Space Science Reviews

, Volume 179, Issue 1–4, pp 337–381 | Cite as

The Relativistic Electron-Proton Telescope (REPT) Instrument on Board the Radiation Belt Storm Probes (RBSP) Spacecraft: Characterization of Earth’s Radiation Belt High-Energy Particle Populations

  • D. N. Baker
  • S. G. Kanekal
  • V. C. Hoxie
  • S. Batiste
  • M. Bolton
  • X. Li
  • S. R. Elkington
  • S. Monk
  • R. Reukauf
  • S. Steg
  • J. Westfall
  • C. Belting
  • B. Bolton
  • D. Braun
  • B. Cervelli
  • K. Hubbell
  • M. Kien
  • S. Knappmiller
  • S. Wade
  • B. Lamprecht
  • K. Stevens
  • J. Wallace
  • A. Yehle
  • H. E. Spence
  • R. Friedel
Article

Abstract

Particle acceleration and loss in the million electron Volt (MeV) energy range (and above) is the least understood aspect of radiation belt science. In order to measure cleanly and separately both the energetic electron and energetic proton components, there is a need for a carefully designed detector system. The Relativistic Electron-Proton Telescope (REPT) on board the Radiation Belt Storm Probe (RBSP) pair of spacecraft consists of a stack of high-performance silicon solid-state detectors in a telescope configuration, a collimation aperture, and a thick case surrounding the detector stack to shield the sensors from penetrating radiation and bremsstrahlung. The instrument points perpendicular to the spin axis of the spacecraft and measures high-energy electrons (up to ∼20 MeV) with excellent sensitivity and also measures magnetospheric and solar protons to energies well above E=100 MeV. The instrument has a large geometric factor (g=0.2 cm2 sr) to get reasonable count rates (above background) at the higher energies and yet will not saturate at the lower energy ranges. There must be fast enough electronics to avert undue dead-time limitations and chance coincidence effects. The key goal for the REPT design is to measure the directional electron intensities (in the range 10−2–106 particles/cm2 s sr MeV) and energy spectra (ΔE/E∼25 %) throughout the slot and outer radiation belt region. Present simulations and detailed laboratory calibrations show that an excellent design has been attained for the RBSP needs. We describe the engineering design, operational approaches, science objectives, and planned data products for REPT.

Keywords

Radiation detection Particle sensors Radiation belts Space weather 

References

  1. M.H. Acuña et al., in The Global Geospace Mission, ed. by C.T. Russell (Kluwer Academic, Dordrecht, 1996) Google Scholar
  2. J. Alcaraz et al., Cosmic protons. Phys. Lett. B 490, 27–35 (2000) ADSCrossRefGoogle Scholar
  3. S. Agostinelli et al., Nuclear instruments and methods in physics research section A: accelerators, spectrometers, detectors and associated equipment. Nucl. Instrum. Methods A 506, 250–303 (2003). doi:10.1016/S0168-9002(03)01368-8 ADSCrossRefGoogle Scholar
  4. C.A.J. Ammerlaan, R.F. Rumphorst, L.A.Ch. Koerts, Particle identification by pulse shape discrimination in the p-I-n type semiconductor detector. Nucl. Instrum. Methods 22, 189–200 (1963) ADSCrossRefGoogle Scholar
  5. D.N. Baker, P.R. Higbie, R.D. Belian, E.W. Hones Jr., Do Jovian electrons influence the terrestrial outer radiation zone? Geophys. Res. Lett. 6(6), 531–534 (1979). doi:10.1029/GL006i006p00531 ADSCrossRefGoogle Scholar
  6. D.N. Baker et al., The Los Alamos geostationary orbit synoptic data set: a compilation of energetic particle data. Los Alamos National Laboratory Report, LA-8843, 1981 Google Scholar
  7. D.N. Baker et al., Highly relativistic magnetospheric electrons: a role in coupling to the middle atmosphere? Geophys. Res. Lett. 14(10), 1027–1030 (1987). doi:10.1029/GL014i010p01027 ADSCrossRefGoogle Scholar
  8. D.N. Baker, R.L. McPherron, T.E. Cayton, R.W. Klebesadel, Linear prediction filter analysis of relativistic electron properties at 6.6R E. J. Geophys. Res. 95, 15,133–15,140 (1990). doi:10.1029/JA095iA09p15133 ADSCrossRefGoogle Scholar
  9. D.N. Baker, G.M. Mason, O. Figueroa, G. Colon, J. Watzin, R. Aleman, An overview of the SAMPEX mission. IEEE Trans. Geosci. Electron. 31, 531 (1993) ADSCrossRefGoogle Scholar
  10. D.N. Baker, J.B. Blake, L.B. Callis, J.R. Cummings, D. Hovestadt, S. Kanekal, B. Klecker, R.A. Mewaldt, R.D. Zwickl, Relativistic electron acceleration and decay time scales in the inner and outer radiation belts: SAMPEX. Geophys. Res. Lett. 21, 409 (1994) ADSCrossRefGoogle Scholar
  11. D.N. Baker et al., A strong CME-related magnetic cloud interaction with the earth’s magnetosphere: ISTP observation of rapid relativistic electron acceleration on May 15, 1997. Geophys. Res. Lett. 25(15), 2975–2978 (1998). doi:10.1029/98GL01134 ADSCrossRefGoogle Scholar
  12. D.N. Baker et al., An extreme distortion of the Van Allen belt arising from the ‘Hallowe’en’ solar storm in 2003. Nature 432, 878–881 (2004). doi:10.1038/nature03116 ADSCrossRefGoogle Scholar
  13. D.N. Baker et al., Low-altitude measurements of 2–6 MeV electron trapping lifetimes at 1.5≤l≤2.5. Geophys. Res. Lett. 34, L20110 (2007). doi:10.1029/2007GL03100 ADSCrossRefGoogle Scholar
  14. D.N. Baker, D. Mitchell, P. O’Brien, RBSP project internal report. JHUAPL, 2008 Google Scholar
  15. J.-F. Beche, Second order pseudo-Gaussian shaper. Lawrence Berkeley National Laboratory. LBNL Paper LBNL-52855, 2002 Google Scholar
  16. J.B. Blake, W.A. Kolasinski, R.W. Fillius, E.G. Mullen, Injection of electrons and protons with energies of tens of MeV into L<3 on 24 March 1991. Geophys. Res. Lett. 19(8), 821–824 (1992). doi:10.1029/92GL00624 ADSCrossRefGoogle Scholar
  17. J.B. Blake et al., The MagEIS/ECT instrument on the RBSP mission. Space. Sci. Rev. (2012, this issue) Google Scholar
  18. J. Bortnik et al., An observation linking the origin of plasmaspheric hiss to discrete chorus emissions. Science 324, 5928 (2009) CrossRefGoogle Scholar
  19. W.R. Cook et al., PET: a proton/electron telescope for studies of magnetospheric, solar, and galactic particles. IEEE Trans. Geosci. Electron. 31, 565 (1993) ADSCrossRefGoogle Scholar
  20. S.R. Elkington, M.K. Hudson, A.A. Chan, Acceleration of relativistic electrons via drift-resonant interaction with toroidal-mod Pc-5 ULF oscillations. Geophys. Res. Lett. 26(21), 3273 (1999) ADSCrossRefGoogle Scholar
  21. S.R. Elkington, M.K. Hudson, A.A. Chan, Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field. J. Geophys. Res. 108(A3), 1116 (2003) CrossRefGoogle Scholar
  22. S.R. Elkington, M. Wiltberger, A.A. Chan, D.N. Baker, Physical models of the geospace radiation environment. J. Atmos. Sol.-Terr. Phys. 66, 1371 (2004) ADSCrossRefGoogle Scholar
  23. S.R. Elkington, D.N. Baker, M. Wiltberger, in The Inner Magnetosphere: Physics and Modeling, ed. by T.I. Pulkkinen, N.A. Tsyganenko, R.H.W. Friedel. AGU Geophysical Monograph, vol. 155 (American Geophysical Union, Washington, 2005), p. 147 CrossRefGoogle Scholar
  24. T.I. Gombosi, G. Toth, D.L. de Zeeuw, K.C. Hansen, K. Kabin, K.G. Powell, Semirelativistic magnetohydrodynamics and physics-based convergence acceleration. J. Comput. Sci. 177, 176 (2002) ADSMATHGoogle Scholar
  25. M.G. Gornov et al., Selection of the shaping circuits of a multilayer semiconductor spectrometer of charged particles. Instrum. Exp. Tech. 45(5), 626–630 (2002) CrossRefGoogle Scholar
  26. J.C. Green, M.G. Kivelson, Relativistic electrons in the outer radiation belt: differentiating between acceleration mechanisms. J. Geophys. Res. 109, A03213 (2004). doi:10.1029/2003JA010153 ADSCrossRefGoogle Scholar
  27. R.B. Horne, R.M. Thorne, Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms. Geophys. Res. Lett. 25(15), 3011–3014 (1998). doi:10.1029/98GL01002 ADSCrossRefGoogle Scholar
  28. R.B. Horne, N.P. Meredith, R.M. Thorne, D. Heynderickx, R.H.A. Iles, R.R. Anderson, Evolution of energetic electron pitch angle distributions during storm time electron acceleration to megaelectronvolt energies. J. Geophys. Res. 108(A1), 1016 (2003). doi:10.1029/2001JA009165 CrossRefGoogle Scholar
  29. R.B. Horne, D.N. Baker et al., Wave acceleration of electrons in the Van Allen radiation belts. Nature 437, 227–230 (2005a). doi:10.1038/nature03939 ADSCrossRefGoogle Scholar
  30. R.B. Horne, R.M. Thorne, S.A. Glauert, J.M. Albert, N.P. Meredith, R.R. Anderson, Timescale for radiation belt electron acceleration by whistler mode chorus waves. J. Geophys. Res. 110, A03225 (2005b). doi:10.1029/2004JA010811 ADSCrossRefGoogle Scholar
  31. M.H. Johnson, J. Kierein, Combined release and radiation effects satellite (CRRES): spacecraft and mission. J. Spacecr. Rockets 29(4), 556–563 (1992). doi:10.2514/3.55641 ADSCrossRefGoogle Scholar
  32. S.G. Kanekal et al., Magnetospheric response to magnetic cloud (coronal mass ejection) events: relativistic electron observations from SAMPEX and polar. J. Geophys. Res. 104, A11 (1999). doi:10.1029/1999JA900239 CrossRefGoogle Scholar
  33. C.A. Kletzing et al., The electric and magnetic field instrument suite and integrated science (EMFISIS) on RBSP. Space. Sci. Rev. (2012, this issue) Google Scholar
  34. L.J. Lanzerotti et al., Radiation belt storm probes ion composition experiment (RBSPICE). Space Sci. Rev. (2012, this issue) Google Scholar
  35. C. Leroy et al., Study of charge transport in non-irradiated and irradiated silicon detectors. Nucl. Instrum. Methods Phys. Res. A426.1, 99–108 (1999) ADSCrossRefGoogle Scholar
  36. X. Li et al., Simulation of dispersionless injections and drift echoes of energetic electrons associated with substorms. Geophys. Res. Lett. 25, 3763 (1998) ADSCrossRefGoogle Scholar
  37. X. Li et al., Quantitative prediction of radiation belt electrons at geostationary orbit based on solar wind measurements. Geophys. Res. Lett. 28(9), 1887–1890 (2001a). doi:10.1029/2000GL012681 ADSCrossRefGoogle Scholar
  38. X. Li et al., Long term measurements of radiation belts by SAMPEX and their variations. Geophys. Res. Lett. 28(20), 3827–3830 (2001b). doi:10.1029/2001GL013586 ADSCrossRefGoogle Scholar
  39. B.W. Loo, F.S. Goulding, D. Gao, Ballistic deficits in pulse shaping amplifiers. IEEE Trans. Nucl. Sci. 35.1, 114–118 (1988) ADSCrossRefGoogle Scholar
  40. K.R. Lorentzen et al., Multisatellite observations of MeV ion injections during storms. J. Geophys. Res. 107(A9), 1231 (2002). doi:10.1029/2001JA000276 CrossRefGoogle Scholar
  41. J.G. Lyon, J.A. Fedder, C.M. Mobarry, The Lyon-Fedder-Mobarry global MHD magnetospheric simulation code. J. Atmos. Sol.-Terr. Phys. 66(15), 1333 (2004) ADSCrossRefGoogle Scholar
  42. J.P. McCollough et al., Physical mechanisms of compressional EMIC wave growth. J. Geophys. Res. 115, A10214 (2010) ADSCrossRefGoogle Scholar
  43. B.H. Mauk et al., Science objectives and rational for the Radiation Belt Storm Probes Mission. Space Sci. Rev. (2012). doi:10.1007/s11214-012-9908-y Google Scholar
  44. J.E. Mazur et al., The Relativistic-Proton Spectrometer (RPS) for the Radiation Belt Storm Probes Mission. Space Sci. Rev. (2012). doi:10.1007/s11214-012-9926-9 Google Scholar
  45. R.A. Mewaldt, Solar energetic particle composition, energy spectra, and space weather. Space Sci. Rev. 124, 303–316 (2006). doi:10.1007/s11214-006-909-0 ADSCrossRefGoogle Scholar
  46. N.P. Meredith et al., Evidence for chorus-driven electron acceleration to relativistic energies from a survey of geomagnetically disturbed periods. J. Geophys. Res. 108(A6), 1248 (2003). doi:10.1029/2002JA009764 CrossRefGoogle Scholar
  47. C.H. Mosher, Pseudo-Gaussian transfer functions with superlative baseline recovery. IEEE Trans. Nucl. Sci. 23(1), 226–228 (1976) ADSCrossRefGoogle Scholar
  48. G.A. Paulikas, J.B. Blake, Effects of the solar wind on magnetospheric dynamics: energetic electrons at the synchronous orbit, in Quantitative Modeling of Magnetospheric Processes, ed. by W.P. Olson. Geophys. Monogr. Ser., vol. 21 (AGU, Washington, 1979), pp. 180–202 CrossRefGoogle Scholar
  49. J. Raeder, Global magnetohydrodynamics, a tutorial, in Space Plasma Simulation, ed. by C.T. Dum, M. Scholer, J. Buchner. Lecture Notes in Physics, vol. 615 (Springer, New York, 2003), p. 212 CrossRefGoogle Scholar
  50. J.G. Roederer, Dynamics of Geomagnetically Trapped Radiation (Springer, New York, 1970) CrossRefGoogle Scholar
  51. I. Roth, M. Temerin, M.K. Hudson, Resonant enhancement of relativistic electron fluxes during geomagnetically active periods. Ann. Geophys. 17, 631 (1999) ADSCrossRefGoogle Scholar
  52. T.E. Sarris, X. Li, N. Tsaggas, N. Paschalidis, Modeling energetic particle injections in dynamic pulse fields with varying propagation speeds. J. Geophys. Res. 107(A3), 1033 (2002) CrossRefGoogle Scholar
  53. Y.Y. Shprits et al., Outward radial diffusion driven by losses at the magnetopause. J. Geophys. Res. 111, A11214 (2006) ADSCrossRefGoogle Scholar
  54. H.E. Spence et al., The ECT investigation on the RBSP mission. Space Sci. Rev. (2012, this issue) Google Scholar
  55. P.A. Sturrock, Plasma Physics (Cambridge University Press, Cambridge, 1994) Google Scholar
  56. M.G.G.T. Taylor, R.H.W. Friedel, G.D. Reeves, M.W. Dunlop, T.A. Fritz, P.W. Daly, A. Balogh, Multisatellite measurements of electron phase space density gradients in Earth’s inner and outer magnetosphere. J. Geophys. Res. 109, A05220 (2004) ADSCrossRefGoogle Scholar
  57. A.L. Vampola, Measuring energetic electrons—what works and what doesn’t, in Measurement Techniques in Space Plasmas: Particles, ed. by F. Pfaff, E. Borovsky, T. Young. Geophys. Monogr. Ser., vol. 102 (AGU, Washington, 1998), pp. 339–355. doi:10.1029/GM102p0339 CrossRefGoogle Scholar
  58. J.A. Van Allen et al., Energetic electrons in the magnetosphere of Jupiter. Science 183, 309 (1974) ADSCrossRefGoogle Scholar
  59. J. Vette, The NASA/National Space Science Data Center trapped radiation environment model program (1964–1991). NSSDC Report 91-29, Greenbelt, MD, 1991 Google Scholar
  60. J. Wygant et al., The EFW investigation and instruments on the RBSP mission. Space. Sci. Rev. (2012, this issue) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • D. N. Baker
    • 1
  • S. G. Kanekal
    • 2
  • V. C. Hoxie
    • 1
  • S. Batiste
    • 1
  • M. Bolton
    • 1
  • X. Li
    • 1
  • S. R. Elkington
    • 1
  • S. Monk
    • 1
  • R. Reukauf
    • 1
  • S. Steg
    • 1
  • J. Westfall
    • 1
  • C. Belting
    • 1
  • B. Bolton
    • 3
  • D. Braun
    • 1
  • B. Cervelli
    • 1
  • K. Hubbell
    • 1
  • M. Kien
    • 1
  • S. Knappmiller
    • 1
  • S. Wade
    • 1
  • B. Lamprecht
    • 1
  • K. Stevens
    • 4
  • J. Wallace
    • 1
  • A. Yehle
    • 1
  • H. E. Spence
    • 5
  • R. Friedel
    • 6
  1. 1.Laboratory for Atmospheric and Space PhysicsBoulderUSA
  2. 2.Goddard Space Flight CenterGreenbeltUSA
  3. 3.Ball AerospaceBoulderUSA
  4. 4.Efficient Logic DesignsBoulderUSA
  5. 5.Center for Earth, Oceans, and SpaceUniversity of New HampshireDurhamUSA
  6. 6.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations