Advertisement

Space Science Reviews

, Volume 180, Issue 1–4, pp 101–175 | Cite as

Complementary and Emerging Techniques for Astrophysical Ices Processed in the Laboratory

  • M. A. Allodi
  • R. A. Baragiola
  • G. A. Baratta
  • M. A. Barucci
  • G. A. Blake
  • P. Boduch
  • J. R. Brucato
  • C. Contreras
  • S. H. Cuylle
  • D. Fulvio
  • M. S. Gudipati
  • S. Ioppolo
  • Z. Kaňuchová
  • A. Lignell
  • H. Linnartz
  • M. E. Palumbo
  • U. Raut
  • H. Rothard
  • F. Salama
  • E. V. Savchenko
  • E. Sciamma-O’Brien
  • G. StrazzullaEmail author
Article

Abstract

Inter- and circumstellar ices comprise different molecules accreted on cold dust particles. These icy dust grains provide a molecule reservoir where particles can interact and react. As the grain acts as a third body, capable of absorbing energy, icy surfaces in space have a catalytic effect. Chemical reactions are triggered by a number of possible processes; (i) irradiation by light, typically UV photons from the interstellar radiation field and Ly-α radiation emitted by excited hydrogen, but also X-rays, (ii) bombardment by particles, free atoms (most noticeably hydrogen, but also N, C, O and D-atoms), electrons, low energy ions and cosmic rays, and (iii) thermal processing. All these effects cause ices to (photo)desorb, induce fragmentation or ionization in the ice, and eventual recombination will make molecules to react and to form more and more complex species. The effects of this solid state astrochemistry are observed by astronomers; nearly 180 different molecules (not including isotopologues) have been unambiguously identified in the inter- and circumstellar medium, and the abundances of a substantial part of these species cannot be explained by gas phase reaction schemes only and must involve solid state chemistry. Icy dust grains in space experience different chemical stages. In the diffuse medium grains are barely covered by molecules, but upon gravitational collapse and darkening of the cloud, temperatures drop and dust grains start acting as micrometer sized cryopumps. More and more species accrete, until even the most volatile species are frozen. In parallel (non)energetic processing can take place, particularly during planet and star formation when radiation and particle fluxes are intense. The physical and chemical properties of ice clearly provide a snapshotroot to characterize the cosmological chemical evolution.

In order to fully interpret the astronomical observations, therefore, dedicated laboratory experiments are needed that simulate dust grain formation and processing as well as ice mantle chemistry under astronomical conditions and in full control of the relevant parameters; ice morphology (i.e., structure), composition, temperature, UV and particle fluxes, etc., yielding parameters that can be used for astrochemical modeling and for comparison with the observations. This is the topic of the present manuscript. Laboratory experiments simulating the conditions in space are conducted for decades all over the world, but particularly in recent years new techniques have made it possible to study reactions involving inter- and circumstellar dust and ice analogues at an unprecedented level of detail. Whereas in the past “top-down scenarios” allowed to conclude on the importance of the solid state for the chemical enrichment of space, presently “bottom-up approaches” make it possible to fully quantify the involved reactions, and to provide information on processes at the molecular level. The recent progress in the field of “solid state laboratory astrophysics” is a consequence of the use of ultra high vacuum systems, of new radiation sources, such as synchrotrons and laser systems that allow extensions to wavelength domains that long have not been accessible, including the THz domain, and the use of highly sensitive gas phase detection techniques, explicitly applied to characterize the solid state such as fluorescence, luminescence, cavity ring-down spectroscopy and sophisticated mass spectrometric techniques.

This paper presents an overview of the techniques being used in astrochemical laboratories worldwide, but it is incomplete in the sense that it summarizes the outcome of a 3-day workshop of the authors in November 2012 (at the Observatoire de Meudon in France), with several laboratories represented, but not all. The paper references earlier work, but it is incomplete with regard to latest developments of techniques used in laboratories not represented at the workshop.

Keywords

Laboratory astrophysics Solid state astrochemistry Inter- and circumstellar medium Molecular astrophysics Astronomical ice analogues 

Notes

Acknowledgements

Authors acknowledge several grants and persons as follows: H. Linnartz: Grants within NWO, NOVA and Marie Curie programs. The setups and conclusions presented here have been the outcome of dedicated work by several PhD students, postdocs, and scientific collaborators. Special thanks go to Karin Oberg, Jordy Bouwman, Edith Fayolle, Steven Cuylle, Lou Allamandola, Jean-Hugues Fillion and Mathieu Bertin. S. Ioppolo: NASA SARA and Exobiology/Astrobiology programs, Niels Stensen Foundation (NSS) through a bursary and a Marie Curie Fellowship (FP7-PEOPLE-2011-IOF-300957). G.A. Blake: NASA SARA and Exobiology/Astrobiology programs. M. A. Allodi: Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program. G. Strazzulla: European COST Action CM 0805: The Chemical Cosmos: Understanding Chemistry in Astronomical Environments. Z. Kaňuchová: VEGA—The Slovak Agency for Science, grant no. 2/0022/10 and the European COST Action CM 0805: The Chemical Cosmos: Understanding Chemistry in Astronomical Environments. M. Gudipati and A. Lignell: NASA Astrobiology Institute (NAI) through Icy Worlds (JPL) and Early Habitable Environments (NASA Ames) nodes, NASA Spitzer Science Center (Cycle 5), NASA funding through Rosetta US Science Team. Research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. R.A. Baragiola, U. Raut and D. Fulvio: NASA program: Origins of the Solar System and Outer Planet Research, and programs NSF. F. Salama: The Astrophysics Research and Analysis program (APRA) of NASA SMD, The technical support provided at NASA-Ames by R. Walker is gratefully acknowledged. C. Contreras and E. Sciamma-O’Brien: NASA Postdoctoral Program (NPP). Ph. Boduch and H. Rothard: CAPES-COFECUB French-Brazilian exchange program; European COST Action CM 0805: The Chemical Cosmos: Understanding Chemistry in Astronomical Environments; T. Langlinay and H. Hijazi, and Region “Basse Normandie”.

References

  1. J.P. Adrados, J.L. de Segovia, Anomalous mass numbers in quadrupole mass spectrometers (QMS) at very low pressures. Vacuum 34, 741–747 (1984). doi: 10.1016/0042-207X(84)90319-1 Google Scholar
  2. T. Akiyama, M. Sakamaki, K. Abe, T. Shigenari, Proton motions on the fluorescence from 2-naphthol-doped ice ih and the proton ordering transition. J. Phys. Chem. B 101, 6205–66207 (1997). doi: 10.1021/jp963177h Google Scholar
  3. L.J. Allamandola, D.M. Hudgins, S.A. Sandford, Modeling the unidentified infrared emission with combinations of polycyclic aromatic hydrocarbons. Astrophys. J. Lett. 511, 115–119 (1999). doi: 10.1086/311843 ADSGoogle Scholar
  4. H.H. Andersen, H.L. Bay, Heavy-ion sputtering yields of gold: further evidence of nonlinear effects. J. Appl. Phys. 46, 2416–2422 (1975). doi: 10.1063/1.321910 ADSGoogle Scholar
  5. D. Andrade, A. de Barros, S. Pilling, A. Domaracka, H. Rothard, P. Boduch, E. da Silveira, Chemical reactions induced in frozen formic acid by heavy ion cosmic rays. Mon. Not. R. Astron. Soc. 430, 787–796 (2013) ADSGoogle Scholar
  6. C. Arasa, S. Andersson, H.M. Cuppen, E.F. van Dishoeck, G.-J. Kroes, Molecular dynamics simulations of the ice temperature dependence of water ice photodesorption. J. Chem. Phys. 132(18), 184510 (2010). doi: 10.1063/1.3422213 ADSGoogle Scholar
  7. C. Arasa, S. Andersson, H.M. Cuppen, E.F. van Dishoeck, G.J. Kroes, Molecular dynamics simulations of D2O ice photodesorption. J. Chem. Phys. 134(16), 164503 (2011). doi: 10.1063/1.3582910 ADSGoogle Scholar
  8. W. Assmann, M. Toulemonde, C. Trautmann, Electronic sputtering with swift heavy ions, in Sputtering by Particle Bombardment, eds. by I.R. Behrisch, W. Eckstein. Topics in Applied Physics, vol. 110 (Springer, Berlin, 2007), pp. 401–450. Google Scholar
  9. V. Balaji, D.R. David, T.F. Magnera, J. Michl, H.M. Urbassek, Sputtering yields of condensed rare-gasses. Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 46, 435–440 (1990). doi: 10.1364/JOSAA.15.003076 ADSGoogle Scholar
  10. R.A. Baragiola, Sputtering: survey of observations and derived principles. Philos. Trans. R. Soc. Lond. 362(1814), 29–53 (2004) ADSGoogle Scholar
  11. R.A. Baragiola, C.L. Atteberry, C.A. Dukes, M. Fama, B.D. Teolis, Atomic collisions in solids: astronomical applications. Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 193(1), 720–726 (2002) ADSGoogle Scholar
  12. R.A. Baragiola, M. Fama, J. Loeffler, U. Raut, J. Shi, Radiation effects in ice: new results. Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 266, 3057 (2008). doi: 10.1016/j.nimb.2008.03.186 ADSGoogle Scholar
  13. G.A. Baratta, M.M. Arena, G. Strazzulla, L. Colangeli, V. Mennella, E. Bussoletti, Raman spectroscopy of ion irradiated amorphous carbons. Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater Atoms 116, 195–199 (1996). doi: 10.1016/0168-583X(96)00124-3 ADSGoogle Scholar
  14. G.A. Baratta, M.E. Palumbo, Infrared optical constants of CO and CO2 thin icy films. J. Opt. Soc. Am. A 15, 3076–3085 (1998) doi: 10.1364/JOSAA.15.003076 ADSGoogle Scholar
  15. T. Bartels-Rausch, V. Bergeron, J.H.E. Cartwright, R. Escribano, J.L. Finney, H. Grothe, P.J. Gutierrez, J. Haapala, W.F. Kuhs, J.B.C. Pettersson, S.D. Price, C.I. Sainz-Diaz, D.J. Stokes, G. Strazzulla, E. Thomson, H. Trinks, N. Uras-Nevin, Ice structures, patterns, and processes: a view across the icefields. Rev. Mod. Phys. 84, 885–944 (2012). doi: 10.1103/RevModPhys.84.885 ADSGoogle Scholar
  16. J.A. Basford, et al., J. Vac. Sci. Technol., A, Vac. Surf. Films 11, A22 (1983) Google Scholar
  17. M. Batchelor, D. Adler, W. Trogus, New plans for first far infrared and sub-millimetre space astronomy mission for 2007. Adv. Space Res. 18, 185–188 (1996) ADSGoogle Scholar
  18. R. Behrisch, W. Eckstein, Sputtering by Particle Bombardment, Experiments and Computer Calculations from Threshold to MeV Energies. Topics in Applied Physics, vol. 110 (2007), pp. 1–20 Google Scholar
  19. M.T. Beltrán, C. Codella, S. Viti, R. Neri, R. Cesaroni, First detection of glycolaldehyde outside the galactic center. Astrophys. J. Lett. 690, 93–96 (2009). doi: 10.1088/0004-637X/690/2/L93 ADSGoogle Scholar
  20. C.J. Bennett, C.S. Jamieson, R.I. Kaiser, Mechanistical studies on the formation and destruction of carbon monoxide (CO), carbon dioxide (CO2), and carbon trioxide (CO3) in interstellar ice analog samples. Phys. Chem. Chem. Phys. 12, 4032–4050 (2010) Google Scholar
  21. P.P. Bera, M. Head-Gordon, T.J. Lee, Initiating molecular growth in the interstellar medium via dimeric complexes of observed ions and molecules. Astron. Astrophys. 535, 74 (2011). doi: 10.1051/0004-6361/201117103 ADSGoogle Scholar
  22. E.A. Bergin, R.L. Snell, Sensitive limits on the water abundance in cold low-mass molecular cores. Astrophys. J. Lett. 581, 105–108 (2002). doi: 10.1086/346014 ADSGoogle Scholar
  23. M.P. Bernstein, J.P. Dworkin, S.A. Sandford, G.W. Cooper, L.J. Allamandola, Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 416, 401–403 (2002) ADSGoogle Scholar
  24. M. Bertin, E.C. Fayolle, C. Romanzin, K.I. Öberg, X. Michaut, A. Moudens, L. Philippe, P. Jeseck, H. Linartz, J.H. Fillion, UV photodesorption of interstellar CO ice analogues: from subsurface excitation to surface desorption. Phys. Chem. Chem. Phys. 14, 9929–9935 (2012) Google Scholar
  25. L. Biennier, F. Salama, L. Allamandola, J. Scherer, Pulsed discharge nozzle cavity ringdown spectroscopy of cold polycyclic aromatic hydrocarbon ions. J. Chem. Phys. 118, 7863–7872 (2003). doi: 10.1063/1.1564044 ADSGoogle Scholar
  26. L. Biennier, M. Hammond, J. Elsila, R. Zare, F. Salama, From organic molecules to carbon particles: implications for the formation of interstellar dust, in IAU Symposium, vol. 235 (2005), p. 214 Google Scholar
  27. L. Biennier, A. Benidar, F. Salama, Flow dynamics of a pulsed planar expansion. Chem. Phys. 326(2–3), 445–457 (2006). doi: 10.1016/j.chemphys.2006.03.016 ADSGoogle Scholar
  28. V.M. Bierbaum, V. Le Page, T.P. Snow, PAHs and the chemistry of the Ism, in EAS Publications Series, ed. by C. Joblin. A.G.G.M. Tielens EAS Publications Series, vol. 46 (2011), pp. 427–440. doi: 10.1051/eas/1146044 Google Scholar
  29. G.A. Blake, Microwave and terahertz spectroscopy. Encyclopedia of Chem. Phys. Phys. Chem. 2, 1063–1088 (2001). Google Scholar
  30. G.A. Blake, Terahertz spectroscopy in the lab and at telescopes, in Submillimeter Astrophysics and Technology: A Symposium Honoring Thomas G. Phillips, ed. by D.C. Lis, J.E. Vaillancourt, P.F. Goldsmith, T.A. Bell, N.Z. Scoville, J. Zmuidzinas Astronomical Society of the Pacific Conference Series, vol. 417 (2009), p. 231 Google Scholar
  31. M.A. Bol’shov, C.F. Boutron, A.V. Zybin, Determination of lead in antarctic ice at the picogram-per-gram level by laser atomic fluorescence spectrometry. Anal. Chem. 61, 1758–1762 (1989) Google Scholar
  32. A.C.A. Boogert, K.M. Pontoppidan, C. Knez, F. Lahuis, J. Kessler-Silacci, E.F. van Dishoeck, G.A. Blake, J.-C. Augereau, S.E. Bisschop, S. Bottinelli, T.Y. Brooke, J. Brown, A. Crapsi, N.J. Evans II, H.J. Fraser, V. Geers, T.L. Huard, J.K. Jørgensen, K.I. Öberg, L.E. Allen, P.M. Harvey, D.W. Koerner, L.G. Mundy, D.L. Padgett, A.I. Sargent, K.R. Stapelfeldt, The c2d spitzer spectroscopic survey of ices around low-mass young stellar objects. I. H2O and the 5–8 μm bands. Astrophys. J. 678, 985–1004 (2008). doi: 10.1086/533425 ADSGoogle Scholar
  33. J.-B. Bossa, K. Isokoski, M.S. de Valois, H. Linnartz, Thermal collapse of porous interstellar ice. Astron. Astrophys. 545, 82 (2012). doi: 10.1051/0004-6361/201219340 ADSGoogle Scholar
  34. S. Bottinelli, A.C.A. Boogert, J. Bouwman, M. Beckwith, E.F. van Dishoeck, K.I. Öberg, K.M. Pontoppidan, H. Linnartz, G.A. Blake, N.J. Evans II, F. Lahuis, The c2d Spitzer spectroscopic survey of ices around low-mass young stellar objects. IV. NH3 and CH3OH. Astrophys. J. 718, 1100–1117 (2010). doi: 10.1088/0004-637X/718/2/1100 ADSGoogle Scholar
  35. J. Bouwman, D.M. Paardekooper, H.M. Cuppen, H. Linnartz, L.J. Allamandola, Real-time optical spectroscopy of vacuum ultraviolet irradiated pyrene:H2O interstellar ice. Astrophys. J. 700, 56–62 (2009). doi: 10.1088/0004-637X/700/1/56 ADSGoogle Scholar
  36. J. Bouwman, H.M. Cuppen, A. Bakker, L.J. Allamandola, H. Linnartz, Photochemistry of the PAH pyrene in water ice: the case for ion-mediated solid-state astrochemistry. Astron. Astrophys. 511, 33 (2010). doi: 10.1051/0004-6361/200913291 ADSGoogle Scholar
  37. J. Bouwman, H.M. Cuppen, M. Steglich, L.J. Allamandola, H. Linnartz, Photochemistry of polycyclic aromatic hydrocarbons in cosmic water ice. II. Near UV/VIS spectroscopy and ionization rates. Astron. Astrophys. 529, 46 (2011a). doi: 10.1051/0004-6361/201015762 ADSGoogle Scholar
  38. J. Bouwman, A.L. Mattioda, H. Linnartz, L.J. Allamandola, Photochemistry of polycyclic aromatic hydrocarbons in cosmic water ice. I. Mid-IR spectroscopy and photoproducts. Astron. Astrophys. 525, 93 (2011b). doi: 10.1051/0004-6361/201015059 ADSGoogle Scholar
  39. B. Broks, W. Brok, J. Remy, J. van der Mullen, J. Benidar, L. Biennier, F. Salama, Numerical investigation of the discharge characteristics of the pulsed discharge nozzle. Phys. Rev. E 71(3), 36409 (2005a). doi: 10.1103/PhysRevE.71.036409 ADSGoogle Scholar
  40. B. Broks, W. Brok, J. Remy, J. van der Mullen, J. Benidar, L. Biennier, F. Salama, Modeling the influence of anode-cathode spacing in a pulsed discharge nozzle. Spectrochim. Acta B 60, 1442–1449 (2005b). doi: 10.1016/j.sab.2005.08.012 ADSGoogle Scholar
  41. J. Cami, J. Bernard-Salas, E. Peeters, S.E. Malek, Detection of C60 and C70 in a young planetary nebula. Science 329, 1180 (2010). doi: 10.1126/science.1192035 ADSGoogle Scholar
  42. R. Cannia, G. Strazzulla, G. Compagnini, G.A. Baratta, Vibrational spectroscopy of ion-irradiated pentacene. Infrared Phys. Technol. 35, 791–800 (1994). doi: 10.1016/1350-4495(94)90007-8 ADSGoogle Scholar
  43. P.B. Carroll, B.J. Drouin, S.L. Widicus Weaver, The submillimeter spectrum of glycolaldehyde. Astrophys. J. 723, 845–849 (2010). doi: 10.1088/0004-637X/723/1/845 ADSGoogle Scholar
  44. F. Cataldo, G.A. Baratta, G. Strazzulla, He+ ion bombardment of C60 fullerene: an FT-IR and Raman study. Nanotub. Carbon Nanostruct. 10(3), 197–206 (2002). doi: 10.1081/FST-120014734 Google Scholar
  45. F. Cataldo, G.A. Baratta, G. Ferini, G. Strazzulla, He+ ion bombardment of C70 fullerene: an FT-IR and Raman study. Nanotub. Carbon Nanostruct. 11(3), 191–199 (2003). doi: 10.1081/FST-120024038 Google Scholar
  46. F.J. Ciesla, S.A. Sandford, Organic synthesis via irradiation and warming of ice grains in the solar nebula. Science 336, 452 (2012). doi: 10.1126/science.1217291 ADSGoogle Scholar
  47. R. Chen, S.W.S. McKeever, Theory of Thermoluminescence and Related Phenomena (World Scientific, Singapore, 1997) Google Scholar
  48. I. Cherchneff, The formation of polycyclic aromatic hydrocarbons in evolved circumstellar environments, in EAS Publications Series, ed. by C. Joblin. A.G.G.M. Tielens EAS Publications Series, vol. 46 (2011), pp. 177–189. doi: 10.1051/eas/1146019 Google Scholar
  49. G. Compagnini, L. D’Urso, O. Puglisi, G.A. Baratta, G. Strazzulla, On the irradiation of solid hydrocarbons and the formation of linear carbon chain. Carbon 47, 1605 (2009). Google Scholar
  50. E. Congiu, H. Chaabouni, C. Laffon, P. Parent, S. Baouche, F. Dulieu, Efficient surface formation route of interstellar hydroxylamine through NO hydrogenation. I. The submonolayer regime on interstellar relevant substrates. J. Chem. Phys. 137, 054713 (2012a) ADSGoogle Scholar
  51. E. Congiu, G. Fedoseev, S. Ioppolo, F. Dulieu, H. Chaabouni, S. Baouche, J.L. Lemaire, C. Laffon, P. Parent, T. Lamberts, H.M. Cuppen, H. Linnartz, No ice hydrogenation: a solid pathway to NH2OH formation in space. Astrophys. J. Lett. 750, 12 (2012b). doi: 10.1088/2041-8205/750/1/L12 ADSGoogle Scholar
  52. C.S. Contreras, C.L. Ricketts, F. Salama, Formation and evolution of circumstellar and interstellar PATHs: a laboratory study, in EAS Publications Series, ed. by C. Joblin. A.G.G.M. Tielens EAS Publications Series, vol. 46 (2011), pp. 201–207. doi: 10.1051/eas/1146021 Google Scholar
  53. C.S. Contreras, F. Salama, Astrophys. J. (submitted) (2013) Google Scholar
  54. J.M. Costantini, F. Couvreur, J.P. Salvetat, S. Bouffard, Micro-Raman study of the carbonization of polyimide induced by swift heavy ion irradiations. Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 194, 132–140 (2002). doi: 10.1016/S0168-583X(02)00669-9 ADSGoogle Scholar
  55. M.C. Cowen, W. Allison, J.H. Batey, Nonlinearities in sensitivity of quadrupole partial-pressure analyzers operating at higher gas-pressures. J. Vac. Sci. Technol., A, Vac. Surf. Films 12, 228–234 (1994) ADSGoogle Scholar
  56. H.M. Cuppen, S. Ioppolo, C. Romanzin, H. Linnartz, Water formation at low temperatures by surface O2 hydrogenation. II. The reaction network. Phys. Chem. Chem. Phys. 12, 12077 (2010) Google Scholar
  57. H.M. Cuppen, E.M. Penteado, K. Isokoski, N. van der Marel, H. Linnartz, CO ice mixed with CH3OH: the answer to the non-detection of the 2152 cm−1 band? Mon. Not. R. Astron. Soc. 417, 2809–2816 (2011). doi: 10.1111/j.1365-2966.2011.19443.x ADSGoogle Scholar
  58. S.H. Cuylle, H. Linnartz, UV/VIS spectroscopy of C60 embedded in water ice. Chem. Phys. Lett. 550, 79–82 (2012a) ADSGoogle Scholar
  59. S.H. Cuylle, E.D. Tenenbaum, J. Bouwman, H. Linnartz, L.J. Allamandola, Lyα-induced charge effects of polycyclic aromatic hydrocarbons embedded in ammonia and ammonia:water ice. Mon. Not. R. Astron. Soc. 423, 1825–1830 (2012b). doi: 10.1111/j.1365-2966.2012.21006.x ADSGoogle Scholar
  60. J.B. Dalton, D.P. Cruikshank, K. Stephan, T. McCord, A. Coustenis, R.W. Carlson, A. Coradini, Chemical composition of icy satellite surfaces. Space Sci. Rev. 153, 113–154 (2010). doi: 10.1007/s11214-010-9665-8 ADSGoogle Scholar
  61. G. Danger, F. Duvernay, P. Theulé, F. Borget, T. Chiavassa, Hydroxyacetonitrile (HOCH2CN) formation in astrophysical conditions. competition with the aminomethanol, a glycine precursor. Astrophys. J. 756, 11 (2012). doi: 10.1088/0004-637X/756/1/11 ADSGoogle Scholar
  62. P.H. Dawson, Quadrupole Mass Spectrometry and Its Applications (American Inst. of Physics, New York, 1997), 376 pp. Google Scholar
  63. C.A. Dukes, W.-Y. Chang, M. Famá, R.A. Baragiola, Laboratory studies on the sputtering contribution to the sodium atmospheres of mercury and the moon. Icarus 212, 463–469 (2011). doi: 10.1016/j.icarus.2011.01.027 ADSGoogle Scholar
  64. F. Dulieu, L. Amiaud, E. Congiu, J.-H. Fillion, E. Matar, A. Momeni, V. Pirronello, J.L. Lemaire, Experimental evidence for water formation on interstellar dust grains by hydrogen and oxygen atoms. Astron. Astrophys. 512, 30 (2010). doi: 10.1051/0004-6361/200912079 ADSGoogle Scholar
  65. F. Duvernay, V. Dufauret, G. Danger, P. Theulé, F. Borget, T. Chiavassa, Chiral molecule formation in interstellar ice analogs: alpha-aminoethanol NH2CH(CH3)OH. Astron. Astrophys. 523, 79 (2010). doi: 10.1051/0004-6361/201015342 ADSGoogle Scholar
  66. E.P. Eernisse, Light ion bombardment sputtering, stress buildup, and enhanced surface contamination. J. Nucl. Mater. 53, 226–230 (1974a) ADSGoogle Scholar
  67. E.P. Eernisse, Sputtering measurements with the double resonator technique. J. Vac. Sci. Technol. 11, 408 (1974b) ADSGoogle Scholar
  68. E.P. Eernisse, Applications of Piezoelectric Quartz Crystal Microbalances (Elsevier, Amsterdam, 1984). Chap. 4 Google Scholar
  69. P. Ehrenfreund, M.P. Bernstein, J.P. Dworkin, S.A. Sandford, L.J. Allamandola, The photostability of amino acids in space. Astrophys. J. Lett. 550, 95–99 (2001). doi: 10.1086/319491 ADSGoogle Scholar
  70. B.S. Elman, M.S. Dresselhaus, G. Dresselhaus, E.W. Maby, H. Mazurek, Raman scattering from ion-implanted graphite. Phys. Rev. B. 24, 1027–1034 (1981). doi: 10.1103/PhysRevB.24.1027 ADSGoogle Scholar
  71. E.F. Erickson, SOFIA: the next generation airborne observatory. Space Sci. Rev. 74, 91–100 (1995). doi: 10.1007/BF00751257 ADSGoogle Scholar
  72. M. Fama, J. Shi, R.A. Baragiola, Sputtering of ice by low-energy ions. Appl. Surf. Sci. 602, 156–161 (2008). doi: 10.1016/j.susc.2007.10.002 Google Scholar
  73. L.S. Farenzena, P. Iza, R. Martinez, F.A. Fernandez-Lima, E.S. Duarte, G.S. Faraudo, C.R. Ponciano, M.G.P. Homem, A.N. de Brito, K. Wien, E.F. da Silveira, Electronic sputtering analysis of astrophysical ices. Earth Moon Planets 97, 311–329 (2005). doi: 10.1007/s11038-006-9081-y ADSGoogle Scholar
  74. E.C. Fayolle, M. Bertin, C. Romanzin, X. Michaut, K.I. Öberg, H. Linnartz, J.-H. Fillion, CO ice photodesorption: a wavelength-dependent study. Astrophys. J. Lett. 739, 36 (2011). doi: 10.1088/2041-8205/739/2/L36 ADSGoogle Scholar
  75. G. Fedoseev, S. Ioppolo, T. Lamberts, J. Zhen, H.M. Cuppen, H. Linnartz, Efficient surface formation route of interstellar hydroxylamine through NO hydrogenation. II. The multilayer regime in interstellar relevant ices. J. Chem. Phys. 137, 054713 (2012) ADSGoogle Scholar
  76. B. Ferguson, X.-C. Zhang, Materials for terahertz science and technology. Nat. Mater. 1, 26–33 (2002). doi: 10.1038/nmat708 ADSGoogle Scholar
  77. G. Ferini, G.A. Baratta, M.E. Palumbo, A Raman study of ion irradiated icy mixtures. Astron. Astrophys. 414, 757–766 (2004). doi: 10.1051/0004-6361:20031641 ADSGoogle Scholar
  78. M. Frankowski, E.V. Savchenko, A.M. Smith-Gicklhorn, O.N. Grigorashchenko, G.B. Gumenchuk, V.E. Bondybey, Thermally stimulated exoelectron emission from solid neon. J. Chem. Phys. 121, 1479–1974 (2004). doi: 10.1063/1.1763568 ADSGoogle Scholar
  79. M. Frenklach, C.S. Carmer, E.D. Feigelson, Silicon carbide and the origin of interstellar carbon grains. Nature 339, 196–198 (1989). doi: 10.1038/339196a0 ADSGoogle Scholar
  80. G.W. Fuchs, K. Acharyya, S.E. Bisschop, K.I. Öberg, H. Linnartz, F.A. van Broekhuizen, H.J. Fraser, S. Schlemmer, E.F. van Dishoeck, H. Linnartz, Comparative studies of O2 and N2 in pure, mixed and layered CO ices. Faraday Discuss. 133, 331–345 (2006). doi: 10.1039/B517262B ADSGoogle Scholar
  81. G.W. Fuchs, H.M. Cuppen, S. Ioppolo, C. Romanzin, S.E. Bisschop, S. Andersson, E.F. van Dishoeck, H. Linnartz, Hydrogenation reactions in interstellar CO ice analogues. A combined experimental/theoretical approach. Astron. Astrophys. 505, 629–639 (2009). doi: 10.1051/0004-6361/200810784 ADSGoogle Scholar
  82. D. Fulvio, U. Raut, R.A. Baragiola, Photosynthesis of carbon dioxide from carbon surfaces coated with oxygen: implications for interstellar molecular clouds and the outer solar system. Astrophys. J. Lett. 752, 33 (2012). doi: 10.1088/2041-8205/752/2/L33 ADSGoogle Scholar
  83. R. Garrod, I.H. Park, P. Caselli, E. Herbst, Are gas-phase models of interstellar chemistry tenable? The case of methanol. Faraday Discuss. 133, 51 (2006). doi: 10.1039/b516202e ADSGoogle Scholar
  84. V.C. Geers, E.F. van Dishoeck, K.M. Pontoppidan, F. Lahuis, A. Crapsi, C.P. Dullemond, G.A. Blake, Lack of PAH emission toward low-mass embedded young stellar objects. Astron. Astrophys. 495, 837–846 (2009). doi: 10.1051/0004-6361:200811001 ADSGoogle Scholar
  85. E.L. Gibb, D.C.B. Whittet, W.A. Schutte, A.C.A. Boogert, J.E. Chiar, P. Ehrenfreund, P.A. Gerakines, J.V. Keane, A.G.G.M. Tielens, E.F. van Dishoeck, O. Kerkhof, An inventory of interstellar ices toward the embedded protostar W33A. Astrophys. J. 536, 347–356 (2000). doi: 10.1086/308940 ADSGoogle Scholar
  86. E.L. Gibb, D.C.B. Whittet, A.C.A. Boogert, A.G.G.M. Tielens, Interstellar ice: the infrared space observatory legacy. Astrophys. J. Supp. Ser. 151, 35–73 (2004). doi: 10.1086/381182 ADSGoogle Scholar
  87. D.P. Glavin, J.L. Bada, K.L.F. Brinton, G.D. McDonald, Amino acids in the martian meteorite Nakhla. Proc. Natl. Acad. Sci. USA 96, 8835–8838 (1999). doi: 10.1073/pnas.96.16.8835 ADSGoogle Scholar
  88. J.T. Gosling, The solar wind, in Encyclopedia of the Solar System, 2nd edn., ed. by L. McFadden, P.R. Weissman, T.V. Johnson (Academic Press, San Diego, 2007), pp. 99–116 Google Scholar
  89. J.M. Greenberg, A. Li, C.X. Mendoza-Gomez, W.A. Schutte, P.A. Gerakines, M. de Groot, Approaching the interstellar grain organic refractory component. Astrophys. J. Lett. 455, 177 (1995). doi: 10.1086/309834 ADSGoogle Scholar
  90. M.S. Gudipati, UV absorption and luminescence spectroscopy of tetrabenzo[B,H,N,T]tetraphenylene. Chem. Phys. Lett. 196, 481–485 (1992) ADSGoogle Scholar
  91. M.S. Gudipati, Exciton, exchange, and through-bond interactions in multichromophoric molecules—an analysis of the electronic excited-states. J. Phys. Chem. 98, 9750–9763 (1994) Google Scholar
  92. M.S. Gudipati, Matrix-isolation in cryogenic water-ices: facile generation, storage, and optical spectroscopy of aromatic radical cations. J. Phys. Chem. A 108, 4412–4419 (2004) Google Scholar
  93. M.S. Gudipati, L.J. Allamandola, Facile generation and storage of polycyclic aromatic hydrocarbon ions in astrophysical ices. Astrophys. J. Lett. 596, 195–198 (2003). doi: 10.1086/379595 ADSGoogle Scholar
  94. M.S. Gudipati, L.J. Allamandola, Polycyclic aromatic hydrocarbon ionization energy lowering in water ices. Astrophys. J. Lett. 615, 177–180 (2004). doi: 10.1086/426392 ADSGoogle Scholar
  95. M.S. Gudipati, L.J. Allamandola, Unusual stability of polycyclic aromatic hydrocarbon radical cations in amorphous water ices up to 120 K: astronomical implications. Astrophys. J. 638, 286–292 (2006a). doi: 10.1086/498816 ADSGoogle Scholar
  96. M.S. Gudipati, L.J. Allamandola, Double ionization of quaterrylene (C4OH2O) in water-ice at 20 K with Lyα (121.6 nm) radiation. J. Phys. Chem. 110, 9020 (2006b). doi: 10.1021/jp061416n Google Scholar
  97. M. Gudipati, J. Castillo-Rogez, The Science of Solar System Ices (Springer, New York, 2013) Google Scholar
  98. M.S. Gudipati, J. Daverkausen, G. Hohlneicher, Higher excited states of aromatic hydrocarbons: polarized VUV fluorescence-excitation spectra of anthracene and pyrene in argon matrices at 15 K using synchrotron radiation. Chem. Phys. 173, 143–157 (1993) ADSGoogle Scholar
  99. M.S. Gudipati, J.P. Dworkin, X.D.F. Chillier, L.J. Allamandola, Luminescence from vacuum-ultraviolet-irradiated cosmic ice analogs and residues. Astrophys. J. 583, 514–523 (2003). doi: 10.1086/345349 ADSGoogle Scholar
  100. E. Gullikson, Hot-electron diffusion lengths in the rare-gas solids. Phys. Rev. B, Condens. Matter 37, 7904–7906 (1988). doi: 10.1103/PhysRevB.37.7904 ADSGoogle Scholar
  101. G.B. Gumenchuk, A.N. Ponomaryov, I.V. Khyzhniy, S.A. Uyutnov, E.V. Savchenko, V.E. Bondybey, Triggering of relaxation cascades in pre-irradiated RGS by chemiluminescent reactions. Phys. Proc. 2, 441–447 (2009). doi: 10.1016/j.phpro.2009.07.029 Google Scholar
  102. H.D. Hagstrum, Rev. Mod. Phys. 23, 185 (1951) ADSGoogle Scholar
  103. T.M. Halasinski, F. Salama, L.J. Allamandola, Investigation of the ultraviolet, visible, and near-infrared absorption spectra of hydrogenated polycyclic aromatic hydrocarbons and their cations. Astrophys. J. 628, 555–566 (2005). doi: 10.1086/430631 ADSGoogle Scholar
  104. T. Henning, F. Salama, Carbon in the universe. Science 282, 2204 (1998). doi: 10.1126/science.282.5397.2204 ADSGoogle Scholar
  105. H. Hijazi, H. Rothard, P. Boduch, I. Alzaher, F. Ropars, A. Cassimi, J.M. Ramillon, T. Been, B.B. d’Etat, H. Lebius, et al., Interaction of swift ion beams with surfaces: sputtering of secondary ions from LiF studied by XY-TOF-SIMS. Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 269, 1003–1006 (2011). doi: 10.1016/j.nimb.2010.12.062 ADSGoogle Scholar
  106. H. Hijazi, H. Rothard, P. Boduch, I. Alzaher, A. Cassimi, F. Ropars, T. Been, J. Ramillon, H. Lebius, B. Ban-d’Etat, et al., Electronic sputtering: angular distributions of (LiF)nLi+ clusters emitted in collisions of Kr (10.1 MeV/u) with LiF single crystals. Eur. Phys. J., D, At. Mol. Opt. Phys. 66(3), 68 (2012). doi: 10.1140/epjd/e2012-20545-3 ADSGoogle Scholar
  107. H. Hijazi, H. Rothard, P. Boduch, I. Alzaher, T. Langlinay, A. Cassimi, F. Ropars, T. Been, J. Ramillon, H. Lebius, B. Ban-d’Etat, et al., Electronic sputtering of (LiF) by Kr (10 MeV/u): size dependent energy distributions of (LiF)nLi+ clusters with LiF single crystals. Eur. Phys. J. D, At. Mol. Opt. Plasma Phys. (2013) Google Scholar
  108. J.M. Hollis, F.J. Lovas, P.R. Jewell, Interstellar glycolaldehyde: the first sugar. Astrophys. J. Lett. 540, 107–110 (2000). doi: 10.1086/312881 ADSGoogle Scholar
  109. S. Ioppolo, H.M. Cuppen, C. Romanzin, E.F. van Dishoeck, H. Linnartz, Laboratory evidence for efficient water formation in interstellar ices. Astrophys. J. 686, 1474–1479 (2008). doi: 10.1086/591506 ADSGoogle Scholar
  110. S. Ioppolo, M.E. Palumbo, G.A. Baratta, V. Mennella, Formation of interstellar solid CO2 after energetic processing of icy grain mantles. Astron. Astrophys. 493, 1017–1028 (2009). doi: 10.1051/0004-6361:200809769 ADSGoogle Scholar
  111. S. Ioppolo, H.M. Cuppen, E.F. van Dishoeck, H. Linnartz, Water formation at low temperatures by surface O2 hydrogenation. I. Characterization of ice penetration. Phys. Chem. Chem. Phys. 12, 12065 (2010). doi: 10.1039/c0cp00250j Google Scholar
  112. S. Ioppolo, Y. van Boheemen, H.M. Cuppen, E.F. van Dishoeck, H. Linnartz, Surface formation of CO2 ice at low temperatures. Mon. Not. R. Astron. Soc. 413, 2281–2287 (2011). doi: 10.1111/j.1365-2966.2011.18306.x ADSGoogle Scholar
  113. P. Iza, L.S. Farenzena, E.F.. da Silveira, Effects of projectile track charging on the H-secondary ion velocity distribution. Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 256, 483–488 (2007). doi: 10.1016/j.nimb.2006.12.070 ADSGoogle Scholar
  114. T. Jalowy, R. Neugebauer, M. Hattass, J. Fiol, F. Afaneh, J. Pereira, V. Collado, E. Da Silveira, H. Schmidt-Böcking, K. Groeneveld, Dynamics of secondary ion emission: novel energy and angular spectrometry. Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 193(1), 762–767 (2002). doi: 10.1016/S0168-583X(02)00900-X ADSGoogle Scholar
  115. T. Jalowy, T. Weber, R. Dörner, L. Farenzena, V. Collado, E. Da Silveira, H. Schmidt-Böcking, K. Groeneveld, Initial velocity of secondary ions from XY-TOF technique, simultaneous calibration by residual gas ionization. Int. J. Mass Spectrom. 231(1), 51–58 (2004) ADSGoogle Scholar
  116. C. Jäger, H. Mutschke, T. Henning, F. Huisken, From PAHs to solid carbon, in EAS Publications Series, ed. by C. Joblin. A.G.G.M. Tielens EAS Publications Series, vol. 46 (2011), pp. 293–304. doi: 10.1051/eas/1146031 Google Scholar
  117. R.E. Johnson, J. Schou, Sputtering of inorganic insulators, in Symposium on the Occasion of the 250th Anniversary of the Royal-Danish-Academy-of-Sciences-and-Letters: Fundamental Processes in Sputtering of Atoms and Molecules (SPUT92), ed. by P. Sigmund. Mat. Fys. Medd. Dan. Vid. Selsk., vol. 43, (1993), pp. 403–493 Google Scholar
  118. P.V. Johnson, R. Hodyss, D.K. Bolser, R. Bhartia, A.L. Lane, I. Kanik, Ultraviolet-stimulated fluorescence and phosphorescence of aromatic hydrocarbons in water ice. Astrobiology 11, 151–156 (2011). doi: 10.1089/ast.2010.0568 ADSGoogle Scholar
  119. R. Jost, NATO ASI Series C Mathematical and Physical Sciences, vol. 483 (Kluwer Academic, Norwell, 1996), p. 249. Google Scholar
  120. J.K. Jørgensen, C. Favre, S.E. Bisschop, T.L. Bourke, E.F. van Dishoeck, M. Schmalzl, Detection of the simplest sugar, glycolaldehyde, in a solar-type protostar with ALMA. Astrophys. J. Lett. 757, 4 (2012). doi: 10.1088/2041-8205/757/1/L4 ADSGoogle Scholar
  121. R. Kalish, A. Reznik, K.W. Nugent, S. Prawer, The nature of damage in ion-implanted and annealed diamond. Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 148, 626–633 (1999). doi: 10.1016/S0168-583X(98)00857-X ADSGoogle Scholar
  122. H.D. Kang, R. Preuss, T. Schwarz-Selinger, V. Doser, Decomposition of multicomponent mass spectra using Bayesian probability theory. J. Mass. Spectrom. 37, 748–754 (2002). doi: 10.1002/jms.335 Google Scholar
  123. I. Khyzhniy, E.V. Savchenko, S. Uyutnov, A. Ponomaryov, V. Bondybey, Exoelectron emission from solid nitrogen. Radiat. Meas. 45, 353–355 (2010). doi: 10.1016/j.radmeas.2009.11.020 Google Scholar
  124. H.G. Kjaergaard, T.W. Robinson, K.A. Brooking, Calculated CH-stretching overtone spectra of naphthalene, anthracene and their cations. J. Phys. Chem. 104, 11279–11303 (2000). doi: 10.1021/jp002686n Google Scholar
  125. R.F. Knacke, Y.H. Kim, W.M. Irvine, An upper limit to the acetylene abundance toward BN in the orion molecular cloud. Astrophys. J. 345, 265–267 (1989). doi: 10.1086/167902 ADSGoogle Scholar
  126. S. Kuma, H. Nakahara, M. Tsubouchi, A. Takahashi, M. Mustafa, G. Sim, T. Momose, A.F. Vilesov, Laser induced fluorescence spectroscopy of tetracene with large Ar, Ne, and H2 clusters in superfluid He nanodroplets. J. Chem. Phys. A 115, 7392–7399 (2011). doi: 10.1021/jp203341r Google Scholar
  127. V.S. Langford, A.J. McKinley, T.I. Quickenden, Luminescent photoproducts in UV-irradiated ice. Acc. Chem. Res. 33, 665–671 (2000) Google Scholar
  128. S. Leach, M. Vervloet, A. Desprès, E. Bréheret, J.P. Hare, T.J. Dennis, H.W. Kroto, R. Taylor, D.R.M. Walton, Electronic spectra and transitions of the fullerene C60. Chem. Phys. 160, 451–466 (1992). doi: 10.1016/0301-0104(92)80012-K ADSGoogle Scholar
  129. C. Lee, Y. Fong, M. Tsaic, I. Wing, R. Wue, S. Lee, Study of the luminescence of H2O and D2O ices induced by charged-particle bombardment. Appl. Surf. Sci. 255, 4716–4719 (2009) ADSGoogle Scholar
  130. L. Lieszkovsky, A.R. Filippelli, C.R. Tilford, Meteorological characteristics of a group of quadrupole partial-pressure analyzers. J. Vac. Sci. Technol. A 8, 3838–3854 (1990). doi: 10.1116/1.576458 ADSGoogle Scholar
  131. H. Linnartz, J.-B. Bossa, J. Bouwman, H.M. Cuppen, S.H. Cuylle, E.F. van Dishoeck, E.C. Fayolle, G. Fedoseev, G.W. Fuchs, S. Ioppolo, K. Isokoski, T. Lamberts, K.I. Öberg, C. Romanzin, E. Tenenbaum, J. Zhen, Solid state pathways towards molecular complexity in space, in IAU Symposium. IAU Symposium, vol. 280 (2011), pp. 390–404. doi: 10.1017/S1743921311025142 Google Scholar
  132. M.J. Loeffler, R.A. Baragiola, Photolysis of solid NH3 and NH3-H2O mixtures at 193 nm. J. Chem. Phys. 133, 214506 (2010). doi: 10.1063/1.3506577 ADSGoogle Scholar
  133. M.J. Loeffler, R.A. Baragiola, Isothermal decomposition of hydrogen peroxide dihydrate. J. Chem. Phys. 115 5324 (2011). doi: 10.1021/jp200188b Google Scholar
  134. M.J. Loeffler, R.A. Baragiola, Blistering and explosive desorption of irradiated ammonia-water mixtures. Astrophys. J. 744 102 (2012). doi: 10.1088/0004-637X/744/2/102 ADSGoogle Scholar
  135. M.J. Loeffler, U. Raut, R.A. Baragiola, Enceladus: a source of nitrogen and an explanation for the water vapor plume observed by Cassini. Astrophys. J. Lett. 649, 133–136 (2006). doi: 10.1086/508459 ADSGoogle Scholar
  136. C. Lu, J. Vac. Sci. Technol. 12, 578 (1975) ADSGoogle Scholar
  137. C. Lu, Applications of Piezoelectric Quartz Crystal Microbalances (Elsevier, Amsterdam, 1984). Chap. 2. Google Scholar
  138. Z.G. Lu, P. Campbell, X.-C. Zhang, Free-space electro-optic sampling with a high-repetition-rate regenerative amplified laser. Appl. Phys. Lett. 71, 593–595 (1997). doi: 10.1063/1.119803 ADSGoogle Scholar
  139. G. Malenkov, Liquid water and ices: understanding the structure and physical properties. J. Phys. Condens. Matter 21, 283101 (2009) Google Scholar
  140. V. Mennella, M.E. Palumbo, G.A. Baratta, Formation of CO and CO2 molecules by ion irradiation of water ice-covered hydrogenated carbon grains. Astrophys. J. 615, 1073–1080 (2004). doi: 10.1086/424685 ADSGoogle Scholar
  141. K.M. Merrill, B.T. Soifer, Spectrophotometric observations of a highly absorbed object in Cygnus. Astrophys. J. Lett. 189, 27 (1974). doi: 10.1086/181456 ADSGoogle Scholar
  142. F. Meyer, P. Harris, C. Taylor, H. Meyer III, A. Barghouty, J. Adams, Sputtering of lunar regolith simulant by protons and singly and multicharged ar ions at solar wind energies. Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 269(11), 1316–1320 (2011) ADSGoogle Scholar
  143. B.P. Michael, J.A. Nuth III, L.U. Lilleleht, Zinc crystal growth in microgravity. Astrophys. J. 590, 579–585 (2003). doi: 10.1086/374918 ADSGoogle Scholar
  144. E.H. Mitchell, M.J. Schaible, U. Raut, D. Fulvio, C.A. Dukes, R.A. Baragiola, in 43rd Lunar and Planetary Sci. Conf., vol. 2363 (2012) Google Scholar
  145. N. Miyauchi, H. Hidaka, T. Chigai, A. Nagaoka, N. Watanabe, A. Kouchi, Formation of hydrogen peroxide and water from the reaction of cold hydrogen atoms with solid oxygen at 10 K. Chem. Phys. Lett. 456, 27–30 (2008). doi: 10.1016/j.cplett.2008.02.095 ADSGoogle Scholar
  146. M.H. Moore, R.L. Hudson, Far-infrared spectra of cosmic-type pure and mixed ices. Astron. Astrophys. Suppl. Ser. 103, 45–56 (1994) ADSGoogle Scholar
  147. G.M. Muñoz Caro, W.A. Schutte, UV-photoprocessing of interstellar ice analogs: new infrared spectroscopic results. Astron. Astrophys. 412, 121–132 (2003). doi: 10.1051/0004-6361:20031408 ADSGoogle Scholar
  148. G.M. Muñoz Caro, U.J. Meierhenrich, W.A. Schutte, B. Barbier, A. Arcones Segovia, H. Rosenbauer, W.H.-P. Thiemann, A. Brack, J.M. Greenberg, Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature 416, 403–406 (2002) ADSGoogle Scholar
  149. G.M. Muñoz Caro, A. Jiménez-Escobar, J.Á. Martín-Gago, C. Rogero, C. Atienza, S. Puertas, J.M. Sobrado, J. Torres-Redondo, New results on thermal and photodesorption of CO ice using the novel Interstellar astrochemistry chamber (ISAC). Astron. Astrophys. 522, 108 (2010). doi: 10.1051/0004-6361/200912462 ADSGoogle Scholar
  150. H. Mutschke, S. Zeidler, T. Posch, F. Kerschbaum, A. Baier, T. Henning, Far-infrared spectra of hydrous silicates at low temperatures. providing laboratory data for Herschel and ALMA. Astron. Astrophys. 492, 117–125 (2008). doi: 10.1051/0004-6361:200810312 ADSGoogle Scholar
  151. Y. Oba, N. Miyauchi, H. Hidaka, T. Chigai, N. Watanabe, A. Kouchi, Formation of compact amorphous H2O ice by codeposition of hydrogen atoms with oxygen molecules on grain surfaces. Astrophys. J. 701, 464–470 (2009). doi: 10.1088/0004-637X/701/1/464 ADSGoogle Scholar
  152. A. Oliva-Florio, R.A. Baragiola, M.M. Jakas, E.V. Alonso, J. Ferron, Noble-gas ion sputtering yield of gold and copper-dependence on the energy and angle of incidence of the projectiles. Phys. Rev. B 35, 2198–2204 (1987). doi: 10.1103/PhysRevB.35.2198 ADSGoogle Scholar
  153. T.C. Owen, T.L. Roush, J.L. Elliot, L.A. Young, C. Debergh, B. Schmitt, T.R. Geballe, R.H. Brown, M.J. Bartholomew, Surface ices and the atmospheric composition of Pluto. Science 261, 745–748 (1993). doi: 10.1126/science.261.5122.745 ADSGoogle Scholar
  154. K.I. Öberg, G.W. Fuchs, Z. Awad, H.J. Fraser, S. Schlemmer, E.F. van Dishoeck, H. Linnartz, Photodesorption of CO ice. Astrophys. J. Lett. 662, 23–26 (2007). doi: 10.1086/519281 ADSGoogle Scholar
  155. K.I. Öberg, A.C.A. Boogert, K.M. Pontoppidan, G.A. Blake, N.J. Evans, F. Lahuis, E.F. van Dishoeck, The c2d spitzer spectroscopic survey of ices around low-mass young stellar objects. III. CH4. Astrophys. J. 678, 1032–1041 (2008). doi: 10.1086/533432 ADSGoogle Scholar
  156. K.I. Öberg, E.C. Fayolle, H.M. Cuppen, E.F. van Dishoeck, H. Linnartz, Quantification of segregation dynamics in ice mixtures. Astron. Astrophys. 505, 183–194 (2009a). doi: 10.1051/0004-6361/200912464 ADSGoogle Scholar
  157. K.I. Öberg, R.T. Garrod, E.F. van Dishoeck, H. Linnartz, Formation rates of complex organics in UV irradiated CH_3OH-rich ices. I. Experiments. Astron. Astrophys. 504, 891–913 (2009b). doi: 10.1051/0004-6361/200912559 ADSGoogle Scholar
  158. K.I. Öberg, H. Linnartz, R. Visser, E.F. van Dishoeck, Photodesorption of ices. II. H2O and D2O. Astrophys. J. 693, 1209–1218 (2009c). doi: 10.1088/0004-637X/693/2/1209 ADSGoogle Scholar
  159. K.I. Öberg, E.F. van Dishoeck, H. Linnartz, Photodesorption of ices. I. CO, N2, and CO2. Astron. Astrophys. 496, 281–293 (2009d). doi: 10.1051/0004-6361/200810207 ADSGoogle Scholar
  160. K.I. Öberg, A.C.A. Boogert, K.M. Pontoppidan, S. van den Broek, E.F. van Dishoeck, S. Bottinelli, G.A. Blake, N.J. Evans II, The spitzer ice legacy: ice evolution from cores to protostars. Astrophys. J. 740, 109 (2011). doi: 10.1088/0004-637X/740/2/109 ADSGoogle Scholar
  161. M.E. Palumbo, Formation of compact solid water after ion irradiation at 15 K. Astron. Astrophys. 453, 903–909 (2006). doi: 10.1051/0004-6361:20042382 ADSGoogle Scholar
  162. G. Pascoli, A. Polleux, Condensation and growth of hydrogenated carbon clusters in carbon-rich stars. Astron. Astrophys. 359, 799–810 (200) Google Scholar
  163. J. Pereira, E. da Silveira, Axial energy distributions of Li+ and F desorbed from LiF surfaces by fast ion impact. Appl. Surf. Sci. 390(1), 158–163 (1997) Google Scholar
  164. A. Ponomaryov, G. Gumenchuk, E. Savchenko, V.E. Bondybey, Radiation effects, energy storage and its release in solid rare gases. Phys. Chem. Chem. Phys. 9, 1329–1340 (2007). doi: 10.1039/b616441b Google Scholar
  165. K.M. Pontoppidan, A.C.A. Boogert, H.J. Fraser, E.F. van Dishoeck, G.A. Blake, F. Lahuis, K.I. Öberg, N.J. Evans II, C. Salyk, The c2d spitzer spectroscopic survey of ices around low-mass young stellar objects. II. CO2. Astrophys. J. 678, 1005–1031 (2008). doi: 10.1086/533431 ADSGoogle Scholar
  166. T. Posch, F. Kerschbaum, H. Richter, H. Mutschke, Solid state features in the Herschel-pacs-range, in ESA Special Publication, ed. by A. Wilson ESA Special Publication, vol. 577 (2005), pp. 257–260 Google Scholar
  167. T. Posch, A. Baier, H. Mutschke, T. Henning, Carbonates in space: the challenge of low-temperature data. Astrophys. J. 668, 993–1000 (2007). doi: 10.1086/521390 ADSGoogle Scholar
  168. P.B. Price, O.V. Nagornov, Y.D. He, P. Miocinovic, A. Richards, K. Woschnagg, B. Koci, V. Zagorodnov, Temperature profile for glacial ice at the South Pole: Implications for life in a nearby subglacial lake. Proc. Natl. Acad. Sci. USA 99(12), 7844–7847 (2002). doi: 10.1073/pnas.082238999 ADSGoogle Scholar
  169. R.H. Prince, G.N. Sears, F.J. Morgan, Fluorescence of ice by low energy electrons. J. Chem. Phys. 64, 3978–3984 (1976). doi: 10.1063/1.432030 ADSGoogle Scholar
  170. T.I. Quickenden, S.M. Trotman, D.F. Sangster, Pulse radiolytic studies of the ultraviolet and visible emissions from purified H2O ice. J. Chem. Phys. 77, 3790–3802 (1982). doi: 10.1063/1.444352 ADSGoogle Scholar
  171. C.V. Raman, K.S. Krishnan, A new type of secondary radiation. Nature 121, 501–502 (1928). doi: 10.1038/121501c0 ADSGoogle Scholar
  172. U. Raut, M. Fama, B.D. Teolis, R.A. Baragiola, Characterization of porosity in vapor-deposited amorphous solid water from methane adsorption. J. Chem. Phys. 127, 204713 (2007). doi: 10.1063/1.2796166 ADSGoogle Scholar
  173. U. Raut, D. Fulvio, M.J. Loeffler, R.A. Baragiola, Radiation synthesis of carbon dioxide in ice-coated carbon: implications for interstellar grains and icy moons. Astrophys. J. 752, 159 (2012). doi: 10.1088/0004-637X/752/2/159 ADSGoogle Scholar
  174. J. Remy, L. Biennier, F. Salama, Plasma structure in a pulsed discharge environment. Plasma Sources Sci. Technol. 12, 295–301 (2003). doi: 10.1088/0963-0252/12/3/301 ADSGoogle Scholar
  175. J. Remy, L. Biennier, F. Salama, Plasma in a pulsed discharge environment. IEEE Trans. Plasma Sci. 33(2), 554–555 (2005). doi: 10.1109/TPS.2005.845937 ADSGoogle Scholar
  176. A. Rice, Y. Jin, X.F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, M. Alexander, Terahertz optical rectification from (110) zinc-blende crystals. Appl. Phys. Lett. 64, 1324–1326 (1994). doi: 10.1063/1.111922 ADSGoogle Scholar
  177. C.L. Ricketts, C.S. Contreras, R.L. Walker, F. Salama, The coupling of a reflectron time-of-flight mass spectrometer with a cosmic simulation chamber: a powerful new tool for laboratory astrophysics. Int. J. Mass Spectrom. 300, 26–30 (2011). doi: 10.1016/j.ijms.2010.11.017 Google Scholar
  178. C. Romanzin, S. Ioppolo, H.M. Cuppen, E.F. van Dishoeck, H. Linnartz, Water formation by surface O3 hydrogenation. J. Chem. Phys. 134, 084504 (2011) ADSGoogle Scholar
  179. N.J. Sack, R.A. Baragiola, Sublimation of vapor-deposited water ice below 170 K, and its dependence on growth conditions. Phys. Rev. B 48, 9973–9978 (1993). doi: 10.1103/PhysRevB.48.9973 ADSGoogle Scholar
  180. F. Salama, PAHs in astronomy—a review, in IAU Symposium, ed. by S. Kwok, S. Sandford IAU Symposium, vol. 251 (2008), pp. 357–366. doi: 10.1017/S1743921308021960 Google Scholar
  181. F. Salama, E.L.O. Bakes, L.J. Allamandola, A.G.G.M. Tielens, Assessment of the polycyclic aromatic hydrocarbon-diffuse interstellar band proposal. Astrophys. J. 458, 621 (1996). doi: 10.1086/176844 ADSGoogle Scholar
  182. F. Salama, G.A. Galazutdinov, J. Krełowski, L. Biennier, Y. Beletsky, I.-O. Song, Polycyclic aromatic hydrocarbons and the diffuse interstellar bands: a survey. Astrophys. J. 728, 154 (2011). doi: 10.1088/0004-637X/728/2/154 ADSGoogle Scholar
  183. S.A. Sandford, L.J. Allamandola, T.R. Geballe, Spectroscopic detection of molecular-hydrogen frozen in interstellar ices. Science 262, 400–4004 (1993). doi: 10.1126/science.11542874 ADSGoogle Scholar
  184. A. Sassara, G. Zerza, M. Chergui, S. Leach, Absorption wavelengths and bandwidths for interstellar searches of C60 in the 2400–4100 å region. Astrophys. J. Supp. Ser. 135, 263–273 (2001). doi: 10.1086/323533 ADSGoogle Scholar
  185. G. Sauerbrey, Verwendung von Schwingquarzen zur Wgung dnner Schichten und zur Mikrowgung. Z. Phys. 155, 206–222 (1959) ADSGoogle Scholar
  186. E.V. Savchenko, G.B. Gumenchuk, E.M. Yurtaeva, A.G. Belov, I.V. Khyzhniy, M. Frankowski, M.K. Beyer, A.M. Smith-Gicklhorn, A.N. Ponomaryov, V.E. Bondybey, Anomalous low-temperature desorption from preirradiated rare gas solids. J. Lumin. 112, 101–104 (2005). doi: 10.1016/j.jlumin.2004.09.004 Google Scholar
  187. E.V. Savchenko, A.G. Belov, G.B. Gumenchuk, A.N. Ponomaryov, V.E. Bondybey, Oxygen-driven relaxation processes in pre-irradiated Ar cryocrystals. Low Temp. Phys. 32, 1078–1081 (2006). doi: 10.1063/1.2389016 ADSGoogle Scholar
  188. E.V. Savchenko, I.V. Khyzhniy, G.B. Gumenchuk, V.E. Bondybey, Relaxation emission of electrons and photons from rare-gas solids: correlation and competition between TSL and TSEE. Phys. Status Solidi C 4, 1088–1091 (2007). doi: 10.1002/pssc.200673809 ADSGoogle Scholar
  189. E.V. Savchenko, G. Zimmerer, V.E. Bondybey, Electronically induced modification of atomic solids and their relaxation probed by luminescence methods. J. Lumin. 129, 1866–1868 (2009). doi: 10.1016/j.jlumin.2009.01.040 Google Scholar
  190. E.V. Savchenko, I.V. Khyzhniy, S.A. Uyutnov, G.B. Gumenchuk, A.N. Ponomaryov, M.K. Beyer, V.E. Bondybey, Formation of (Xe2H)* centers in solid Xe via recombination: nonstationary luminescence and internal electron emission. Low Temp. Phys. 36, 407–410 (2010a). doi: 10.1063/1.3432249 ADSGoogle Scholar
  191. E.V. Savchenko, I.V. Khyzhniy, S.A. Uyutnov, G.B. Gumenchuk, A.N. Ponomaryov, V.E. Bondybey, Relaxation of charged and neutral particles in doped atomic solids: TSL, OSL, TSEE, OSEE and their interconnection. IOP Conf. Ser., Mater. Sci. Eng. 15, 012082 (2010b). doi: 10.1088/1757-899X/15/1/012082 Google Scholar
  192. E.V. Savchenko, I.V. Khyzhniy, S.A. Uyutnov, G.B. Gumenchuk, A.N. Ponomaryov, V.E. Bondybey, Radiation effects in atomic cryogenic solids. Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 268, 3239–3242 (2010c). doi: 10.1016/j.nimb.2010.05.098 ADSGoogle Scholar
  193. E.V. Savchenko, I.V. Khyzhniy, S.A. Uyutnov, G.B. Gumenchuk, A.N. Ponomaryov, M.K. Beyer, V.E. Bondybey, Charging effects in an electron bombarded ar matrix and the role of chemiluminescence-driven relaxation. J. Phys. Chem. A 115, 7258–7266 (2011). doi: 10.1021/jp2004419 Google Scholar
  194. E.V. Savchenko, I.V. Khyzhniy, S.A. Uyutnov, G.B. Gumenchuk, A.N. Ponomaryov, V.E. Bondybey, Charging effect and relaxation processes in electron bombarded cryogenic solids. Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 277, 131–135 (2012). doi: 10.1016/j.nimb.2011.12.042 ADSGoogle Scholar
  195. E. Schindhelm, K. France, G.J. Herczeg, E. Bergin, H. Yang, A. Brown, J.M. Brown, J.L. Linsky, J. Valenti, Lyα dominance of the classical T Tauri far-ultraviolet radiation field. Astrophys. J. Lett. 756, 23 (2012). doi: 10.1088/2041-8205/756/1/L23 ADSGoogle Scholar
  196. J. Schou, H. Sørensen, P. Børgensen, The measurement of electron-induced erosion of condensed gases: experimental methods. Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 5, 44–57 (1984). doi: 10.1016/0168-583X(84)90568-8 ADSGoogle Scholar
  197. B.J. Selby, T.I. Quickenden, G. Freeman, Isotopic effects on the time-dependences of 420 nm ice luminescence excited by UV light. React. Kinet. Catal. Lett. 47, 686–698 (2006). doi: 10.1134/S0023158406050065 Google Scholar
  198. K. Sellgren, M.W. Werner, J.G. Ingalls, J.D.T. Smith, T.M. Carleton, C. Joblin, C60 in reflection nebulae. Astrophys. J. Lett. 722, 54–57 (2010). doi: 10.1088/2041-8205/722/1/L54 ADSGoogle Scholar
  199. E. Seperuelo Duarte, A. Domaracka, P. Boduch, H. Rothard, E. Dartois, E.F. da Silveira, Laboratory simulation of heavy-ion cosmic-ray interaction with condensed CO. Astron. Astrophys. 512, 71 (2010). doi: 10.1051/0004-6361/200912899 ADSGoogle Scholar
  200. J. Shi, B.D. Teolis, R.A. Baragiola, Irradiation-enhanced adsorption and trapping of O−2 on nanoporous water ice. Phys. Rev. B 79, 235422 (2009). doi: 10.1103/PhysRevB.79.235422 ADSGoogle Scholar
  201. J. Shi, U. Raut, J.-H. Kim, M. Loeffler, R.A. Baragiola, Ultraviolet photon-induced synthesis and trapping of H2O2 and O3 in porous water ice films in the presence of ambient O2: implications for extraterrestrial ice. Astrophys. J. Lett. 738, 3 (2011). doi: 10.1088/2041-8205/738/1/L3 ADSGoogle Scholar
  202. J. Shi, M. Fama, B.D. Teolis, R.A. Baragiola, Ion-induced electrostatic charging of ice at 15–160 K. Phys. Rev. B 85, 035424 (2012). doi: 10.1103/PhysRevB.85.035424 ADSGoogle Scholar
  203. D. Sicilia, S. Ioppolo, T. Vindigni, G.A. Baratta, M.E. Palumbo, Nitrogen oxides and carbon chain oxides formed after ion irradiation of CO:N2 ice mixtures. Astron. Astrophys. 543, 155 (2012). doi: 10.1051/0004-6361/201219390 ADSGoogle Scholar
  204. P.H. Siegel, THz instruments for space. IEEE Trans. Antennas Propag. 55, 2957–2965 (2007). doi: 10.1109/TAP.2007.908557 ADSGoogle Scholar
  205. H. Singh, J.W. Coburn, D.B. Graves, Appearance potential mass spectrometry: discrimination of dissociative ionization products. J. Vac. Sci. Technol., A, Vac. Surf. Films 18, 299–305 (2000). doi: 10.1116/1.582183 ADSGoogle Scholar
  206. R.G. Smith, G. Robinson, A.R. Hyland, G.L. Carpenter, Molecular ices as temperature indicators for interstellar dust: the 44- and 62-m lattice features of H2O ice. Mon. Not. R. Astron. 271, 481–489 (1994) ADSGoogle Scholar
  207. J.D.T. Smith, B.T. Draine, D.A. Dale, J. Moustakas, R.C. Kennicutt Jr., G. Helou, L. Armus, H. Roussel, K. Sheth, G.J. Bendo, B.A. Buckalew, D. Calzetti, C.W. Engelbracht, K.D. Gordon, D.J. Hollenbach, A. Li, S. Malhotra, E.J. Murphy, F. Walter, The mid-infrared spectrum of star-forming galaxies: global properties of polycyclic aromatic hydrocarbon emission. Astrophys. J. 656, 770–791 (2007). doi: 10.1086/510549 ADSGoogle Scholar
  208. C. Stehl, C. Joblin, L. d’Hendecourt, Foreword. EAS Publ. Ser. 58, 1–3 (2012) Google Scholar
  209. G. Strazzulla, G.A. Baratta, Carbonaceous material by ion irradiation in space. Astron. Astrophys. 266, 434–438 (1992) ADSGoogle Scholar
  210. G. Strazzulla, G.A. Baratta, M.E. Palumbo, Vibrational spectroscopy of ion-irradiated ices. Spectrochim. Acta 57, 825–842 (2001) ADSGoogle Scholar
  211. X.F. Tan, F. Salama, Cavity ring-down spectroscopy and theoretical calculations of the S1(1B3u)← S0(1Ag)) transition of jet-cooled perylene. J. Chem. Phys. 122, 084318 (2005). doi: 10.1063/1.1851502 ADSGoogle Scholar
  212. B.D. Teolis, M. Fama, R.A. Baragiola, Low density solid ozone. J. Chem. Phys. 127, 074507 (2007a). doi: 10.1063/1.2762215 ADSGoogle Scholar
  213. B.D. Teolis, M.J. Loeffler, M. Fama, R.A. Baragiola, Infrared reflectance spectroscopy on thin films: interference effects. Icarus 190, 274–279 (2007b). doi: 10.1063/1.2762215 ADSGoogle Scholar
  214. A.G.G.M. Tielens, W. Hagen, J.M. Greenberg, Interstelar ice. J. Phys. Chem. 87, 4220–4229 (1983). doi: 10.1021/j100244a049 ADSGoogle Scholar
  215. A.G.G.M. Tielens, The Physics and Chemistry of the Interstellar Medium (Cambridge University Press, Cambridge, 2005) Google Scholar
  216. A.G.G.M. Tielens, Interstellar polycyclic aromatic hydrocarbon molecules. Annu. Rev. Astron. Astrophys. 46, 289–337 (2008). doi: 10.1146/annurev.astro.46.060407.145211 ADSGoogle Scholar
  217. Y. Ueno, R. Rungsawang, I. Tomita, K. Ajito, Quantitative measurements of amino acids by terahertz time-domain transmission spectroscopy. Anal. Chem. 78, 5424–5428 (2006). doi: 10.1021/ac060520y Google Scholar
  218. F. van der Tak, The first results from the Herschel-HIFI mission. Adv. Space Res. 49, 1395–1407 (2012). doi: 10.1016/j.asr.2012.02.027 ADSGoogle Scholar
  219. E.F. van Dishoeck, B. Jonkheid, M.C. van Hemert, Photoprocesses in protoplanetary disks. Faraday Discuss. 133, 231–243 (2006). doi: 10.1039/B517564J. ADSGoogle Scholar
  220. E.F. van Dishoeck, J.K. Jørgensen, Star and planet-formation with ALMA: an overview. Astrophys. Space Sci. 313, 15–22 (2008). doi: 10.1007/s10509-007-9600-y ADSGoogle Scholar
  221. E.F. van Dishoeck, L.E. Kristensen, A.O. Benz, E.A. Bergin, P. Caselli, J. Cernicharo, F. Herpin, M.R. Hogerheijde, D. Johnstone, R. Liseau, B. Nisini, R. Shipman, M. Tafalla, F. van der Tak, F. Wyrowski, Y. Aikawa, R. Bachiller, A. Baudry, M. Benedettini, P. Bjerkeli, G.A. Blake, S. Bontemps, J. Braine, C. Brinch, S. Bruderer, L. Chavarría, C. Codella, F. Daniel, T. de Graauw, E. Deul, A.M. di Giorgio, C. Dominik, S.D. Doty, M.L. Dubernet, P. Encrenaz, H. Feuchtgruber, M. Fich, W. Frieswijk, A. Fuente, T. Giannini, J.R. Goicoechea, F.P. Helmich, G.J. Herczeg, T. Jacq, J.K. Jørgensen, A. Karska, M.J. Kaufman, E. Keto, B. Larsson, B. Lefloch, D. Lis, M. Marseille, C. McCoey, G. Melnick, D. Neufeld, M. Olberg, L. Pagani, O. Panić, B. Parise, J.C. Pearson, R. Plume, C. Risacher, D. Salter, J. Santiago-García, P. Saraceno, P. Stäuber, T.A. van Kempen, R. Visser, S. Viti, M. Walmsley, S.F. Wampfler, U.A. Yıldız, Water in star-forming regions with the Herschel space observatory (WISH). I. Overview of key program and first results. Publ. Astron. Soc. Pac. 123, 138–170 (2011). doi: 10.1086/658676 ADSGoogle Scholar
  222. E.F. van Dishoeck, R. Visser, Molecular photodissociation, submitted to Modern Concepts in Laboratory Astrochemistry, ed. by S. Schlemmer, H. Mutschke, Th. Giesen (Springer, Berlin, 2013) Google Scholar
  223. L. Verstraete, The role of PAHs in the physics of the interstellar medium, in EAS Publications Series, ed. by C. Joblin, A.G.G.M. Tielens EAS Publications Series, vol. 46 (2011), pp. 415–426. doi: 10.1051/eas/1146043 Google Scholar
  224. R.A. Vidal, B.D. Teolis, R.A. Baragiola, Angular dependence of the sputtering yield of water ice by 100 keV proton bombardment. Appl. Surf. Sci. 588, 1 (2005). doi: 10.1016/j.susc.2005.05.007 Google Scholar
  225. D.R. Vij, Luminescence of Solids (Plenum, New York, 1998), p. 427 Google Scholar
  226. X. Xie, J. Dai, X.-C. Zhang, Coherent control of THz wave generation in ambient air. Phys. Rev. Lett. 96(7), 075005 (2006). doi: 10.1103/PhysRevLett.96.075005 ADSGoogle Scholar
  227. T. Yada, K. Norizawa, M. Hirai, C. Yamanaka, M. Ikeya, Optically stimulated luminescence study on gamma-irradiated ice frozen from H2O and D2O. Jpn. J. Appl. Phys. 41, 5874–5880 (2002) ADSGoogle Scholar
  228. B.C. Wang, J.C. Chang, H.C. Tso, H.F. Hsu, C.Y. Cheng, Theoretical investigation the electroluminescence characteristics of pyrene and its derivatives. J. Mol. Struct., Theochem 629, 11–20 (2003) Google Scholar
  229. N. Watanabe, A. Kouchi, Efficient formation of formaldehyde and methanol by the addition of hydrogen atoms to CO in H2O–CO ice at 10 K. Astrophys. J. Lett. 571, 173–176 (2002). doi: 10.1086/341412 ADSGoogle Scholar
  230. M.S. Westley, R.A. Baragiola, R.E. Johnson, G.A. Baratta, Photodesorption from low-temperature water ice in interstellar and circumsolar grains. Nature 373, 405–407 (1995). doi: 10.1038/373405a0 ADSGoogle Scholar
  231. M.S. Westley, G.A. Baratta, R.A. Baragiola, Density and index of refraction of water ice films vapor deposited at low temperatures. J. Chem. Phys. 108, 3321–3327 (1998). doi: 10.1063/1.475730 ADSGoogle Scholar
  232. A. Winkler, J.T. Yates, Capillary array dosing and angular desorption distribution measurements: a general formalism. J. Vac. Sci. Technol., A, Vac. Surf. Films 6, 2929–2933 (1998). doi: 10.1116/1.575453 ADSGoogle Scholar
  233. P.M. Woods, G. Kelly, S. Viti, B. Slater, W.A. Brown, F. Puletti, D.J. Burke, Z. Raza, On the formation of glycolaldehyde in dense molecular cores. Astrophys. J. 750, 19 (2012). doi: 10.1088/0004-637X/750/1/19 ADSGoogle Scholar
  234. Q. Wu, X.-C. Zhang, Free-space electro-optic sampling of terahertz beams. Appl. Phys. Lett. 67, 3523–3525 (1995). doi: 10.1063/1.114909 ADSGoogle Scholar
  235. A. Wucher, Sputtering: experiment, in Ion Beam Science: Solved and Unsolved Problems, eds. by P. Sigmund. Mat. Fys. Medd. Dan. Vid. Selsk., vol. 52 (2007), pp. 405–432 Google Scholar
  236. G. Zasowski, F. Kemper, D.M. Watson, E. Furlan, C.J. Bohac, C. Hull, J.D. Green, Spitzer infrared spectrograph observations of class I/II objects in Taurus: composition and thermal history of the circumstellar ices. Astrophys. J. 694, 459–478 (2009). doi: 10.1088/0004-637X/694/1/459 ADSGoogle Scholar
  237. X.-C. Zhang, J. Xu, Introduction to THz Wave Photonics (Springer, New York, 2010), pp. 1–246. doi: 10.1007/978-1-4419-0978-7 Google Scholar
  238. W.J. Zheng, R.I. Kaiser, Formation of hydroxylamine (NH2OH) in electron irradiated ammonia-water ices. J. Phys. Chem. 114, 5251–5255 (2010) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • M. A. Allodi
    • 1
  • R. A. Baragiola
    • 2
  • G. A. Baratta
    • 12
  • M. A. Barucci
    • 3
  • G. A. Blake
    • 1
    • 6
  • P. Boduch
    • 4
  • J. R. Brucato
    • 13
  • C. Contreras
    • 11
  • S. H. Cuylle
    • 9
  • D. Fulvio
    • 2
  • M. S. Gudipati
    • 5
    • 8
  • S. Ioppolo
    • 6
  • Z. Kaňuchová
    • 7
    • 12
  • A. Lignell
    • 8
  • H. Linnartz
    • 9
  • M. E. Palumbo
    • 12
  • U. Raut
    • 2
  • H. Rothard
    • 4
  • F. Salama
    • 11
  • E. V. Savchenko
    • 10
  • E. Sciamma-O’Brien
    • 11
  • G. Strazzulla
    • 12
    Email author
  1. 1.Division of Chemistry & Chemical EngineeringCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Laboratory for Atomic and Surface PhysicsUniversity of VirginiaCharlottesvilleUSA
  3. 3.Paris ObservatoryLESIAParisFrance
  4. 4.Centre de Recherche sur les Ion, les Matériaux et la Photonique (CEA/CNRS UMR 6252/ENSICAEN/UCBN)CIMAP-CIRIL-GanilCaen Cedex 05France
  5. 5.IPSTUniversity of MarylandCollege ParkUSA
  6. 6.Division of Geological & Planetary SciencesCalifornia Institute of TechnologyPasadenaUSA
  7. 7.Astronomical Institute of Slovac Academy of SciencesT. LomnicaSlovakia
  8. 8.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  9. 9.Raymond & Beverly Sackler Laboratory for AstrophysicsLeiden Observatory, University of LeidenLeidenThe Netherlands
  10. 10.Verkin Institute for Low Temperature Physics & Engineering NASUKharkovUkraine
  11. 11.Ames Research Center, Space Sciences & Astrobiology DivisionNASAMoffett FieldUSA
  12. 12.Osservatorio Astrofisico di CataniaINAFCataniaItaly
  13. 13.Osservatorio Astrofisico di ArcetriINAFFlorenceItaly

Personalised recommendations