Advertisement

Space Science Reviews

, Volume 180, Issue 1–4, pp 71–99 | Cite as

Below One Earth: The Detection, Formation, and Properties of Subterrestrial Worlds

  • E. Sinukoff
  • B. Fulton
  • L. Scuderi
  • E. Gaidos
Article

Abstract

The Solar System includes two planets—Mercury and Mars—significantly less massive than Earth, and all evidence indicates that planets of similar size orbit many stars. In fact, one of the first exoplanets to be discovered is a lunar-mass planet around a millisecond pulsar. Novel classes of exoplanets have inspired new ideas about planet formation and evolution, and these “sub-Earths” should be no exception: they include planets with masses between Mars and Venus for which there are no Solar System analogs. Advances in astronomical instrumentation and recent space missions have opened the sub-Earth frontier for exploration: the Kepler mission has discovered dozens of confirmed or candidate sub-Earths transiting their host stars. It can detect Mars-size planets around its smallest stellar targets, as well as exomoons of comparable size. Although the application of the Doppler method is currently limited by instrument stability, future spectrographs may detect equivalent planets orbiting close to nearby bright stars. Future space-based microlensing missions should be able to probe the sub-Earth population on much wider orbits. A census of sub-Earths will complete the reconnaissance of the exoplanet mass spectrum and test predictions of planet formation models, including whether low-mass M dwarf stars preferentially host the smallest planets. The properties of sub-Earths may reflect their low gravity, diverse origins, and environment, but they will be elusive: Observations of eclipsing systems by the James Webb Space Telescope may give us our first clues to the properties of these small worlds.

Keywords

Exoplanets Kepler mission Planet formation Astrobiology 

Notes

Acknowledgements

This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. EG acknowledges support from NASA grants NNX10AI90G and NNX11AC33G. We thank Y. Kokubo for providing Fig. 5, E. Kite for commenting on an earlier version of this manuscript and E. Petigura and A. Howard for helpful discussions.

References

  1. C.B. Agnor, D.P. Hamilton, Neptune’s capture of its moon Triton in a binary-planet gravitational encounter. Nature 441, 192–194 (2006). doi: 10.1038/nature04792 ADSGoogle Scholar
  2. E. Agol, J. Steffen, R. Sari, W. Clarkson, On detecting terrestrial planets with timing of giant planet transits. Mon. Not. R. Astron. Soc. 359, 567–579 (2005). doi: 10.1111/j.1365-2966.2005.08922.x ADSGoogle Scholar
  3. T.J. Ahrens, Impact erosion of terrestrial planetary atmospheres. Annu. Rev. Earth Planet. Sci. 21, 525–555 (1993). doi: 10.1146/annurev.ea.21.050193.002521 ADSGoogle Scholar
  4. S.M. Andrews, K.A. Rosenfeld, A.L. Kraus, D.J. Wilner, The mass dependence between protoplanetary disks and their stellar hosts. Astrophys. J. 771, 129 (2013). doi: 10.1088/0004-637X/771/2/129 ADSGoogle Scholar
  5. M. Bailes, S.D. Bates, V. Bhalerao, N.D.R. Bhat, M. Burgay, S. Burke-Spolaor, N. D’Amico, S. Johnston, M.J. Keith, M. Kramer, S.R. Kulkarni, L. Levin, A.G. Lyne, S. Milia, A. Possenti, L. Spitler, B. Stappers, W. van Straten, Transformation of a star into a planet in a millisecond pulsar binary. Science 333, 1717 (2011). doi: 10.1126/science.1208890 ADSGoogle Scholar
  6. T. Barclay, J.F. Rowe, J.J. Lissauer, D. Huber, F. Fressin, S.B. Howell, S.T. Bryson, W.J. Chaplin, J.-M. Désert, E.D. Lopez, G.W. Marcy, F. Mullally, D. Ragozzine, G. Torres, E.R. Adams, E. Agol, D. Barrado, S. Basu, T.R. Bedding, L.A. Buchhave, D. Charbonneau, J.L. Christiansen, J. Christensen-Dalsgaard, D. Ciardi, W.D. Cochran, A.K. Dupree, Y. Elsworth, M. Everett, D.A. Fischer, E.B. Ford, J.J. Fortney, J.C. Geary, M.R. Haas, R. Handberg, S. Hekker, C.E. Henze, E. Horch, A.W. Howard, R.C. Hunter, H. Isaacson, J.M. Jenkins, C. Karoff, S.D. Kawaler, H. Kjeldsen, T.C. Klaus, D.W. Latham, J. Li, J. Lillo-Box, M.N. Lund, M. Lundkvist, T.S. Metcalfe, A. Miglio, R.L. Morris, E.V. Quintana, D. Stello, J.C. Smith, M. Still, S.E. Thompson, A sub-Mercury-sized exoplanet. Nature 494, 452–454 (2013). doi: 10.1038/nature11914 ADSGoogle Scholar
  7. R. Barry, J. Kruk, J. Anderson, J.-P. Beaulieu, D.P. Bennett, J. Catanzarite, E. Cheng, S. Gaudi, N. Gehrels, S. Kane, J. Lunine, T. Sumi, A. Tanner, W. Traub, The exoplanet microlensing survey by the proposed WFIRST observatory, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8151 (2011). doi: 10.1117/12.898574 Google Scholar
  8. N.M. Batalha, J.F. Rowe, S.T. Bryson, T. Barclay, C.J. Burke, D.A. Caldwell, J.L. Christiansen, F. Mullally, S.E. Thompson, T.M. Brown, A.K. Dupree, D.C. Fabrycky, E.B. Ford, J.J. Fortney, R.L. Gilliland, H. Isaacson, D.W. Latham, G.W. Marcy, S.N. Quinn, D. Ragozzine, A. Shporer, W.J. Borucki, D.R. Ciardi, T.N. Gautier III, M.R. Haas, J.M. Jenkins, D.G. Koch, J.J. Lissauer, W. Rapin, G.S. Basri, A.P. Boss, L.A. Buchhave, J.A. Carter, D. Charbonneau, J. Christensen-Dalsgaard, B.D. Clarke, W.D. Cochran, B. Demory, J. Desert, E. Devore, L.R. Doyle, G.A. Esquerdo, M. Everett, F. Fressin, J.C. Geary, F.R. Girouard, A. Gould, J.R. Hall, M.J. Holman, A.W. Howard, S.B. Howell, K.A. Ibrahim, K. Kinemuchi, H. Kjeldsen, T.C. Klaus, J. Li, P.W. Lucas, S. Meibom, R.L. Morris, A. Prša, E. Quintana, D.T. Sanderfer, D. Sasselov, S.E. Seader, J.C. Smith, J.H. Steffen, M. Still, M.C. Stumpe, J.C. Tarter, P. Tenenbaum, G. Torres, J.D. Twicken, K. Uddin, J. Van Cleve, L. Walkowicz, W.F. Welsh, Planetary candidates observed by Kepler. III. Analysis of the first 16 months of data. Astrophys. J. Suppl. Ser. 204, 24 (2013). doi: 10.1088/0067-0049/204/2/24 ADSGoogle Scholar
  9. J.L. Bean, A. Seifahrt, H. Hartman, H. Nilsson, G. Wiedemann, A. Reiners, S. Dreizler, T.J. Henry, The CRIRES search for planets around the lowest-mass stars. I. High-precision near-infrared radial velocities with an ammonia gas cell. Astrophys. J. 713, 410–422 (2010). doi: 10.1088/0004-637X/713/1/410 ADSGoogle Scholar
  10. D.P. Bennett, in Detection of Extrasolar Planets by Gravitational Microlensing, ed. by J.W. Mason (Praxis Publishing, Athens, 2008), p. 47. doi: 10.1007/978-3-540-74008-7-3 Google Scholar
  11. D.P. Bennett, S.H. Rhie, Detecting Earth-mass planets with gravitational microlensing. Astrophys. J. 472, 660 (1996). doi: 10.1086/178096 ADSGoogle Scholar
  12. D.P. Bennett, S.H. Rhie, Simulation of a space-based microlensing survey for terrestrial extrasolar planets. Astrophys. J. 574, 985–1003 (2002). doi: 10.1086/340977 ADSGoogle Scholar
  13. W. Benz, W.L. Slattery, A.G.W. Cameron, Collisional stripping of Mercury’s mantle. Icarus 74, 516–528 (1988). doi: 10.1016/0019-1035(88)90118-2 ADSGoogle Scholar
  14. W. Benz, A. Anic, J. Horner, J.A. Whitby, The origin of Mercury. Space Sci. Rev. 132, 189–202 (2007). doi: 10.1007/s11214-007-9284-1 ADSGoogle Scholar
  15. J. Blum, G. Wurm, Experiments on sticking, restructuring, and fragmentation of preplanetary dust aggregates. Icarus 143, 138–146 (2000). doi: 10.1006/icar.1999.6234 ADSGoogle Scholar
  16. W.J. Borucki, D. Koch, G. Basri, N. Batalha, T. Brown, D. Caldwell, J. Caldwell, J. Christensen-Dalsgaard, W.D. Cochran, E. DeVore, E.W. Dunham, A.K. Dupree, T.N. Gautier, J.C. Geary, R. Gilliland, A. Gould, S.B. Howell, J.M. Jenkins, Y. Kondo, D.W. Latham, G.W. Marcy, S. Meibom, H. Kjeldsen, J.J. Lissauer, D.G. Monet, D. Morrison, D. Sasselov, J. Tarter, A. Boss, D. Brownlee, T. Owen, D. Buzasi, D. Charbonneau, L. Doyle, J. Fortney, E.B. Ford, M.J. Holman, S. Seager, J.H. Steffen, W.F. Welsh, J. Rowe, H. Anderson, L. Buchhave, D. Ciardi, L. Walkowicz, W. Sherry, E. Horch, H. Isaacson, M.E. Everett, D. Fischer, G. Torres, J.A. Johnson, M. Endl, P. MacQueen, S.T. Bryson, J. Dotson, M. Haas, J. Kolodziejczak, J. Van Cleve, H. Chandrasekaran, J.D. Twicken, E.V. Quintana, B.D. Clarke, C. Allen, J. Li, H. Wu, P. Tenenbaum, E. Verner, F. Bruhweiler, J. Barnes, A. Prsa, Kepler planet-detection mission: introduction and first results. Science 327, 977 (2010). doi: 10.1126/science.1185402 ADSGoogle Scholar
  17. W.J. Borucki, D.G. Koch, G. Basri, N. Batalha, T.M. Brown, S.T. Bryson, D. Caldwell, J. Christensen-Dalsgaard, W.D. Cochran, E. DeVore, E.W. Dunham, T.N. Gautier III, J.C. Geary, R. Gilliland, A. Gould, S.B. Howell, J.M. Jenkins, D.W. Latham, J.J. Lissauer, G.W. Marcy, J. Rowe, D. Sasselov, A. Boss, D. Charbonneau, D. Ciardi, L. Doyle, A.K. Dupree, E.B. Ford, J. Fortney, M.J. Holman, S. Seager, J.H. Steffen, J. Tarter, W.F. Welsh, C. Allen, L.A. Buchhave, J.L. Christiansen, B.D. Clarke, S. Das, J.-M. Désert, M. Endl, D. Fabrycky, F. Fressin, M. Haas, E. Horch, A. Howard, H. Isaacson, H. Kjeldsen, J. Kolodziejczak, C. Kulesa, J. Li, P.W. Lucas, P. Machalek, D. McCarthy, P. MacQueen, S. Meibom, T. Miquel, A. Prsa, S.N. Quinn, E.V. Quintana, D. Ragozzine, W. Sherry, A. Shporer, P. Tenenbaum, G. Torres, J.D. Twicken, J. Van Cleve, L. Walkowicz, F.C. Witteborn, M. Still, Characteristics of planetary candidates observed by Kepler. II. Analysis of the first four months of data. Astrophys. J. 736, 19 (2011). doi: 10.1088/0004-637X/736/1/19 ADSGoogle Scholar
  18. W.J. Borucki, E. Agol, F. Fressin, L. Kaltenegger, J. Rowe, H. Isaacson, D. Fischer, N. Batalha, J.J. Lissauer, G.W. Marcy, D. Fabrycky, J.-M. Désert, S.T. Bryson, T. Barclay, F. Bastien, A. Boss, E. Brugamyer, L.A. Buchhave, C. Burke, D.A. Caldwell, J. Carter, D. Charbonneau, J.R. Crepp, J. Christensen-Dalsgaard, J.L. Christiansen, D. Ciardi, W.D. Cochran, E. DeVore, L. Doyle, A.K. Dupree, M. Endl, M.E. Everett, E.B. Ford, J. Fortney, T.N. Gautier, J.C. Geary, A. Gould, M. Haas, C. Henze, A.W. Howard, S.B. Howell, D. Huber, J.M. Jenkins, H. Kjeldsen, R. Kolbl, J. Kolodziejczak, D.W. Latham, B.L. Lee, E. Lopez, F. Mullally, J.A. Orosz, A. Prsa, E.V. Quintana, R. Sanchis-Ojeda, D. Sasselov, S. Seader, A. Shporer, J.H. Steffen, M. Still, P. Tenenbaum, S.E. Thompson, G. Torres, J.D. Twicken, W.F. Welsh, J.N. Winn, Kepler-62: a five-planet system with planets of 1.4 and 1.6 Earth radii in the habitable zone. Science 340, 587–590 (2013). doi: 10.1126/science.1234702 ADSGoogle Scholar
  19. F. Bouchy, R.F. Díaz, G. Hébrard, L. Arnold, I. Boisse, X. Delfosse, S. Perruchot, A. Santerne, SOPHIE+: first results of an octagonal-section fiber for high-precision radial velocity measurements. Astron. Astrophys. 549, 49 (2013). doi: 10.1051/0004-6361/201219979 ADSGoogle Scholar
  20. T.M. Brown, D. Charbonneau, R.L. Gilliland, R.W. Noyes, A. Burrows, Hubble space telescope time-series photometry of the transiting planet of HD 209458. Astrophys. J. 552, 699–709 (2001). doi: 10.1086/320580 ADSGoogle Scholar
  21. T.M. Brown, D.W. Latham, M.E. Everett, G.A. Esquerdo, Kepler input catalog: photometric calibration and stellar classification. Astron. J. 142, 112 (2011). doi: 10.1088/0004-6256/142/4/112 ADSGoogle Scholar
  22. L.A. Buchhave, D.W. Latham, A. Johansen, M. Bizzarro, G. Torres, J.F. Rowe, N.M. Batalha, W.J. Borucki, E. Brugamyer, C. Caldwell, S.T. Bryson, D.R. Ciardi, W.D. Cochran, M. Endl, G.A. Esquerdo, E.B. Ford, J.C. Geary, R.L. Gilliland, T. Hansen, H. Isaacson, J.B. Laird, P.W. Lucas, G.W. Marcy, J.A. Morse, P. Robertson, A. Shporer, R.P. Stefanik, M. Still, S.N. Quinn, An abundance of small exoplanets around stars with a wide range of metallicities. Nature 486, 375–377 (2012). doi: 10.1038/nature11121 ADSGoogle Scholar
  23. R.P. Butler, G.W. Marcy, E. Williams, C. McCarthy, P. Dosanjh, S.S. Vogt, Attaining Doppler precision of 3 M s-1. Publ. Astron. Soc. Pac. 108, 500 (1996). doi: 10.1086/133755 ADSGoogle Scholar
  24. R.P. Butler, C.G. Tinney, G.W. Marcy, H.R.A. Jones, A.J. Penny, K. Apps, Two new planets from the Anglo-Australian planet search. Astrophys. J. 555, 410–417 (2001). doi: 10.1086/321467 ADSGoogle Scholar
  25. A.G.W. Cameron, The partial volatilization of Mercury. Icarus 64, 285–294 (1985). doi: 10.1016/0019-1035(85)90091-0 ADSGoogle Scholar
  26. R.M. Canup, W.R. Ward, A common mass scaling for satellite systems of gaseous planets. Nature 441, 834–839 (2006). doi: 10.1038/nature04860 ADSGoogle Scholar
  27. J. Chambers, A semi-analytic model for oligarchic growth. Icarus 180, 496–513 (2006). doi: 10.1016/j.icarus.2005.10.017 ADSGoogle Scholar
  28. S. Charpinet, G. Fontaine, P. Brassard, E.M. Green, V. Van Grootel, S.K. Randall, R. Silvotti, A.S. Baran, R.H. Østensen, S.D. Kawaler, J.H. Telting, A compact system of small planets around a former red-giant star. Nature 480, 496–499 (2011). doi: 10.1038/nature10631 ADSGoogle Scholar
  29. E. Chiang, G. Laughlin, The minimum-mass extrasolar nebula: in-situ formation of close-in super-Earths. Mon. Not. R. Astron. Soc. 431, 3444 (2013). doi: 10.1093/mnras/stt424 ADSGoogle Scholar
  30. E. Chiang, A.N. Youdin, Forming planetesimals in solar and extrasolar nebulae. Annu. Rev. Earth Planet. Sci. 38, 493–522 (2010). doi: 10.1146/annurev-earth-040809-152513 ADSGoogle Scholar
  31. M.C. Clampin, Status of the James Webb space telescope observatory, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8442 (2012). doi: 10.1117/12.926429 Google Scholar
  32. K.D. Colón, E.B. Ford, R.C. Morehead, Constraining the false positive rate for Kepler planet candidates with multicolour photometry from the GTC. Mon. Not. R. Astron. Soc. 426, 342–353 (2012). doi: 10.1111/j.1365-2966.2012.21711.x ADSGoogle Scholar
  33. R. Cosentino, C. Lovis, F. Pepe, A. Collier Cameron, D.W. Latham, E. Molinari, S. Udry, N. Bezawada, M. Black, A. Born, N. Buchschacher, D. Charbonneau, P. Figueira, M. Fleury, A. Galli, A. Gallie, X. Gao, A. Ghedina, C. Gonzalez, M. Gonzalez, J. Guerra, D. Henry, K. Horne, I. Hughes, D. Kelly, M. Lodi, D. Lunney, C. Maire, M. Mayor, G. Micela, M.P. Ordway, J. Peacock, D. Phillips, G. Piotto, D. Pollacco, D. Queloz, K. Rice, C. Riverol, L. Riverol, J. San Juan, D. Sasselov, D. Segransan, A. Sozzetti, D. Sosnowska, B. Stobie, A. Szentgyorgyi, A. Vick, L. Weber, Harps-N: the new planet hunter at TNG, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8446 (2012). doi: 10.1117/12.925738 Google Scholar
  34. N.B. Cowan, E. Agol, The statistics of Albedo and heat recirculation on hot exoplanets. Astrophys. J. 729, 54 (2011). doi: 10.1088/0004-637X/729/1/54 ADSGoogle Scholar
  35. A.N. Cox, C.A. Pilachowski, Allen’s astrophysical quantities. Phys. Today 53(10), 100000 (2000). doi: 10.1063/1.1325201 Google Scholar
  36. M. Ćuk, J.A. Burns, On the secular behavior of irregular satellites. Astron. J. 128, 2518–2541 (2004). doi: 10.1086/424937 ADSGoogle Scholar
  37. A. Dalgarno, F.J. Smith, The thermal conductivity and viscosity of atomic oxygen. Planet. Space Sci. 9, 1 (1962). doi: 10.1016/0032-0633(62)90064-8 ADSGoogle Scholar
  38. B.-O. Demory, M. Gillon, S. Seager, B. Benneke, D. Deming, B. Jackson, Detection of thermal emission from a super-Earth. Astrophys. J. Lett. 751, 28 (2012). doi: 10.1088/2041-8205/751/2/L28 ADSGoogle Scholar
  39. A. Dressler, D. Spergel, M. Mountain, M. Postman, E. Elliott, E. Bendek, D. Bennett, J. Dalcanton, S. Gaudi, N. Gehrels, O. Guyon, C. Hirata, J. Kalirai, N.J. Kasdin, J. Kruk, B. Macintosh, S. Malhotra, M. Penny, S. Perlmutter, G. Rieke, A. Riess, J. Rhoads, S. Shaklan, R. Somerville, D. Stern, R. Thompson, D. Weinberg, Exploring the NRO opportunity for a Hubble-sized wide-field near-IR space telescope—NEW WFIRST (2012). arXiv e-prints Google Scholar
  40. X. Dumusque, S. Udry, C. Lovis, N.C. Santos, M.J.P.F.G. Monteiro, Planetary detection limits taking into account stellar noise. I. Observational strategies to reduce stellar oscillation and granulation effects. Astron. Astrophys. 525, 140 (2011). doi: 10.1051/0004-6361/201014097 ADSGoogle Scholar
  41. X. Dumusque, F. Pepe, C. Lovis, D. Ségransan, J. Sahlmann, W. Benz, F. Bouchy, M. Mayor, D. Queloz, N. Santos, S. Udry, An Earth-mass planet orbiting α Centauri B. Nature 491, 207–211 (2012). doi: 10.1038/nature11572 ADSGoogle Scholar
  42. D.S. Ebel, C.M.O. Alexander, Equilibrium condensation from chondritic porous IDP enriched vapor: implications for Mercury and enstatite chondrite origins. Planet. Space Sci. 59, 1888–1894 (2011). doi: 10.1016/j.pss.2011.07.017 ADSGoogle Scholar
  43. S. Elser, B. Moore, J. Stadel, R. Morishima, How common are Earth-Moon planetary systems? Icarus 214, 357–365 (2011). doi: 10.1016/j.icarus.2011.05.025 ADSGoogle Scholar
  44. M. Endl, M. Kürster, S. Els, The planet search program at the ESO Coudé Echelle spectrometer. I. Data modeling technique and radial velocity precision tests. Astron. Astrophys. 362, 585–594 (2000) ADSGoogle Scholar
  45. B. Fegley, A.G.W. Cameron, A vaporization model for iron/silicate fractionation in the Mercury protoplanet. Earth Planet. Sci. Lett. 82, 207–222 (1987). doi: 10.1016/0012-821X(87)90196-8 ADSGoogle Scholar
  46. M.J. Fogg, R.P. Nelson, The effect of type I migration on the formation of terrestrial planets in hot-Jupiter systems. Astron. Astrophys. 472, 1003–1015 (2007). doi: 10.1051/0004-6361:20077950 ADSGoogle Scholar
  47. E.B. Ford, J.F. Rowe, D.C. Fabrycky, J.A. Carter, M.J. Holman, J.J. Lissauer, D. Ragozzine, J.H. Steffen, N.M. Batalha, W.J. Borucki, S. Bryson, D.A. Caldwell, E.W. Dunham, T.N. Gautier III, J.M. Jenkins, D.G. Koch, J. Li, P. Lucas, G.W. Marcy, S. McCauliff, F.R. Mullally, E. Quintana, M. Still, P. Tenenbaum, S.E. Thompson, J.D. Twicken, Transit timing observations from Kepler. I. Statistical analysis of the first four months. Astrophys. J. Suppl. Ser. 197, 2 (2011). doi: 10.1088/0067-0049/197/1/2 ADSGoogle Scholar
  48. F. Fressin, G. Torres, J.F. Rowe, D. Charbonneau, L.A. Rogers, S. Ballard, N.M. Batalha, W.J. Borucki, S.T. Bryson, L.A. Buchhave, D.R. Ciardi, J.-M. Désert, C.D. Dressing, D.C. Fabrycky, E.B. Ford, T.N. Gautier III, C.E. Henze, M.J. Holman, A. Howard, S.B. Howell, J.M. Jenkins, D.G. Koch, D.W. Latham, J.J. Lissauer, G.W. Marcy, S.N. Quinn, D. Ragozzine, D.D. Sasselov, S. Seager, T. Barclay, F. Mullally, S.E. Seader, M. Still, J.D. Twicken, S.E. Thompson, K. Uddin, Two earth-sized planets orbiting Kepler-20. Nature 482, 195–198 (2012). doi: 10.1038/nature10780 ADSGoogle Scholar
  49. F. Fressin, G. Torres, D. Charbonneau, S.T. Bryson, J. Christiansen, C.D. Dressing, J.M. Jenkins, L.M. Walkowicz, N.M. Batalha, The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766, 81 (2013). doi: 10.1088/0004-637X/766/2/81 ADSGoogle Scholar
  50. B.J. Fulton, A. Shporer, J.N. Winn, M.J. Holman, A. Pál, J.Z. Gazak, Long-term transit timing monitoring and refined light curve parameters of HAT-P-13b. Astron. J. 142, 84 (2011). doi: 10.1088/0004-6256/142/3/84 ADSGoogle Scholar
  51. E. Gaidos, D.M. Williams, Seasonality on terrestrial extrasolar planets: inferring obliquity and surface conditions from infrared light curves. New Astron. 10, 67–77 (2004). doi: 10.1016/j.newast.2004.04.009 ADSGoogle Scholar
  52. E. Gaidos, D.A. Fischer, A.W. Mann, S. Lépine, On the nature of small planets around the coolest Kepler stars. Astrophys. J. 746, 36 (2012). doi: 10.1088/0004-637X/746/1/36 ADSGoogle Scholar
  53. R.L. Gilliland, W.J. Chaplin, E.W. Dunham, V.S. Argabright, W.J. Borucki, G. Basri, S.T. Bryson, D.L. Buzasi, D.A. Caldwell, Y.P. Elsworth, J.M. Jenkins, D.G. Koch, J. Kolodziejczak, A. Miglio, J. van Cleve, L.M. Walkowicz, W.F. Welsh, Kepler mission stellar and instrument noise properties. Astrophys. J. Suppl. Ser. 197, 6 (2011). doi: 10.1088/0067-0049/197/1/6 ADSGoogle Scholar
  54. B. Gladman, J. Coffey, Mercurian impact ejecta: meteorites and mantle. Meteorit. Planet. Sci. 44, 285–291 (2009). doi: 10.1111/j.1945-5100.2009.tb00734.x ADSGoogle Scholar
  55. Y.-X. Gong, J.-L. Zhou, J.-W. Xie, X.-M. Wu, The effect of planet-planet scattering on the survival of exomoons. Astrophys. J. Lett. 769, 14 (2013). doi: 10.1088/2041-8205/769/1/L14 ADSGoogle Scholar
  56. O. Grasset, J. Schneider, C. Sotin, A study of the accuracy of mass-radius relationships for silicate-rich and ice-rich planets up to 100 Earth masses. Astrophys. J. 693, 722–733 (2009). doi: 10.1088/0004-637X/693/1/722 ADSGoogle Scholar
  57. S. Guilloteau, A. Dutrey, V. Piétu, Y. Boehler, A dual-frequency sub-arcsecond study of proto-planetary disks at mm wavelengths: first evidence for radial variations of the dust properties. Astron. Astrophys. 529, 105 (2011). doi: 10.1051/0004-6361/201015209 ADSGoogle Scholar
  58. N. Haghighipour, The formation and dynamics of super-Earth planets. Annu. Rev. Earth Planet. Sci. 41, 469–495 (2013). doi: 10.1146/annurev-earth-042711-105340 ADSGoogle Scholar
  59. B.M.S. Hansen, H.-Y. Shih, T. Currie, The pulsar planets: a test case of terrestrial planet assembly. Astrophys. J. 691, 382–393 (2009). doi: 10.1088/0004-637X/691/1/382 ADSGoogle Scholar
  60. A.P. Hatzes, The radial velocity detection of Earth-mass planets in the presence of activity noise: the case of α Centauri Bb. Astrophys. J. 770, 133 (2013). doi: 10.1088/0004-637X/770/2/133 ADSGoogle Scholar
  61. S.A. Hauck, J.-L. Margot, S.C. Solomon, R.J. Phillips, C.L. Johnson, F.G. Lemoine, E. Mazarico, T.J. McCoy, S. Padovan, S.J. Peale, M.E. Perry, D.E. Smith, M.T. Zuber, The curious case of Mercury’s internal structure. J. Geophys. Res. 118, 1204–1220 (2013). doi: 10.1002/jgre.20091 Google Scholar
  62. C. Hayashi, Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981). doi: 10.1143/PTPS.70.35 ADSGoogle Scholar
  63. G. Hébrard, A. Lecavelier Des Étangs, A. Vidal-Madjar, J.-M. Désert, R. Ferlet, Evaporation rate of hot Jupiters and formation of Chthonian planets, in Extrasolar Planets: Today and Tomorrow, ed. by J. Beaulieu, A. Lecavelier Des Etangs, C. Terquem. Astronomical Society of the Pacific Conference Series, vol. 321, (2004), p. 203 Google Scholar
  64. T. Hirano, N. Narita, B. Sato, Y.H. Takahashi, K. Masuda, Y. Takeda, W. Aoki, M. Tamura, Y. Suto, Planet-planet eclipse and the Rossiter-McLaughlin effect of a multiple transiting system: joint analysis of the Subaru spectroscopy and the Kepler photometry. Astrophys. J. Lett. 759, 36 (2012). doi: 10.1088/2041-8205/759/2/L36 ADSGoogle Scholar
  65. M.J. Holman, N.W. Murray, The use of transit timing to detect terrestrial-mass extrasolar planets. Science 307, 1288–1291 (2005). doi: 10.1126/science.1107822 ADSGoogle Scholar
  66. A.W. Howard, G.W. Marcy, J.A. Johnson, D.A. Fischer, J.T. Wright, H. Isaacson, J.A. Valenti, J. Anderson, D.N.C. Lin, S. Ida, The occurrence and mass distribution of close-in super-Earths, Neptunes, and Jupiters. Science 330, 653 (2010). doi: 10.1126/science.1194854 ADSGoogle Scholar
  67. A.W. Howard, G.W. Marcy, S.T. Bryson, J.M. Jenkins, J.F. Rowe, N.M. Batalha, W.J. Borucki, D.G. Koch, E.W. Dunham, T.N. Gautier III, J. Van Cleve, W.D. Cochran, D.W. Latham, J.J. Lissauer, G. Torres, T.M. Brown, R.L. Gilliland, L.A. Buchhave, D.A. Caldwell, J. Christensen-Dalsgaard, D. Ciardi, F. Fressin, M.R. Haas, S.B. Howell, H. Kjeldsen, S. Seager, L. Rogers, D.D. Sasselov, J.H. Steffen, G.S. Basri, D. Charbonneau, J. Christiansen, B. Clarke, A. Dupree, D.C. Fabrycky, D.A. Fischer, E.B. Ford, J.J. Fortney, J. Tarter, F.R. Girouard, M.J. Holman, J.A. Johnson, T.C. Klaus, P. Machalek, A.V. Moorhead, R.C. Morehead, D. Ragozzine, P. Tenenbaum, J.D. Twicken, S.N. Quinn, H. Isaacson, A. Shporer, P.W. Lucas, L.M. Walkowicz, W.F. Welsh, A. Boss, E. Devore, A. Gould, J.C. Smith, R.L. Morris, A. Prsa, T.D. Morton, M. Still, S.E. Thompson, F. Mullally, M. Endl, P.J. MacQueen, Planet occurrence within 0.25 AU of solar-type stars from Kepler. Astrophys. J. Suppl. Ser. 201, 15 (2012). doi: 10.1088/0067-0049/201/2/15 ADSGoogle Scholar
  68. S. Ida, D.N.C. Lin, Toward a deterministic model of planetary formation. VI. Dynamical interaction and coagulation of multiple rocky embryos and super-Earth systems around solar-type stars. Astrophys. J. Lett. 719, 810–830 (2010). doi: 10.1088/0004-637X/719/1/810 ADSGoogle Scholar
  69. A. Isella, J.M. Carpenter, A.I. Sargent, Structure and evolution of pre-main-sequence circumstellar disks. Astrophys. J. Lett. 701, 260–282 (2009). doi: 10.1088/0004-637X/701/1/260 ADSGoogle Scholar
  70. J.M. Jenkins, D.A. Caldwell, H. Chandrasekaran, J.D. Twicken, S.T. Bryson, E.V. Quintana, B.D. Clarke, J. Li, C. Allen, P. Tenenbaum, H. Wu, T.C. Klaus, C.K. Middour, M.T. Cote, S. McCauliff, F.R. Girouard, J.P. Gunter, B. Wohler, J. Sommers, J.R. Hall, A.K. Uddin, M.S. Wu, P.A. Bhavsar, J. Van Cleve, D.L. Pletcher, J.A. Dotson, M.R. Haas, R.L. Gilliland, D.G. Koch, W.J. Borucki, Overview of the Kepler science processing pipeline. Astrophys. J. Lett. 713, 87–91 (2010). doi: 10.1088/2041-8205/713/2/L87 ADSGoogle Scholar
  71. R.E. Johnson, Thermally driven atmospheric escape. Astrophys. J. Lett. 716, 1573–1578 (2010). doi: 10.1088/0004-637X/716/2/1573 ADSGoogle Scholar
  72. E. Kambe, H. Ando, B. Sato, H. Izumiura, T. Sekii, D.B. Paulson, K. Yanagisawa, S. Masuda, H. Shibahashi, A.P. Hatzes, M. Martic, J.-C. Lebrun, D.E. Mkrtichian, L.L. Kiss, H. Bruntt, S.J. O’Toole, T.R. Bedding, Development of iodine cells for Subaru HDS and Okayama HIDES. III. An improvement on the radial-velocity measurement technique. Publ. Astron. Soc. Jpn. 60, 45 (2008) ADSGoogle Scholar
  73. G.M. Kennedy, S.J. Kenyon, Planet formation around stars of various masses: hot super-Earths. Astrophys. J. 682, 1264–1276 (2008). doi: 10.1086/589436 ADSGoogle Scholar
  74. S.J. Kenyon, B.C. Bromley, Terrestrial planet formation. I. The transition from oligarchic growth to chaotic growth. Astron. J. 131, 1837–1850 (2006). doi: 10.1086/499807 ADSGoogle Scholar
  75. D.M. Kipping, S.J. Fossey, G. Campanella, On the detectability of habitable exomoons with Kepler-class photometry. Mon. Not. R. Astron. Soc. 400, 398–405 (2009). doi: 10.1111/j.1365-2966.2009.15472.x ADSGoogle Scholar
  76. D.M. Kipping, J. Hartman, L.A. Buchhave, A.R. Schmitt, G.Á. Bakos, D. Nesvorný, The hunt for exomoons with Kepler (HEK). II. Analysis of seven viable satellite-hosting planet candidates. Astrophys. J. 770, 101 (2013). doi: 10.1088/0004-637X/770/2/101 ADSGoogle Scholar
  77. D.G. Koch, W.J. Borucki, G. Basri, N.M. Batalha, T.M. Brown, D. Caldwell, J. Christensen-Dalsgaard, W.D. Cochran, E. DeVore, E.W. Dunham, T.N. Gautier III, J.C. Geary, R.L. Gilliland, A. Gould, J. Jenkins, Y. Kondo, D.W. Latham, J.J. Lissauer, G. Marcy, D. Monet, D. Sasselov, A. Boss, D. Brownlee, J. Caldwell, A.K. Dupree, S.B. Howell, H. Kjeldsen, S. Meibom, D. Morrison, T. Owen, H. Reitsema, J. Tarter, S.T. Bryson, J.L. Dotson, P. Gazis, M.R. Haas, J. Kolodziejczak, J.F. Rowe, J.E. Van Cleve, C. Allen, H. Chandrasekaran, B.D. Clarke, J. Li, E.V. Quintana, P. Tenenbaum, J.D. Twicken, H. Wu, Kepler mission design, realized photometric performance, and early science. Astrophys. J. Lett. 713, 79–86 (2010). doi: 10.1088/2041-8205/713/2/L79 ADSGoogle Scholar
  78. E. Kokubo, S. Ida, Oligarchic growth of protoplanets. Icarus 131, 171–178 (1998). doi: 10.1006/icar.1997.5840 ADSGoogle Scholar
  79. E. Kokubo, S. Ida, Formation of protoplanets from planetesimals in the solar nebula. Icarus 143, 15–27 (2000). doi: 10.1006/icar.1999.6237 ADSGoogle Scholar
  80. E. Kokubo, J. Kominami, S. Ida, Formation of terrestrial planets from protoplanets. I. Statistics of basic dynamical properties. Astrophys. J. 642, 1131–1139 (2006). doi: 10.1086/501448 ADSGoogle Scholar
  81. D. Kubas, J.P. Beaulieu, D.P. Bennett, A. Cassan, A. Cole, J. Lunine, J.B. Marquette, S. Dong, A. Gould, T. Sumi, V. Batista, P. Fouqué, S. Brillant, S. Dieters, C. Coutures, J. Greenhill, I. Bond, T. Nagayama, A. Udalski, E. Pompei, D.E.A. Nürnberger, J.B. Le Bouquin, A frozen super-Earth orbiting a star at the bottom of the main sequence. Astron. Astrophys. 540, 78 (2012). doi: 10.1051/0004-6361/201015832 ADSGoogle Scholar
  82. M.J. Kuchner, Volatile-rich Earth-mass planets in the habitable zone. Astrophys. J. 596, 105–108 (2003). doi: 10.1086/378397 ADSGoogle Scholar
  83. A. Léger, F. Selsis, C. Sotin, T. Guillot, D. Despois, D. Mawet, M. Ollivier, A. Labèque, C. Valette, F. Brachet, B. Chazelas, H. Lammer, A new family of planets? “Ocean-planets”. Icarus 169, 499–504 (2004). doi: 10.1016/j.icarus.2004.01.001 ADSGoogle Scholar
  84. A. Léger, O. Grasset, B. Fegley, F. Codron, A.F. Albarede, P. Barge, R. Barnes, P. Cance, S. Carpy, F. Catalano, C. Cavarroc, O. Demangeon, S. Ferraz-Mello, P. Gabor, J.-M. Grießmeier, J. Leibacher, G. Libourel, A.-S. Maurin, S.N. Raymond, D. Rouan, B. Samuel, L. Schaefer, J. Schneider, P.A. Schuller, F. Selsis, C. Sotin, The extreme physical properties of the CoRoT-7b super-Earth. Icarus 213, 1–11 (2011). doi: 10.1016/j.icarus.2011.02.004 ADSGoogle Scholar
  85. J.S. Lewis, Metal/silicate fractionation in the solar system. Earth Planet. Sci. Lett. 15, 286–290 (1972). doi: 10.1016/0012-821X(72)90174-4 ADSGoogle Scholar
  86. N.K. Lewis, A.P. Showman, J.J. Fortney, M.S. Marley, R.S. Freedman, K. Lodders, Atmospheric circulation of eccentric hot Neptune GJ436b. Astrophys. J. 720, 344–356 (2010). doi: 10.1088/0004-637X/720/1/344 ADSGoogle Scholar
  87. C.-H. Li, A.G. Glenday, D.F. Phillips, G. Furesz, N. Langellier, M. Webber, A. Zibrov, A.J. Benedick, G. Chang, L.-J. Chen, D. Sasselov, F. Kärtner, A. Szentgyorgyi, R.L. Walsworth, Green astro-comb for HARPS-N, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8446 (2012). doi: 10.1117/12.925799 Google Scholar
  88. D.N.C. Lin, P. Bodenheimer, D.C. Richardson, Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380, 606–607 (1996). doi: 10.1038/380606a0 ADSGoogle Scholar
  89. J.J. Lissauer, D. Ragozzine, D.C. Fabrycky, J.H. Steffen, E.B. Ford, J.M. Jenkins, A. Shporer, M.J. Holman, J.F. Rowe, E.V. Quintana, N.M. Batalha, W.J. Borucki, S.T. Bryson, D.A. Caldwell, J.A. Carter, D. Ciardi, E.W. Dunham, J.J. Fortney, T.N. Gautier III, S.B. Howell, D.G. Koch, D.W. Latham, G.W. Marcy, R.C. Morehead, D. Sasselov, Architecture and dynamics of Kepler’s candidate multiple transiting planet systems. Astrophys. J. Suppl. Ser. 197, 8 (2011). doi: 10.1088/0067-0049/197/1/8 ADSGoogle Scholar
  90. C. Lovis, M. Mayor, F. Pepe, Y. Alibert, W. Benz, F. Bouchy, A.C.M. Correia, J. Laskar, C. Mordasini, D. Queloz, N.C. Santos, S. Udry, J.-L. Bertaux, J.-P. Sivan, An extrasolar planetary system with three Neptune-mass planets. Nature 441, 305–309 (2006). doi: 10.1038/nature04828 ADSGoogle Scholar
  91. G. Maciejewski, D. Dimitrov, M. Seeliger, S. Raetz, Ł. Bukowiecki, M. Kitze, R. Errmann, G. Nowak, A. Niedzielski, V. Popov, C. Marka, K. Goździewski, R. Neuhäuser, J. Ohlert, T.C. Hinse, J.W. Lee, C.-U. Lee, J.-N. Yoon, A. Berndt, H. Gilbert, C. Ginski, M.M. Hohle, M. Mugrauer, T. Röll, T.O.B. Schmidt, N. Tetzlaff, L. Mancini, J. Southworth, M. Dall’Ora, S. Ciceri, R. Zambelli, G. Corfini, H. Takahashi, K. Tachihara, J.M. Benkő, K. Sárneczky, G.M. Szabo, T.N. Varga, M. Vaňko, Y.C. Joshi, W.P. Chen, Multi-site campaign for transit timing variations of WASP-12 b: possible detection of a long-period signal of planetary origin. Astron. Astrophys. 551, 108 (2013). doi: 10.1051/0004-6361/201220739 ADSGoogle Scholar
  92. A.M. Mandell, S.N. Raymond, S. Sigurdsson, Formation of Earth-like planets during and after giant planet migration. Astrophys. J. 660, 823–844 (2007). doi: 10.1086/512759 ADSGoogle Scholar
  93. A.W. Mann, E. Gaidos, S. Lépine, E.J. Hilton, They might be giants: luminosity class, planet occurrence, and planet-metallicity relation of the coolest Kepler target stars. Astrophys. J. 753, 90 (2012). doi: 10.1088/0004-637X/753/1/90 ADSGoogle Scholar
  94. A.W. Mann, E. Gaidos, A. Kraus, E.J. Hilton, Testing the metal of late-type Kepler planet hosts with iron-clad methods. Astrophys. J. 770, 43 (2013). doi: 10.1088/0004-637X/770/1/43 ADSGoogle Scholar
  95. S. Mao, B. Paczynski, Gravitational microlensing by double stars and planetary systems. Astrophys. J. 374, 37–40 (1991). doi: 10.1086/186066 ADSGoogle Scholar
  96. M. Mayor, D. Queloz, A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995). doi: 10.1038/378355a0 ADSGoogle Scholar
  97. Y. Miguel, L. Kaltenegger, B. Fegley, L. Schaefer, Compositions of hot super-Earth atmospheres: exploring Kepler candidates. Astrophys. J. 742, 19 (2011). doi: 10.1088/2041-8205/742/2/L19 ADSGoogle Scholar
  98. M.C. Miller, D.P. Hamilton, Implications of the PSR 1257+12 planetary system for isolated millisecond pulsars. Astrophys. J. 550, 863–870 (2001). doi: 10.1086/319813 ADSGoogle Scholar
  99. J. Miralda-Escudé, Orbital perturbations of transiting planets: a possible method to measure stellar quadrupoles and to detect Earth-mass planets. Astrophys. J. 564, 1019–1023 (2002). doi: 10.1086/324279 ADSGoogle Scholar
  100. R. Montgomery, G. Laughlin, Formation and detection of Earth mass planets around low mass stars. Icarus 202, 1–11 (2009). doi: 10.1016/j.icarus.2009.02.035 ADSGoogle Scholar
  101. A. Morbidelli, J.I. Lunine, D.P. O’Brien, S.N. Raymond, K.J. Walsh, Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 40, 251–275 (2012). doi: 10.1146/annurev-earth-042711-105319 ADSGoogle Scholar
  102. T.D. Morton, An efficient automated validation procedure for exoplanet transit candidates. Astrophys. J. 761, 6 (2012). doi: 10.1088/0004-637X/761/1/6 ADSGoogle Scholar
  103. P.S. Muirhead, K. Hamren, E. Schlawin, B. Rojas-Ayala, K.R. Covey, J.P. Lloyd, Characterizing the cool Kepler objects of interests. New effective temperatures, metallicities, masses, and radii of low-mass Kepler planet-candidate host stars. Astrophys. J. 750, 37 (2012a). doi: 10.1088/2041-8205/750/2/L37 ADSGoogle Scholar
  104. P.S. Muirhead, J.A. Johnson, K. Apps, J.A. Carter, T.D. Morton, D.C. Fabrycky, J.S. Pineda, M. Bottom, B. Rojas-Ayala, E. Schlawin, K. Hamren, K.R. Covey, J.R. Crepp, K.G. Stassun, J. Pepper, L. Hebb, E.N. Kirby, A.W. Howard, H.T. Isaacson, G.W. Marcy, D. Levitan, T. Diaz-Santos, L. Armus, J.P. Lloyd, Characterizing the cool KOIs. III. KOI 961: a small star with large proper motion and three small planets. Astrophys. J. 747, 144 (2012b). doi: 10.1088/0004-637X/747/2/144 ADSGoogle Scholar
  105. D.P. O’Brien, A. Morbidelli, H.F. Levison, Terrestrial planet formation with strong dynamical friction. Icarus 184, 39–58 (2006). doi: 10.1016/j.icarus.2006.04.005 ADSGoogle Scholar
  106. M. Ogihara, S. Ida, N-body simulations of satellite formation around giant planets: origin of orbital configuration of the Galilean moons. Astrophys. J. 753, 60 (2012) ADSGoogle Scholar
  107. A. Pál, Light-curve modelling for mutual transits. Mon. Not. R. Astron. Soc. 420, 1630–1635 (2012). doi: 10.1111/j.1365-2966.2011.20151.x ADSGoogle Scholar
  108. L. Pasquini, S. Cristiani, R. García López, M. Haehnelt, M. Mayor, J. Liske, A. Manescau, G. Avila, H. Dekker, O. Iwert, B. Delabre, G. Lo Curto, V. D’Odorico, P. Molaro, M. Viel, E. Vanzella, P. Bonifacio, P. di Marcantonio, P. Santin, M. Comari, R. Cirami, I. Coretti, F.M. Zerbi, P. Spanò, M. Riva, R. Rebolo, G. Israelian, A. Herrero, M.R. Zapatero Osorio, F. Tenegi, B. Carswell, G. Becker, S. Udry, F. Pepe, C. Lovis, D. Naef, M. Dessauges, D. Mégevand, Codex, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7735 (2010). doi: 10.1117/12.856974 Google Scholar
  109. M.T. Penny, E. Kerins, N. Rattenbury, J.-P. Beaulieu, A.C. Robin, S. Mao, V. Batista, S. Calchi Novati, A. Cassan, P. Fouqué, I. McDonald, J.B. Marquette, P. Tisserand, M.R. Zapatero Osorio, ExELS: an exoplanet legacy science proposal for the ESA Euclid mission—I. Cold exoplanets. Mon. Not. R. Astron. Soc. 434, 2 (2013). doi: 10.1093/mnras/stt927 ADSGoogle Scholar
  110. F.A. Pepe, S. Cristiani, R. Rebolo Lopez, N.C. Santos, A. Amorim, G. Avila, W. Benz, P. Bonifacio, A. Cabral, P. Carvas, R. Cirami, J. Coelho, M. Comari, I. Coretti, V. de Caprio, H. Dekker, B. Delabre, P. di Marcantonio, V. D’Odorico, M. Fleury, R. García, J.M. Herreros Linares, I. Hughes, O. Iwert, J. Lima, J.-L. Lizon, G. Lo Curto, C. Lovis, A. Manescau, C. Martins, D. Mégevand, A. Moitinho, P. Molaro, M. Monteiro, M. Monteiro, L. Pasquini, C. Mordasini, D. Queloz, J.L. Rasilla, J.M. Rebordão, S. Santana Tschudi, P. Santin, D. Sosnowska, P. Spanò, F. Tenegi, S. Udry, E. Vanzella, M. Viel, M.R. Zapatero Osorio, F. Zerbi, ESPRESSO: the Echelle spectrograph for rocky exoplanets and stable spectroscopic observations, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7735 (2010). doi: 10.1117/12.857122 Google Scholar
  111. P.N. Peplowski, L.G. Evans, S.A. Hauck, T.J. McCoy, W.V. Boynton, J.J. Gillis-Davis, D.S. Ebel, J.O. Goldsten, D.K. Hamara, D.J. Lawrence, R.L. McNutt, L.R. Nittler, S.C. Solomon, E.A. Rhodes, A.L. Sprague, R.D. Starr, K.R. Stockstill-Cahill, Radioactive elements on Mercury’s surface from MESSENGER: implications for the planet’s formation and evolution. Science 333, 1850 (2011). doi: 10.1126/science.1211576 ADSGoogle Scholar
  112. E.A. Petigura, G.W. Marcy, A.W. Howard, A plateau in the planet population below twice the size of Earth. Astrophys. J. 770(1), 69 (2013) ADSGoogle Scholar
  113. J.A. Phillips, S.E. Thorsett, Planets around pulsars: a review. Astrophys. Space Sci. 212, 91–106 (1994). doi: 10.1007/BF00984513 ADSGoogle Scholar
  114. R. Pierrehumbert, E. Gaidos, Hydrogen greenhouse planets beyond the habitable zone. Astrophys. J. 734, 13 (2011). doi: 10.1088/2041-8205/734/1/L13 ADSGoogle Scholar
  115. F. Pont, R.L. Gilliland, C. Moutou, D. Charbonneau, F. Bouchy, T.M. Brown, M. Mayor, D. Queloz, N. Santos, S. Udry, Hubble space telescope time-series photometry of the planetary transit of HD 189733: no moon, no rings, starspots. Astron. Astrophys. 476, 1347–1355 (2007). doi: 10.1051/0004-6361:20078269 ADSGoogle Scholar
  116. S.B. Porter, W.M. Grundy, Post-capture evolution of potentially habitable exomoons. Astrophys. J. 736, 14 (2011). doi: 10.1088/2041-8205/736/1/L14 ADSGoogle Scholar
  117. D. Queloz, F. Bouchy, C. Moutou, A. Hatzes, G. Hébrard, R. Alonso, M. Auvergne, A. Baglin, M. Barbieri, P. Barge, W. Benz, P. Bordé, H.J. Deeg, M. Deleuil, R. Dvorak, A. Erikson, S. Ferraz Mello, M. Fridlund, D. Gandolfi, M. Gillon, E. Guenther, T. Guillot, L. Jorda, M. Hartmann, H. Lammer, A. Léger, A. Llebaria, C. Lovis, P. Magain, M. Mayor, T. Mazeh, M. Ollivier, M. Pätzold, F. Pepe, H. Rauer, D. Rouan, J. Schneider, D. Segransan, S. Udry, G. Wuchterl, The CoRoT-7 planetary system: two orbiting super-Earths. Astron. Astrophys. 506, 303–319 (2009). doi: 10.1051/0004-6361/200913096 ADSGoogle Scholar
  118. M.V. Radovan, G.F. Cabak, L.H. Laiterman, C.T. Lockwood, S.S. Vogt, A radial velocity spectrometer for the automated planet finder telescope at lick observatory, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7735 (2010). doi: 10.1117/12.857726 Google Scholar
  119. D. Ragozzine, M.J. Holman, The value of systems with multiple transiting planets (2010). arXiv e-prints Google Scholar
  120. S. Rappaport, A. Levine, E. Chiang, I. El Mellah, J. Jenkins, B. Kalomeni, E.S. Kite, M. Kotson, L. Nelson, L. Rousseau-Nepton, K. Tran, Possible disintegrating short-period super-Mercury orbiting KIC 12557548. Astrophys. J. 752, 1 (2012). doi: 10.1088/0004-637X/752/1/1 ADSGoogle Scholar
  121. S.N. Raymond, A.M. Mandell, S. Sigurdsson, Exotic Earths: forming habitable worlds with giant planet migration. Science 313, 1413–1416 (2006). doi: 10.1126/science.1130461 ADSGoogle Scholar
  122. S.N. Raymond, J. Scalo, V.S. Meadows, A decreased probability of habitable planet formation around low-mass stars. Astrophys. J. 669, 606–614 (2007). doi: 10.1086/521587 ADSGoogle Scholar
  123. S.N. Raymond, R. Barnes, A.M. Mandell, Observable consequences of planet formation models in systems with close-in terrestrial planets. Mon. Not. R. Astron. Soc. 384, 663–674 (2008). doi: 10.1111/j.1365-2966.2007.12712.x ADSGoogle Scholar
  124. S.N. Raymond, D.P. O’Brien, A. Morbidelli, N.A. Kaib, Building the terrestrial planets: constrained accretion in the inner solar system. Icarus 203, 644–662 (2009). doi: 10.1016/j.icarus.2009.05.016 ADSGoogle Scholar
  125. A. Reiners, J.L. Bean, K.F. Huber, S. Dreizler, A. Seifahrt, S. Czesla, Detecting planets around very low mass stars with the radial velocity method. Astrophys. J. 710, 432–443 (2010). doi: 10.1088/0004-637X/710/1/432 ADSGoogle Scholar
  126. I. Ribas, E.F. Guinan, M. Güdel, M. Audard, Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1–1700 Å). Astrophys. J. 622, 680–694 (2005). doi: 10.1086/427977 ADSGoogle Scholar
  127. E.J. Rivera, J.J. Lissauer, R.P. Butler, G.W. Marcy, S.S. Vogt, D.A. Fischer, T.M. Brown, G. Laughlin, G.W. Henry, A ∼7.5 M planet orbiting the nearby star, GJ 876. Astrophys. J. 634, 625–640 (2005). doi: 10.1086/491669 ADSGoogle Scholar
  128. L.A. Rogers, S. Seager, A framework for quantifying the degeneracies of exoplanet interior compositions. Astrophys. J. 712, 974–991 (2010). doi: 10.1088/0004-637X/712/2/974 ADSGoogle Scholar
  129. G. Rupprecht, F. Pepe, M. Mayor, D. Queloz, F. Bouchy, G. Avila, W. Benz, J.-L. Bertaux, X. Bonfils, T. Dall, B. Delabre, H. Dekker, W. Eckert, M. Fleury, A. Gilliotte, D. Gojak, J.C. Guzman, D. Kohler, J.-L. Lizon, G. Lo Curto, A. Longinotti, C. Lovis, D. Megevand, L. Pasquini, J. Reyes, J.-P. Sivan, D. Sosnowska, R. Soto, S. Udry, A. Van Kesteren, L. Weber, U. Weilenmann, The exoplanet hunter HARPS: performance and first results, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed. by A.F.M. Moorwood, M. Iye, vol. 5492 (2004), pp. 148–159. doi: 10.1117/12.551267 Google Scholar
  130. R. Sanchis-Ojeda, D.C. Fabrycky, J.N. Winn, T. Barclay, B.D. Clarke, E.B. Ford, J.J. Fortney, J.C. Geary, M.J. Holman, A.W. Howard, J.M. Jenkins, D. Koch, J.J. Lissauer, G.W. Marcy, F. Mullally, D. Ragozzine, S.E. Seader, M. Still, S.E. Thompson, Alignment of the stellar spin with the orbits of a three-planet system. Nature 487, 449–453 (2012). doi: 10.1038/nature11301 ADSGoogle Scholar
  131. J. Sanz-Forcada, G. Micela, I. Ribas, A.M.T. Pollock, C. Eiroa, A. Velasco, E. Solano, D. García-Álvarez, Estimation of the XUV radiation onto close planets and their evaporation. Astron. Astrophys. 532, 6 (2011). doi: 10.1051/0004-6361/201116594 ADSGoogle Scholar
  132. T. Sasaki, G.R. Stewart, S. Ida, Origin of the different architectures of the Jovian and Saturnian satellite systems. Astrophys. J. 714, 1052–1064 (2010). doi: 10.1088/0004-637X/714/2/1052 ADSGoogle Scholar
  133. J. Schneider, C. Dedieu, P. Le Sidaner, R. Savalle, I. Zolotukhin, Defining and cataloging exoplanets: the exoplanet.eu database. Astron. Astrophys. 532, 79 (2011). doi: 10.1051/0004-6361/201116713 ADSGoogle Scholar
  134. C. Schwab, J.F.P. Spronck, A. Tokovinin, A. Szymkowiak, M. Giguere, D.A. Fischer, Performance of the CHIRON high-resolution Echelle spectrograph, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8446 (2012). doi: 10.1117/12.925108 Google Scholar
  135. S. Seager, M. Kuchner, C.A. Hier-Majumder, B. Militzer, Mass-radius relationships for solid exoplanets. Astrophys. J. 669, 1279–1297 (2007). doi: 10.1086/521346 ADSGoogle Scholar
  136. S. Sigurdsson, Genesis of a planet in Messier 4. Astrophys. J. 415, 43–46 (1993). doi: 10.1086/187028 ADSGoogle Scholar
  137. F. Sohl, G. Schubert, T. Spohn, Geophysical constraints on the composition and structure of the Martian interior. J. Geophys. Res. 110, 12008 (2005). doi: 10.1029/2005JE002520 Google Scholar
  138. J.F.P. Spronck, D.A. Fischer, Z.A. Kaplan, C. Schwab, Fiber scrambling for precise radial velocities at Lick and Keck observatories, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8446 (2012). doi: 10.1117/12.926289 Google Scholar
  139. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T.W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M.T. Murphy, T. Kentischer, W. Schmidt, T. Udem, Laser frequency combs for astronomical observations. Science 321, 1335 (2008). doi: 10.1126/science.1161030 ADSGoogle Scholar
  140. K.B. Stevenson, J. Harrington, N.B. Lust, N.K. Lewis, G. Montagnier, J.I. Moses, C. Visscher, J. Blecic, R.A. Hardy, P. Cubillos, C.J. Campo, Two nearby sub-Earth-sized exoplanet candidates in the GJ 436 system. Astrophys. J. 755, 9 (2012). doi: 10.1088/0004-637X/755/1/9 ADSGoogle Scholar
  141. P. Tenenbaum, J.L. Christiansen, J.M. Jenkins, J.F. Rowe, S. Seader, D.A. Caldwell, B.D. Clarke, J. Li, E.V. Quintana, J.C. Smith, M.C. Stumpe, S.E. Thompson, J.D. Twicken, J. Van Cleve, W.J. Borucki, M.T. Cote, M.R. Haas, D.T. Sanderfer, F.R. Girouard, T.C. Klaus, C.K. Middour, B. Wohler, N.M. Batalha, T. Barclay, J.E. Nickerson, Detection of potential transit signals in the first three quarters of Kepler mission data. Astrophys. J. Suppl. Ser. 199, 24 (2012). doi: 10.1088/0067-0049/199/1/24 ADSGoogle Scholar
  142. C. Terquem, J.C.B. Papaloizou, Migration and the formation of systems of hot super-Earths and Neptunes. Astrophys. J. 654, 1110–1120 (2007). doi: 10.1086/509497 ADSGoogle Scholar
  143. F. Tian, Thermal escape from super Earth atmospheres in the habitable zones of M stars. Astrophys. J. 703, 905–909 (2009). doi: 10.1088/0004-637X/703/1/905 ADSGoogle Scholar
  144. G. Torres, J. Andersen, A. Giménez, Accurate masses and radii of normal stars: modern results and applications. Astron. Astrophys. Rev. 18, 67–126 (2010). doi: 10.1007/s00159-009-0025-1 ADSGoogle Scholar
  145. C. Tully, R.E. Johnson, Low energy collisions between ground-state oxygen atoms. Planet. Space Sci. 49, 533–537 (2001). doi: 10.1016/S0032-0633(01)00002-2 ADSGoogle Scholar
  146. D. Valencia, D.D. Sasselov, R.J. O’Connell, Detailed models of super-Earths: how well can we infer bulk properties? Astrophys. J. 665, 1413–1420 (2007). doi: 10.1086/519554 ADSGoogle Scholar
  147. D. Valencia, M. Ikoma, T. Guillot, N. Nettelmann, Composition and fate of short-period super-Earths. The case of CoRoT-7b. Astron. Astrophys. 516, 20 (2010). doi: 10.1051/0004-6361/200912839 ADSGoogle Scholar
  148. J.A. Valenti, R.P. Butler, G.W. Marcy, Determining spectrometer instrumental profiles using FTS reference spectra. Publ. Astron. Soc. Pac. 107, 966 (1995). doi: 10.1086/133645 ADSGoogle Scholar
  149. L.M. van Haaften, G. Nelemans, R. Voss, P.G. Jonker, Formation of the planet around the millisecond pulsar J1719-1438. Astron. Astrophys. 541, 22 (2012). doi: 10.1051/0004-6361/201218798 ADSGoogle Scholar
  150. K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011). doi: 10.1038/nature10201 ADSGoogle Scholar
  151. W.R. Ward, Protoplanet migration by nebula tides. Icarus 126, 261–281 (1997). doi: 10.1006/icar.1996.5647 ADSGoogle Scholar
  152. S.J. Weidenschilling, Aerodynamics of solid bodies in the solar nebula. Mon. Not. R. Astron. Soc. 180, 57–70 (1977a) ADSGoogle Scholar
  153. S.J. Weidenschilling, The distribution of mass in the planetary system and solar nebula. Astrophys. Space Sci. 51, 153–158 (1977b). doi: 10.1007/BF00642464 ADSGoogle Scholar
  154. S.J. Weidenschilling, Iron/silicate fractionation and the origin of Mercury. Icarus 35, 99–111 (1978). doi: 10.1016/0019-1035(78)90064-7 ADSGoogle Scholar
  155. R. Weidling, C. Güttler, J. Blum, Free collisions in a microgravity many-particle experiment. I. Dust aggregate sticking at low velocities. Icarus 218, 688–700 (2012). doi: 10.1016/j.icarus.2011.10.002 ADSGoogle Scholar
  156. J.P. Williams, L.A. Cieza, Protoplanetary disks and their evolution. Annu. Rev. Astron. Astrophys. 49, 67–117 (2011). doi: 10.1146/annurev-astro-081710-102548 ADSGoogle Scholar
  157. A. Wolszczan, Confirmation of Earth-mass planets orbiting the millisecond pulsar PSR B1257+12. Science 264, 538–542 (1994). doi: 10.1126/science.264.5158.538 ADSGoogle Scholar
  158. A. Wolszczan, Discovery of pulsar planets. New Astron. Rev. 56, 2–8 (2012). doi: 10.1016/j.newar.2011.06.002 ADSGoogle Scholar
  159. J.T. Wright, B.S. Gaudi, Exoplanet detection methods, in Planets, Stars and Stellar Systems, ed. by T.D. Oswalt, L.M. French, P. Kalas (Springer, Berlin, 2013), p. 489. doi: 10.1007/978-94-007-5606-9_10. ISBN 978-94-007-5605-2 Google Scholar
  160. J.T. Wright, S. Upadhyay, G.W. Marcy, D.A. Fischer, E.B. Ford, J.A. Johnson, Ten new and updated multiplanet systems and a survey of exoplanetary systems. Astrophys. J. 693, 1084–1099 (2009). doi: 10.1088/0004-637X/693/2/1084 ADSGoogle Scholar
  161. A.N. Youdin, S.J. Kenyon, in From Disks to Planets, ed. by T.D. Oswalt, L.M. French, P. Kalas (2013), p. 1. doi: 10.1007/978-94-007-5606-9-1 Google Scholar
  162. J. Zendejas, A. Segura, A.C. Raga, Atmospheric mass loss by stellar wind from planets around main sequence M stars. Icarus 210, 539–544 (2010). doi: 10.1016/j.icarus.2010.07.013 ADSGoogle Scholar
  163. J.-L. Zhou, S.J. Aarseth, D.N.C. Lin, M. Nagasawa, Origin and ubiquity of short-period Earth-like planets: evidence for the sequential accretion theory of planet formation. Astrophys. J. 631, 85–88 (2005). doi: 10.1086/497094 ADSGoogle Scholar
  164. A. Zsom, C.W. Ormel, C. Güttler, J. Blum, C.P. Dullemond, The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier. Astron. Astrophys. 513, 57 (2010). doi: 10.1051/0004-6361/200912976 ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute for AstronomyUniversity of Hawai‘i at MānoaHonoluluUSA
  2. 2.Department of Geology & GeophysicsUniversity of Hawai‘i at MānoaHonoluluUSA

Personalised recommendations