, The emergence of a twisted Ω-tube into the solar atmosphere. Astrophys. J. Lett. 554, 111–114 (2001). doi: 10.1086/320935 ADSCrossRefGoogle Scholar
  51. Y. Fan, The three-dimensional evolution of buoyant magnetic flux tubes in a model solar convective envelope. Astrophys. J. 676, 680–697 (2008). doi: 10.1086/527317 ADSCrossRefGoogle Scholar
  52. Y. Fan, Magnetic fields in the solar convection zone. Living Rev. Sol. Phys. 6, 4 (2009a) ADSCrossRefGoogle Scholar
  53. Y. Fan, The emergence of a twisted flux tube into the solar atmosphere: sunspot rotations and the formation of a coronal flux rope. Astrophys. J. 697, 1529–1542 (2009b). doi: 10.1088/0004-637X/697/2/1529 ADSCrossRefGoogle Scholar
  54. F. Fang, W. Manchester, W.P. Abbett, B. van der Holst, Simulation of flux emergence from the convection zone to the corona. Astrophys. J. 714, 1649–1657 (2010). doi: 10.1088/0004-637X/714/2/1649 ADSCrossRefGoogle Scholar
  55. F. Fang, W. Manchester IV, W.P. Abbett, B. van der Holst, Buildup of magnetic shear and free energy during flux emergence and cancellation. Astrophys. J. 754, 15 (2012a). doi: 10.1088/0004-637X/754/1/15 ADSCrossRefGoogle Scholar
  56. F. Fang, W. Manchester IV, W.P. Abbett, B. van der Holst, Dynamic coupling of convective flows and magnetic field during flux emergence. Astrophys. J. 745, 37 (2012b). doi: 10.1088/0004-637X/745/1/37 ADSCrossRefGoogle Scholar
  57. V. Fedun, R. Erdélyi, S. Shelyag, Oscillatory response of the 3D solar atmosphere to the leakage of photospheric motion. Sol. Phys. 258, 219–241 (2009). doi: 10.1007/s11207-009-9407-9 ADSCrossRefGoogle Scholar
  58. V. Fedun, S. Shelyag, R. Erdélyi, Numerical modeling of footpoint-driven magneto-acoustic wave propagation in a localized solar flux tube. Astrophys. J. 727, 17 (2011). doi: 10.1088/0004-637X/727/1/17 ADSCrossRefGoogle Scholar
  59. T. Felipe, Three-dimensional numerical simulations of fast-to-Alfvén conversion in sunspots. Astrophys. J. 758, 96 (2012). doi: 10.1088/0004-637X/758/2/96 ADSCrossRefGoogle Scholar
  60. W. Finsterle, S.M. Jefferies, A. Cacciani, P. Rapex, S.W. McIntosh, Helioseismic mapping of the magnetic canopy in the solar chromosphere. Astrophys. J. Lett. 613, 185–188 (2004). doi: 10.1086/424996 ADSCrossRefGoogle Scholar
  61. G.H. Fisher, B.T. Welsch, W.P. Abbett, Can we determine electric fields and Poynting fluxes from vector magnetograms and Doppler measurements? Sol. Phys. 277, 153–163 (2012). doi: 10.1007/s11207-011-9816-4 ADSCrossRefGoogle Scholar
  62. C. Foullon, E. Verwichte, V.M. Nakariakov, Ultra-long-period oscillations in EUV filaments near to eruption: two-wavelength correlation and seismology. Astrophys. J. 700, 1658–1665 (2009). doi: 10.1088/0004-637X/700/2/1658 ADSCrossRefGoogle Scholar
  63. Y. Gao, J. Zhao, H. Zhang, Analysis on correlations between subsurface kinetic helicity and photospheric current helicity in active regions. Astrophys. J. Lett. 761, 9 (2012). doi: 10.1088/2041-8205/761/1/L9 ADSCrossRefGoogle Scholar
  64. S.E. Gibson, L. Fletcher, G. Del Zanna, C.D. Pike, H.E. Mason, C.H. Mandrini, P. Démoulin, H. Gilbert, J. Burkepile, T. Holzer, D. Alexander, Y. Liu, N. Nitta, J. Qiu, B. Schmieder, B.J. Thompson, The structure and evolution of a sigmoidal active region. Astrophys. J. 574, 1021–1038 (2002). doi: 10.1086/341090 ADSCrossRefGoogle Scholar
  65. L. Gizon, A.C. Birch, Local helioseismology. Living Rev. Sol. Phys. 2, 6 (2005) ADSCrossRefGoogle Scholar
  66. L. Gizon, T.L. Duvall Jr., R.M. Larsen, Seismic tomography of the near solar surface. J. Astrophys. Astron. 21, 339 (2000). doi: 10.1007/BF02702420 ADSCrossRefGoogle Scholar
  67. L. Gizon, H. Schunker, C.S. Baldner, S. Basu, A.C. Birch, R.S. Bogart, D.C. Braun, R. Cameron, T.L. Duvall, S.M. Hanasoge, J. Jackiewicz, M. Roth, T. Stahn, M.J. Thompson, S. Zharkov, Helioseismology of sunspots: a case study of NOAA region 9787. Space Sci. Rev. 144, 249–273 (2009). doi: 10.1007/s11214-008-9466-5 ADSCrossRefGoogle Scholar
  68. J.P.H. Goedbloed, S. Poedts, Principles of Magnetohydrodynamics (Cambridge University Press, Cambridge, 2004) CrossRefGoogle Scholar
  69. I. González Hernández, R. Komm, L. van Driel-Gesztelyi, L. Harra, L. Baker, R. Howe, Subsurface flows associated with non-Joy oriented active regions: a case study. J. Phys. Conf. Ser. 440, 012050 (2013). doi: 10.1088/1742-6596/440/1/012050 ADSCrossRefGoogle Scholar
  70. M. Goossens, R. Erdélyi, M.S. Ruderman, Resonant MHD waves in the solar atmosphere. Space Sci. Rev. 158, 289–338 (2011). doi: 10.1007/s11214-010-9702-7 ADSCrossRefGoogle Scholar
  71. M. Goossens, R. Soler, I. Arregui, J. Terradas, Analytic approximate seismology of propagating magnetohydrodynamic waves in the solar corona. Astrophys. J. 760, 98 (2012). doi: 10.1088/0004-637X/760/2/98 ADSCrossRefGoogle Scholar
  72. O.S. Gopasyuk, A.G. Kosovichev, Analysis of SOHO/MDI and TRACE observations of sunspot torsional oscillation in AR10421. Astrophys. J. 729, 95 (2011). doi: 10.1088/0004-637X/729/2/95 ADSCrossRefGoogle Scholar
  73. D.A. Haber, B.W. Hindman, J. Toomre, M.J. Thompson, Organized subsurface flows near active regions. Sol. Phys. 220, 371–380 (2004). doi: 10.1023/B:SOLA.0000031405.52911.08 ADSCrossRefGoogle Scholar
  74. M. Hagino, T. Sakurai, Solar-cycle variation of magnetic helicity in active regions. Publ. Astron. Soc. Jpn. 57, 481–485 (2005) ADSCrossRefGoogle Scholar
  75. S.C. Hansen, P.S. Cally, Benchmarking fast-to-Alfvén mode conversion in a cold MHD plasma. II. How to get Alfvén waves through the solar transition region? Astrophys. J. 751, 31 (2012). doi: 10.1088/0004-637X/751/1/31 ADSCrossRefGoogle Scholar
  76. V.H. Hansteen, B. De Pontieu, L. Rouppe van der Voort, M. van Noort, M. Carlsson, Dynamic fibrils are driven by magnetoacoustic shocks. Astrophys. J. Lett. 647, 73–76 (2006). doi: 10.1086/507452 ADSCrossRefGoogle Scholar
  77. T. Hartlep, A.G. Kosovichev, J. Zhao, N.N. Mansour, Signatures of emerging subsurface structures in acoustic power maps of the sun. Sol. Phys. 268, 321–327 (2011). doi: 10.1007/s11207-010-9544-1 ADSCrossRefGoogle Scholar
  78. J.W. Harvey, F. Hill, R.P. Hubbard, J.R. Kennedy, J.W. Leibacher, J.A. Pintar, P.A. Gilman, R.W. Noyes, A.M. Title, J. Toomre, R.K. Ulrich, A. Bhatnagar, J.A. Kennewell, W. Marquette, J. Patron, O. Saa, E. Yasukawa, The global oscillation network group (GONG) project. Science 272, 1284–1286 (1996). doi: 10.1126/science.272.5266.1284 ADSCrossRefGoogle Scholar
  79. S.S. Hasan, A.A. van Ballegooijen, W. Kalkofen, O. Steiner, Dynamics of the solar magnetic network: two-dimensional MHD simulations. Astrophys. J. 631, 1270–1280 (2005). doi: 10.1086/432655 ADSCrossRefGoogle Scholar
  80. J.-S. He, C.-Y. Tu, E. Marsch, L.-J. Guo, S. Yao, H. Tian, Upward propagating high-frequency Alfvén waves as identified from dynamic wave-like spicules observed by SOT on Hinode. Astron. Astrophys. 497, 525–535 (2009). doi: 10.1051/0004-6361/200810777 ADSCrossRefGoogle Scholar
  81. L. Heggland, V.H. Hansteen, B. De Pontieu, M. Carlsson, Wave propagation and jet formation in the chromosphere. Astrophys. J. 743, 142 (2011). doi: 10.1088/0004-637X/743/2/142 ADSCrossRefGoogle Scholar
  82. J. Hershaw, C. Foullon, V.M. Nakariakov, E. Verwichte, Damped large amplitude transverse oscillations in an EUV solar prominence, triggered by large-scale transient coronal waves. Astron. Astrophys. 531, 53 (2011). doi: 10.1051/0004-6361/201116750 ADSCrossRefGoogle Scholar
  83. F. Hill, Rings and trumpets—three-dimensional power spectra of solar oscillations. Astrophys. J. 333, 996–1013 (1988). doi: 10.1086/166807 ADSCrossRefGoogle Scholar
  84. B.W. Hindman, L. Gizon, T.L. Duvall Jr., D.A. Haber, J. Toomre, Comparison of solar subsurface flows assessed by ring and time-distance analyses. Astrophys. J. 613, 1253–1262 (2004). doi: 10.1086/423263 ADSCrossRefGoogle Scholar
  85. B.W. Hindman, D.A. Haber, J. Toomre, Helioseismically determined near-surface flows underlying a quiescent filament. Astrophys. J. 653, 725–732 (2006). doi: 10.1086/508603 ADSCrossRefGoogle Scholar
  86. B.W. Hindman, D.A. Haber, J. Toomre, Subsurface circulations within active regions. Astrophys. J. 698, 1749–1760 (2009). doi: 10.1088/0004-637X/698/2/1749 ADSCrossRefGoogle Scholar
  87. R.F. Howard, Solar active regions as diagnostics of subsurface conditions. Annu. Rev. Astron. Astrophys. 34, 75–110 (1996). doi: 10.1146/annurev.astro.34.1.75 ADSCrossRefGoogle Scholar
  88. S. Ilonidis, J. Zhao, A. Kosovichev, Detection of emerging sunspot regions in the solar interior. Science 333, 993 (2011). doi: 10.1126/science.1206253 ADSCrossRefGoogle Scholar
  89. S. Ilonidis, J. Zhao, A. Kosovichev, Response to comment on “Detection of emerging sunspot regions in the solar interior”. Science 336, 296 (2012a). doi: 10.1126/science.1215539 ADSCrossRefGoogle Scholar
  90. S. Ilonidis, J. Zhao, A.G. Kosovichev, Helioseismic detection of emerging magnetic flux, in Progress in Solar/Stellar Physics with Helio- and Asteroseismology, ed. by H. Shibahashi, M. Takata, A.E. Lynas-Gray. Astronomical Society of the Pacific Conference Series, vol. 462, 2012b, p. 283 Google Scholar
  91. S. Ilonidis, J. Zhao, T. Hartlep, Helioseismic investigation of emerging magnetic flux in the solar convection zone. Astrophys. J. (2013, in press) Google Scholar
  92. K. Jain, R.W. Komm, I. González Hernández, S.C. Tripathy, F. Hill, Subsurface flows in and around active regions with rotating and non-rotating sunspots. Sol. Phys. 279, 349–363 (2012). doi: 10.1007/s11207-012-0039-0 ADSCrossRefGoogle Scholar
  93. S.M. Jefferies, S.W. McIntosh, J.D. Armstrong, T.J. Bogdan, A. Cacciani, B. Fleck, Magnetoacoustic portals and the basal heating of the solar chromosphere. Astrophys. J. Lett. 648, 151–155 (2006). doi: 10.1086/508165 ADSCrossRefGoogle Scholar
  94. J.M. Jensen, T.L. Duvall Jr., B.H. Jacobsen, J. Christensen-Dalsgaard, Imaging an emerging active region with helioseismic tomography. Astrophys. J. Lett. 553, 193–196 (2001). doi: 10.1086/320677 ADSCrossRefGoogle Scholar
  95. D.B. Jess, M. Mathioudakis, R. Erdélyi, P.J. Crockett, F.P. Keenan, D.J. Christian, Alfvén waves in the lower solar atmosphere. Science 323, 1582 (2009). doi: 10.1126/science.1168680 ADSCrossRefGoogle Scholar
  96. D.B. Jess, S. Shelyag, M. Mathioudakis, P.H. Keys, D.J. Christian, F.P. Keenan, Propagating wave phenomena detected in observations and simulations of the lower solar atmosphere. Astrophys. J. 746, 183 (2012a). doi: 10.1088/0004-637X/746/2/183 ADSCrossRefGoogle Scholar
  97. D.B. Jess, D.J. Pascoe, D.J. Christian, M. Mathioudakis, P.H. Keys, F.P. Keenan, The origin of type I spicule oscillations. Astrophys. J. Lett. 744, 5 (2012b). doi: 10.1088/2041-8205/744/1/L5 ADSCrossRefGoogle Scholar
  98. Y. Jiang, R. Zheng, J. Yang, J. Hong, B. Yi, D. Yang, Rapid sunspot rotation associated with the X2.2 flare on 2011 February 15. Astrophys. J. 744, 50 (2012). doi: 10.1088/0004-637X/744/1/50 ADSCrossRefGoogle Scholar
  99. P.G. Judge, T.D. Tarbell, K. Wilhelm, A study of chromospheric oscillations using the SOHO and TRACE spacecraft. Astrophys. J. 554, 424–444 (2001) ADSCrossRefGoogle Scholar
  100. M.D. Kazachenko, R.C. Canfield, D.W. Longcope, J. Qiu, Predictions of energy and helicity in four major eruptive solar flares. Sol. Phys. 277, 165–183 (2012). doi: 10.1007/s11207-011-9786-6 ADSCrossRefGoogle Scholar
  101. S. Kholikov, A search for helioseismic signature of emerging active regions. Sol. Phys. (2013). doi: 10.1007/s11207-013-0321-9 Google Scholar
  102. E. Khomenko, P.S. Cally, Numerical simulations of conversion to Alfvén waves in sunspots. Astrophys. J. 746, 68 (2012). doi: 10.1088/0004-637X/746/1/68 ADSCrossRefGoogle Scholar
  103. E. Khomenko, M. Collados, Numerical modeling of magnetohydrodynamic wave propagation and refraction in sunspots. Astrophys. J. 653, 739–755 (2006). doi: 10.1086/507760 ADSCrossRefGoogle Scholar
  104. E. Khomenko, M. Collados, Sunspot seismic halos generated by fast MHD wave refraction. Astron. Astrophys. 506, 5–8 (2009). doi: 10.1051/0004-6361/200913030 ADSCrossRefGoogle Scholar
  105. E. Khomenko, M. Collados, T. Felipe, Nonlinear numerical simulations of magneto-acoustic wave propagation in small-scale flux tubes. Sol. Phys. 251, 589–611 (2008). doi: 10.1007/s11207-008-9133-8 ADSCrossRefGoogle Scholar
  106. J.A. Klimchuk, On solving the coronal heating problem. Sol. Phys. 234, 41–77 (2006). doi: 10.1007/s11207-006-0055-z ADSCrossRefGoogle Scholar
  107. J.A. Klimchuk, The role of type II spicules in the upper solar atmosphere. J. Geophys. Res. 117(A16), 12102 (2012). doi: 10.1029/2012JA018170 Google Scholar
  108. R. Komm, F. Hill, Solar flares and solar subphotospheric vorticity. J. Geophys. Res. 114(A13), 6105 (2009). doi: 10.1029/2008JA013977 CrossRefGoogle Scholar
  109. R. Komm, T. Corbard, B.R. Durney, I. González Hernández, F. Hill, R. Howe, C. Toner, Solar subsurface fluid dynamics descriptors derived from global oscillation network group and Michelson-Doppler imager data. Astrophys. J. 605, 554–567 (2004). doi: 10.1086/382187 ADSCrossRefGoogle Scholar
  110. R. Komm, R. Howe, F. Hill, M. Miesch, D. Haber, B. Hindman, Divergence and vorticity of solar subsurface flows derived from ring-diagram analysis of MDI and GONG data. Astrophys. J. 667, 571–584 (2007). doi: 10.1086/520765 ADSCrossRefGoogle Scholar
  111. R. Komm, S. Morita, R. Howe, F. Hill, Emerging active regions studied with ring-diagram analysis. Astrophys. J. 672, 1254–1265 (2008). doi: 10.1086/523998 ADSCrossRefGoogle Scholar
  112. R. Komm, R. Howe, F. Hill, Emerging and decaying magnetic flux and subsurface flows. Sol. Phys. 258, 13–30 (2009a). doi: 10.1007/s11207-009-9398-6 ADSCrossRefGoogle Scholar
  113. R. Komm, R. Howe, F. Hill, I. González Hernández, Subsurface zonal flows. Sol. Phys. 254, 1–15 (2009b). doi: 10.1007/s11207-008-9285-6 ADSCrossRefGoogle Scholar
  114. R. Komm, R. Ferguson, F. Hill, G. Barnes, K.D. Leka, Subsurface vorticity of flaring versus flare-quiet active regions. Sol. Phys. 268, 389–406 (2011a). doi: 10.1007/s11207-010-9552-1 ADSCrossRefGoogle Scholar
  115. R. Komm, R. Howe, F. Hill, Subsurface velocity of emerging and decaying active regions. Sol. Phys. 268, 407–428 (2011b). doi: 10.1007/s11207-010-9692-3 ADSCrossRefGoogle Scholar
  116. R. Komm, R. Howe, F. Hill, Vorticity of subsurface flows of emerging and decaying active regions. Sol. Phys. 277, 205–226 (2012). doi: 10.1007/s11207-011-9920-5 ADSCrossRefGoogle Scholar
  117. R. Komm, S. Gosain, A. Pevtsov, Active regions with superpenumbral whirls and their subsurface kinetic helicity. Sol. Phys. (2013a). doi: 10.1007/s11207-012-0218-z Google Scholar
  118. R. Komm, R. Howe, I. González Hernández, L. Harra, L. Baker, L. van Driel-Gesztelyi, Are subsurface flows and coronal holes related? J. Phys. Conf. Ser. 440, 012022 (2013b). doi: 10.1088/1742-6596/440/1/012022 ADSCrossRefGoogle Scholar
  119. I. Kontogiannis, G. Tsiropoula, K. Tziotziou, Power halo and magnetic shadow in a solar quiet region observed in the Hα line. Astron. Astrophys. 510, 41 (2010a). doi: 10.1051/0004-6361/200912841 ADSCrossRefGoogle Scholar
  120. I. Kontogiannis, G. Tsiropoula, K. Tziotziou, M.K. Georgoulis, Oscillations in a network region observed in the Hα line and their relation to the magnetic field. Astron. Astrophys. 524, 12 (2010b). doi: 10.1051/0004-6361/201015066 ADSCrossRefGoogle Scholar
  121. A.G. Kosovichev, Local helioseismology of sunspots: current status and perspectives. Sol. Phys. 279, 323–348 (2012). doi: 10.1007/s11207-012-9996-6 ADSCrossRefGoogle Scholar
  122. A.G. Kosovichev, T.L. Duvall Jr., Local helioseismology and magnetic flux emergence, in Subsurface and Atmospheric Influences on Solar Activity, ed. by R. Howe, R.W. Komm, K.S. Balasubramaniam, G.J.D. Petrie. Astronomical Society of the Pacific Conference Series, vol. 383, 2008, p. 59 Google Scholar
  123. A.G. Kosovichev, T.L.. Duvall Jr., P.H. Scherrer, Time-distance inversion methods and results (Invited Review). Sol. Phys. 192, 159–176 (2000) ADSCrossRefGoogle Scholar
  124. F. Krause, K.-H. Raedler, Mean-Field Magnetohydrodynamics and Dynamo Theory (Pergamon Press, Oxford, 1980) zbMATHGoogle Scholar
  125. D. Kuridze, R.J. Morton, R. Erdélyi, G.D. Dorrian, M. Mathioudakis, D.B. Jess, F.P. Keenan, Transverse oscillations in chromospheric mottles. Astrophys. J. 750, 51 (2012). doi: 10.1088/0004-637X/750/1/51 ADSCrossRefGoogle Scholar
  126. K.D. Leka, G. Barnes, A.C. Birch, I. Gonzalez-Hernandez, T. Dunn, B. Javornik, D.C. Braun, Helioseismology of pre-emerging active regions. I. Overview, data, and target selection criteria. Astrophys. J. 762, 130 (2013). doi: 10.1088/0004-637X/762/2/130 ADSCrossRefGoogle Scholar
  127. C. Lindsey, D.C. Braun, Helioseismic imaging of sunspots at their antipodes. Sol. Phys. 126, 101–115 (1990). doi: 10.1007/BF00158301 ADSCrossRefGoogle Scholar
  128. Y. Liu, J. Zhao, P.W. Schuck, Horizontal flows in the photosphere and subphotosphere of two active regions. Sol. Phys. 287(1–2), 279–291 (2012). doi: 10.1007/s11207-012-0089-3 ADSGoogle Scholar
  129. D.W. Longcope, B.T. Welsch, A model for the emergence of a twisted magnetic flux tube. Astrophys. J. 545, 1089–1100 (2000). doi: 10.1086/317846 ADSCrossRefGoogle Scholar
  130. D.W. Longcope, G.H. Fisher, A.A. Pevtsov, Flux-tube twist resulting from helical turbulence: the sigma-effect. Astrophys. J. 507, 417–432 (1998). doi: 10.1086/306312 ADSCrossRefGoogle Scholar
  131. M.L. Luoni, P. Démoulin, C.H. Mandrini, L. van Driel-Gesztelyi, Twisted flux tube emergence evidenced in longitudinal magnetograms: magnetic tongues. Sol. Phys. 270, 45–74 (2011). doi: 10.1007/s11207-011-9731-8 ADSCrossRefGoogle Scholar
  132. T. Magara, A model for dynamic evolution of emerging magnetic fields in the sun. Astrophys. J. 605, 480–492 (2004). doi: 10.1086/382148 ADSCrossRefGoogle Scholar
  133. T. Magara, Dynamic and topological features of photospheric and coronal activities produced by flux emergence in the Sun. Astrophys. J. 653, 1499–1509 (2006). doi: 10.1086/508926 ADSCrossRefGoogle Scholar
  134. T. Magara, D.W. Longcope, Sigmoid structure of an emerging flux tube. Astrophys. J. Lett. 559, 55–59 (2001). doi: 10.1086/323635 ADSCrossRefGoogle Scholar
  135. W. Manchester IV, T. Gombosi, D. DeZeeuw, Y. Fan, Eruption of a buoyantly emerging magnetic flux rope. Astrophys. J. 610, 588–596 (2004). doi: 10.1086/421516 ADSCrossRefGoogle Scholar
  136. D. Mason, R. Komm, F. Hill, R. Howe, D. Haber, B.W. Hindman, Flares, magnetic fields, and subsurface vorticity: a survey of GONG and MDI data. Astrophys. J. 645, 1543–1553 (2006). doi: 10.1086/503761 ADSCrossRefGoogle Scholar
  137. R.A. Maurya, A. Ambastha, V. Reddy, Kinetic and magnetic helicities in solar active regions. J. Phys. Conf. Ser. 271(1), 012003 (2011). doi: 10.1088/1742-6596/271/1/012003 ADSCrossRefGoogle Scholar
  138. S.W. McIntosh, B. De Pontieu, Observing episodic coronal heating events rooted in chromospheric activity. Astrophys. J. Lett. 706, 80–85 (2009). doi: 10.1088/0004-637X/706/1/L80 ADSCrossRefGoogle Scholar
  139. S.W. McIntosh, B. de Pontieu, M. Carlsson, V. Hansteen, P. Boerner, M. Goossens, Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind. Nature 475, 477–480 (2011). doi: 10.1038/nature10235 ADSCrossRefGoogle Scholar
  140. S.W. McIntosh, H. Tian, M. Sechler, B. De Pontieu, On the Doppler velocity of emission line profiles formed in the “Coronal contraflow” that is the chromosphere-corona mass cycle. Astrophys. J. 749, 60 (2012). doi: 10.1088/0004-637X/749/1/60 ADSCrossRefGoogle Scholar
  141. C.A. Mendoza-Briceño, L.D.G. Sigalotti, R. Erdélyi, Catastrophic cooling of impulsively heated coronal loops. Astrophys. J. 624, 1080–1092 (2005). doi: 10.1086/429249 ADSCrossRefGoogle Scholar
  142. A.G. Michalitsanos, The five minute period oscillation in magnetically active regions. Sol. Phys. 30, 47–61 (1973). doi: 10.1007/BF00156172 ADSCrossRefGoogle Scholar
  143. S. Min, J. Chae, The rotating sunspot in AR 10930. Sol. Phys. 258, 203–217 (2009). doi: 10.1007/s11207-009-9425-7 ADSCrossRefGoogle Scholar
  144. H.K. Moffatt, A. Tsinober, Helicity in laminar and turbulent flow. Annu. Rev. Fluid Mech. 24, 281–312 (1992). doi: 10.1146/annurev.fl.24.010192.001433 MathSciNetADSCrossRefzbMATHGoogle Scholar
  145. H. Moradi, P.S. Cally, Time-distance modelling in a simulated sunspot atmosphere. Sol. Phys. 251, 309–327 (2008). doi: 10.1007/s11207-008-9190-z ADSCrossRefGoogle Scholar
  146. H. Moradi, S.M. Hanasoge, P.S. Cally, Numerical models of travel-time inhomogeneities in sunspots. Astrophys. J. Lett. 690, 72–75 (2009). doi: 10.1088/0004-637X/690/1/L72 ADSCrossRefGoogle Scholar
  147. H. Moradi, C. Baldner, A.C. Birch, D.C. Braun, R.H. Cameron, T.L. Duvall, L. Gizon, D. Haber, S.M. Hanasoge, B.W. Hindman, J. Jackiewicz, E. Khomenko, R. Komm, P. Rajaguru, M. Rempel, M. Roth, R. Schlichenmaier, H. Schunker, H.C. Spruit, K.G. Strassmeier, M.J. Thompson, S. Zharkov, Modeling the subsurface structure of sunspots. Sol. Phys. 267, 1–62 (2010). doi: 10.1007/s11207-010-9630-4 ADSCrossRefGoogle Scholar
  148. R.J. Morton, R. Erdélyi, D.B. Jess, M. Mathioudakis, Observations of sausage modes in magnetic pores. Astrophys. J. Lett. 729, 18 (2011a). doi: 10.1088/2041-8205/729/2/L18 ADSCrossRefGoogle Scholar
  149. R.J. Morton, M.S. Ruderman, R. Erdélyi, Torsional Alfvén waves: magneto-seismology in static and dynamic coronal plasmas. Astron. Astrophys. 534, 27 (2011b). doi: 10.1051/0004-6361/201117020 ADSCrossRefGoogle Scholar
  150. R.J. Morton, A.K. Srivastava, R. Erdélyi, Observations of quasi-periodic phenomena associated with a large blowout solar jet. Astron. Astrophys. 542, 70 (2012a). doi: 10.1051/0004-6361/201117218 ADSCrossRefGoogle Scholar
  151. R.J. Morton, G. Verth, J.A. McLaughlin, R. Erdélyi, Determination of sub-resolution structure of a jet by solar magnetoseismology. Astrophys. J. 744, 5 (2012b). doi: 10.1088/0004-637X/744/1/5 ADSCrossRefGoogle Scholar
  152. M.J. Murray, A.W. Hood, F. Moreno-Insertis, K. Galsgaard, V. Archontis, 3D simulations identifying the effects of varying the twist and field strength of an emerging flux tube. Astron. Astrophys. 460, 909–923 (2006). doi: 10.1051/0004-6361:20065950 ADSCrossRefGoogle Scholar
  153. V.M. Nakariakov, R. Erdélyi, Foreword. Space Sci. Rev. 149, 1–2 (2009). doi: 10.1007/s11214-009-9620-8 ADSCrossRefGoogle Scholar
  154. V.M. Nakariakov, E. Verwichte, Coronal waves and oscillations. Living Rev. Sol. Phys. 2, 3 (2005) ADSCrossRefGoogle Scholar
  155. U. Narain, P. Ulmschneider, Chromospheric and coronal heating mechanisms II. Space Sci. Rev. 75, 453–509 (1996). doi: 10.1007/BF00833341 ADSCrossRefGoogle Scholar
  156. C. Nutto, O. Steiner, M. Roth, Revealing the nature of magnetic shadows with numerical 3D-MHD simulations. Astron. Astrophys. 542, 30 (2012a). doi: 10.1051/0004-6361/201218856 ADSCrossRefGoogle Scholar
  157. C. Nutto, O. Steiner, W. Schaffenberger, M. Roth, Modification of wave propagation and wave travel-time by the presence of magnetic fields in the solar network atmosphere. Astron. Astrophys. 538, 79 (2012b). doi: 10.1051/0004-6361/201016083 ADSCrossRefGoogle Scholar
  158. L. Ofman, MHD waves and heating in coronal holes. Space Sci. Rev. 120, 67–94 (2005). doi: 10.1007/s11214-005-5098-1 ADSCrossRefGoogle Scholar
  159. L. Ofman, J.A. Klimchuk, J.M. Davila, A self-consistent model for the resonant heating of coronal loops: the effects of coupling with the chromosphere. Astrophys. J. 493, 474 (1998). doi: 10.1086/305109 ADSCrossRefGoogle Scholar
  160. T.J. Okamoto, S. Tsuneta, T.E. Berger, K. Ichimoto, Y. Katsukawa, B.W. Lites, S. Nagata, K. Shibata, T. Shimizu, R.A. Shine, Y. Suematsu, T.D. Tarbell, A.M. Title, Coronal transverse magnetohydrodynamic waves in a solar prominence. Science 318, 1577 (2007). doi: 10.1126/science.1145447 ADSCrossRefGoogle Scholar
  161. D.E. Osterbrock, The heating of the solar chromosphere, plages, and corona by magnetohydrodynamic waves. Astrophys. J. 134, 347 (1961). doi: 10.1086/147165 ADSCrossRefGoogle Scholar
  162. K.V. Parchevsky, J. Zhao, T. Hartlep, A.G. Kosovichev, Verification of the travel time measurement technique and the helioseismic inversion procedure for sound speed using artificial data. ArXiv e-prints (2012) Google Scholar
  163. C.E. Parnell, I. De Moortel, A contemporary view of coronal heating. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 370, 3217–3240 (2012). doi: 10.1098/rsta.2012.0113 ADSCrossRefGoogle Scholar
  164. D.J. Pascoe, A.W. Hood, I. de Moortel, A.N. Wright, Spatial damping of propagating kink waves due to mode coupling. Astron. Astrophys. 539, 37 (2012). doi: 10.1051/0004-6361/201117979 ADSCrossRefGoogle Scholar
  165. A.A. Pevtsov, R.C. Canfield, T.R. Metcalf, Patterns of helicity in solar active regions. Astrophys. J. Lett. 425, 117–119 (1994). doi: 10.1086/187324 ADSCrossRefGoogle Scholar
  166. A.A. Pevtsov, R.C. Canfield, T.R. Metcalf, Latitudinal variation of helicity of photospheric magnetic fields. Astrophys. J. Lett. 440, 109–112 (1995). doi: 10.1086/187773 ADSCrossRefGoogle Scholar
  167. A.A. Pevtsov, R.C. Canfield, S.M. Latushko, Hemispheric helicity trend for solar cycle 23. Astrophys. J. Lett. 549, 261–263 (2001). doi: 10.1086/319179 ADSCrossRefGoogle Scholar
  168. S.P. Rajaguru, S. Couvidat, X. Sun, K. Hayashi, H. Schunker, Properties of high-frequency wave power halos around active regions: an analysis of multi-height data from HMI and AIA onboard SDO. Sol. Phys. 287, 107–127 (2013). doi: 10.1007/s11207-012-0180-9 ADSCrossRefGoogle Scholar
  169. A.A. Reinard, J. Henthorn, R. Komm, F. Hill, Evidence that temporal changes in solar subsurface helicity precede active region flaring. Astrophys. J. Lett. 710, 121–125 (2010). doi: 10.1088/2041-8205/710/2/L121 ADSCrossRefGoogle Scholar
  170. C.S. Rosenthal, T.J. Bogdan, M. Carlsson, S.B.F. Dorch, V. Hansteen, S.W. McIntosh, A. McMurry, Å. Nordlund, R.F. Stein, Waves in the magnetized solar atmosphere. I. Basic processes and internetwork oscillations. Astrophys. J. 564, 508–524 (2002). doi: 10.1086/324214 ADSCrossRefGoogle Scholar
  171. G. Rüdiger, V.V. Pipin, G. Belvedère, Alpha-effect, helicity and angular momentum transport for a magnetically driven turbulence in the solar convection zone. Sol. Phys. 198, 241–251 (2001). doi: 10.1023/A:1005217606269 ADSCrossRefGoogle Scholar
  172. P.H. Scherrer, R.S. Bogart, R.I. Bush, J.T. Hoeksema, A.G. Kosovichev, J. Schou, W. Rosenberg, L. Springer, T.D. Tarbell, A. Title, C.J. Wolfson, I. Zayer, MDI Engineering Team, The solar oscillations investigation—Michelson-Doppler imager. Sol. Phys. 162, 129–188 (1995). doi: 10.1007/BF00733429 ADSCrossRefGoogle Scholar
  173. P.H. Scherrer, J. Schou, R.I. Bush, A.G. Kosovichev, R.S. Bogart, J.T. Hoeksema, Y. Liu, T.L. Duvall, J. Zhao, A.M. Title, C.J. Schrijver, T.D. Tarbell, S. Tomczyk, The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Sol. Phys. 275, 207–227 (2012). doi: 10.1007/s11207-011-9834-2 ADSCrossRefGoogle Scholar
  174. C.J. Schrijver, Driving major solar flares and eruptions: a review. Adv. Space Res. 43, 739–755 (2009). doi: 10.1016/j.asr.2008.11.004 ADSCrossRefGoogle Scholar
  175. C.J. Schrijver, A.M. Title, Active regions losing their moorings by subsurface reconnection. Sol. Phys. 188, 331–344 (1999) ADSCrossRefGoogle Scholar
  176. H. Schunker, D.C. Braun, Newly identified properties of surface acoustic power. Sol. Phys. 268, 349–362 (2011). doi: 10.1007/s11207-010-9550-3 ADSCrossRefGoogle Scholar
  177. H. Schunker, P.S. Cally, Magnetic field inclination and atmospheric oscillations above solar active regions. Mon. Not. R. Astron. Soc. 372, 551–564 (2006). doi: 10.1111/j.1365-2966.2006.10855.x ADSCrossRefGoogle Scholar
  178. H. Schunker, R.H. Cameron, L. Gizon, H. Moradi, Constructing and characterising solar structure models for computational helioseismology. Sol. Phys. 271, 1–26 (2011). doi: 10.1007/s11207-011-9790-x ADSCrossRefGoogle Scholar
  179. M. Schüssler, M. Rempel, The dynamical disconnection of sunspots from their magnetic roots. Astron. Astrophys. 441, 337–346 (2005). doi: 10.1051/0004-6361:20052962 ADSCrossRefGoogle Scholar
  180. S. Shelyag, M. Mathioudakis, F.P. Keenan, D.B. Jess, A photospheric bright point model. Astron. Astrophys. 515, 107 (2010). doi: 10.1051/0004-6361/200913846 ADSCrossRefGoogle Scholar
  181. K. Shibata, Nonlinear MHD wave propagation in the solar chromosphere. I. The case of a uniform vertical magnetic field. Publ. Astron. Soc. Jpn. 35, 263–284 (1983) ADSGoogle Scholar
  182. K. Shibata, T. Tajima, R.S. Steinolfson, R. Matsumoto, Two-dimensional magnetohydrodynamic model of emerging magnetic flux in the solar atmosphere. Astrophys. J. 345, 584–596 (1989). doi: 10.1086/167932 ADSCrossRefGoogle Scholar
  183. R.F. Stein, Å. Nordlund, On the formation of active regions. Astrophys. J. Lett. 753, 13 (2012). doi: 10.1088/2041-8205/753/1/L13 ADSCrossRefGoogle Scholar
  184. Y. Suematsu, Influence of photospheric 5-minute oscillations on the formation of chromospheric fine structures, in Progress of Seismology of the Sun and Stars, ed. by Y. Osaki, H. Shibahashi. Lecture Notes in Physics, vol. 367 (Springer, Berlin, 1990), p. 211. doi: 10.1007/3-540-53091-6-83 CrossRefGoogle Scholar
  185. Y. Taroyan, R. Erdélyi, Heating diagnostics with MHD waves. Space Sci. Rev. 149, 229–254 (2009). doi: 10.1007/s11214-009-9506-9 ADSCrossRefGoogle Scholar
  186. J. Terradas, I. Arregui, G. Verth, M. Goossens, Seismology of transversely oscillating coronal loops with siphon flows. Astrophys. J. Lett. 729, 22 (2011). doi: 10.1088/2041-8205/729/2/L22 ADSCrossRefGoogle Scholar
  187. J.H. Thomas, Magneto-atmospheric waves. Annu. Rev. Fluid Mech. 15, 321–343 (1983). doi: 10.1146/annurev.fl.15.010183.001541 ADSCrossRefzbMATHGoogle Scholar
  188. L. Tian, D. Alexander, Role of sunspot and sunspot-group rotation in driving sigmoidal active region eruptions. Sol. Phys. 233, 29–43 (2006). doi: 10.1007/s11207-006-2505-z ADSCrossRefGoogle Scholar
  189. S. Tomczyk, S.W. McIntosh, Time-distance seismology of the solar corona with CoMP. Astrophys. J. 697, 1384–1391 (2009). doi: 10.1088/0004-637X/697/2/1384 ADSCrossRefGoogle Scholar
  190. S. Tomczyk, S.W. McIntosh, S.L. Keil, P.G. Judge, T. Schad, D.H. Seeley, J. Edmondson, Alfvén waves in the solar corona. Science 317, 1192 (2007). doi: 10.1126/science.1143304 ADSCrossRefGoogle Scholar
  191. C.G. Toner, B.J. Labonte, Direct mapping of solar acoustic power. Astrophys. J. 415, 847 (1993). doi: 10.1086/173206 ADSCrossRefGoogle Scholar
  192. S. Toriumi, K. Hayashi, T. Yokoyama, Detection of the horizontal divergent flow prior to the solar flux emergence. Astrophys. J. 751, 154 (2012). doi: 10.1088/0004-637X/751/2/154 ADSCrossRefGoogle Scholar
  193. S. Toriumi, S. Ilonidis, T. Sekii, T. Yokoyama, Probing the shallow convection zone: rising motion of subsurface magnetic fields in the solar active region. Astrophys. J. Lett. 770, 11 (2013). doi: 10.1088/2041-8205/770/1/L11 ADSCrossRefGoogle Scholar
  194. A.A. van Ballegooijen, D.H. Mackay, Model for the coupled evolution of subsurface and coronal magnetic fields in solar active regions. Astrophys. J. 659, 1713–1725 (2007). doi: 10.1086/512849 ADSCrossRefGoogle Scholar
  195. A.A. van Ballegooijen, M. Asgari-Targhi, S.R. Cranmer, E.E. DeLuca, Heating of the solar chromosphere and corona by Alfvén wave turbulence. Astrophys. J. 736, 3 (2011). doi: 10.1088/0004-637X/736/1/3 ADSCrossRefGoogle Scholar
  196. A. Vecchio, G. Cauzzi, K.P. Reardon, K. Janssen, T. Rimmele, Solar atmospheric oscillations and the chromospheric magnetic topology. Astron. Astrophys. 461, 1–4 (2007) ADSCrossRefGoogle Scholar
  197. G. Verth, M. Goossens, J.-S. He, Magnetoseismological determination of magnetic field and plasma density height variation in a solar spicule. Astrophys. J. Lett. 733, 15 (2011). doi: 10.1088/2041-8205/733/1/L15 ADSCrossRefGoogle Scholar
  198. E. Verwichte, M. Marsh, C. Foullon, T. Van Doorsselaere, I. De Moortel, A.W. Hood, V.M. Nakariakov, Periodic spectral line asymmetries in solar coronal structures from slow magnetoacoustic waves. Astrophys. J. Lett. 724, 194–198 (2010). doi: 10.1088/2041-8205/724/2/L194 ADSCrossRefGoogle Scholar
  199. G. Vigeesh, S.S. Hasan, O. Steiner, Wave propagation and energy transport in the magnetic network of the sun. Astron. Astrophys. 508, 951–962 (2009). doi: 10.1051/0004-6361/200912450 ADSCrossRefGoogle Scholar
  200. A. Vögler, S. Shelyag, M. Schüssler, F. Cattaneo, T. Emonet, T. Linde, Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code. Astron. Astrophys. 429, 335–351 (2005). doi: 10.1051/0004-6361:20041507 ADSCrossRefGoogle Scholar
  201. R.W. Walsh, J. Ireland, The heating of the solar corona. Astron. Astrophys. Rev. 12, 1–41 (2003). doi: 10.1007/s00159-003-0021-9 ADSCrossRefGoogle Scholar
  202. S. Wedemeyer-Böhm, L. Rouppe van der Voort, Small-scale swirl events in the quiet Sun chromosphere. Astron. Astrophys. 507, 9–12 (2009). doi: 10.1051/0004-6361/200913380 ADSCrossRefGoogle Scholar
  203. S. Wedemeyer-Böhm, E. Scullion, O. Steiner, L. Rouppe van der Voort, J. de La Cruz Rodriguez, V. Fedun, R. Erdélyi, Magnetic tornadoes as energy channels into the solar corona. Nature 486, 505–508 (2012). doi: 10.1038/nature11202 ADSCrossRefGoogle Scholar
  204. R.S. White, E. Verwichte, C. Foullon, First observation of a transverse vertical oscillation during the formation of a hot post-flare loop. Astron. Astrophys. 545, 129 (2012). doi: 10.1051/0004-6361/201219856 ADSCrossRefGoogle Scholar
  205. G.L. Withbroe, R.W. Noyes, Mass and energy flow in the solar chromosphere and corona. Annu. Rev. Astron. Astrophys. 15, 363–387 (1977). doi: 10.1146/annurev.aa.15.090177.002051 ADSCrossRefGoogle Scholar
  206. X.L. Yan, Z.Q. Qu, D.F. Kong, C.L. Xu, Sunspot rotation, sigmoidal filament, flare, and coronal mass ejection: the event on 2000 February 10. Astrophys. J. 754, 16 (2012). doi: 10.1088/0004-637X/754/1/16 ADSCrossRefGoogle Scholar
  207. M. Zhang, Helicity observations of weak and strong fields. Astrophys. J. Lett. 646, 85–88 (2006). doi: 10.1086/506560 ADSCrossRefGoogle Scholar
  208. Y. Zhang, J. Liu, H. Zhang, Relationship between rotating sunspots and flares. Sol. Phys. 247, 39–52 (2008). doi: 10.1007/s11207-007-9089-0 ADSCrossRefGoogle Scholar
  209. J. Zhao, A.G. Kosovichev, Helioseismic observation of the structure and dynamics of a rotating sunspot beneath the solar surface. Astrophys. J. 591, 446–453 (2003). doi: 10.1086/375343 ADSCrossRefGoogle Scholar
  210. J. Zhao, A.G. Kosovichev, Torsional oscillation, meridional flows, and vorticity inferred in the upper convection zone of the Sun by time-distance helioseismology. Astrophys. J. 603, 776–784 (2004). doi: 10.1086/381489 ADSCrossRefGoogle Scholar
  211. J. Zhao, A.G. Kosovichev, T.L. Duvall Jr., Investigation of mass flows beneath a sunspot by time-distance helioseismology. Astrophys. J. 557, 384–388 (2001). doi: 10.1086/321491 ADSCrossRefGoogle Scholar
  212. J. Zhao, A.G. Kosovichev, T.L. Duvall Jr., On the relationship between the rotational velocity and the field strength of solar magnetic elements. Astrophys. J. Lett. 607, 135–138 (2004). doi: 10.1086/421974 ADSCrossRefGoogle Scholar
  213. J. Zhao, A.G. Kosovichev, T. Sekii, High-resolution helioseismic imaging of subsurface structures and flows of a solar active region observed by Hinode. Astrophys. J. 708, 304–313 (2010). doi: 10.1088/0004-637X/708/1/304 ADSCrossRefGoogle Scholar
  214. S. Zharkov, M.J. Thompson, Time distance analysis of the emerging active region NOAA 10790. Sol. Phys. 251, 369–380 (2008). doi: 10.1007/s11207-008-9239-z ADSCrossRefGoogle Scholar
  215. Y.D. Zhugzhda, N.S. Dzhalilov, Magneto-acoustic-gravity waves on the Sun. I—Exact solution for an oblique magnetic field. Astron. Astrophys. 132, 45–51 (1984a) ADSGoogle Scholar
  216. Y.D. Zhugzhda, N.S. Dzhalilov, Magneto-acoustic-gravity waves on the Sun. II—Transformation and propagation. Astron. Astrophys. 132, 52–57 (1984b) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Rudolf Komm
    • 1
  • Ineke De Moortel
    • 2
  • Yuhong Fan
    • 3
  • Stathis Ilonidis
    • 4
  • Oskar Steiner
    • 5
  1. 1.National Solar ObservatoryTucsonUSA
  2. 2.School of Mathematics & StatisticsUniversity of St. AndrewsSt. AndrewsUK
  3. 3.High Altitude ObservatoryBoulderUSA
  4. 4.W.W. Hansen Experimental Physics LaboratoryStanford UniversityStanfordUSA
  5. 5.Kiepenheuer-Institut für SonnenphysikFreiburgGermany

Personalised recommendations