Space Science Reviews

, Volume 173, Issue 1–4, pp 557–622 | Cite as

Turbulence, Magnetic Reconnection in Turbulent Fluids and Energetic Particle Acceleration

  • A. Lazarian
  • L. Vlahos
  • G. Kowal
  • H. Yan
  • A. Beresnyak
  • E. M. de Gouveia Dal Pino


Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700–718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.


Turbulence Magnetic reconnection Acceleration Cosmic rays 



A. Lazarian’s research is supported by the NASA Grant NNX09AH78G, as well as the support of the NSF Center for Magnetic Self-Organization. The Humboldt Award at the Universities of Cologne and Bochum, as well as Vilas Associate Award and the hospitality of the International Institute of Physics (Brazil) are acknowledged. G. Kowal’s research is supported by FAPESP (Brazil) grant No. 2009/50053-8. E. de Gouveia Dal Pino also acknowledges partial supported from FAPESP (Brazil: grant No. 2006/50654-3) and from CNPq (Brazil; grant No. 300083/94-7). We thank the anonymous referee for comments and suggestions that improved the paper. HY acknowledges the Visiting Professorship from IIP.


  1. R. Abbasi, Y. Abdou, T. Abu-Zayyad, J. Adams, J.A. Aguilar, M. Ahlers, K. Andeen, J. Auffenberg, X. Bai, M. Baker et al., Measurement of the anisotropy of cosmic-ray arrival directions with IceCube. Astrophys. J. Lett. 718, 194–198 (2010). doi: 10.1088/2041-8205 ADSCrossRefGoogle Scholar
  2. A.A. Abdo, B. Allen, T. Aune, D. Berley, E. Blaufuss, S. Casanova, C. Chen, B.L. Dingus, R.W. Ellsworth, L. Fleysher, R. Fleysher, M.M. Gonzalez, J.A. Goodman, C.M. Hoffman, P.H. Hüntemeyer, B.E. Kolterman, C.P. Lansdell, J.T. Linnemann, J.E. McEnery, A.I. Mincer, P. Nemethy, D. Noyes, J. Pretz, J.M. Ryan, P.M.S. Parkinson, A. Shoup, G. Sinnis, A.J. Smith, G.W. Sullivan, V. Vasileiou, G.P. Walker, D.A. Williams, G.B. Yodh, Discovery of localized regions of excess 10-TeV cosmic rays. Phys. Rev. Lett. 101(22), 221101 (2008). doi: 10.1103/PhysRevLett.101.221101 ADSCrossRefGoogle Scholar
  3. A.A. Abdo, B.T. Allen, T. Aune, D. Berley, S. Casanova, C. Chen, B.L. Dingus, R.W. Ellsworth, L. Fleysher, R. Fleysher, M.M. Gonzalez, J.A. Goodman, C.M. Hoffman, B. Hopper, P.H. Hüntemeyer, B.E. Kolterman, C.P. Lansdell, J.T. Linnemann, J.E. McEnery, A.I. Mincer, P. Nemethy, D. Noyes, J. Pretz, J.M. Ryan, P.M.S. Parkinson, A. Shoup, G. Sinnis, A.J. Smith, G.W. Sullivan, V. Vasileiou, G.P. Walker, D.A. Williams, G.B. Yodh, The large-scale cosmic-ray anisotropy as observed with Milagro. Astrophys. J. 698, 2121–2130 (2009). doi: 10.1088/0004-637X ADSCrossRefGoogle Scholar
  4. M. Amenomori, S. Ayabe, X.J. Bi, D. Chen, S.W. Cui, Danzengluobu, L.K. Ding, X.H. Ding, C.F. Feng, Z. Feng, Z.Y. Feng, X.Y. Gao, Q.X. Geng, H.W. Guo, H.H. He, M. He, K. Hibino, N. Hotta, H. Hu, H.B. Hu, J. Huang, Q. Huang, H.Y. Jia, F. Kajino, K. Kasahara, Y. Katayose, C. Kato, K. Kawata, Labaciren, G.M. Le, A.F. Li, J.Y. Li, Y.-Q. Lou, H. Lu, S.L. Lu, X.R. Meng, K. Mizutani, J. Mu, K. Munakata, A. Nagai, H. Nanjo, M. Nishizawa, M. Ohnishi, I. Ohta, H. Onuma, T. Ouchi, S. Ozawa, J.R. Ren, T. Saito, T.Y. Saito, M. Sakata, T.K. Sako, T. Sasaki, M. Shibata, A. Shiomi, T. Shirai, H. Sugimoto, M. Takita, Y.H. Tan, N. Tateyama, S. Torii, H. Tsuchiya, S. Udo, B. Wang, H. Wang, X. Wang, Y.G. Wang, H.R. Wu, L. Xue, Y. Yamamoto, C.T. Yan, X.C. Yang, S. Yasue, Z.H. Ye, G.C. Yu, A.F. Yuan, T. Yuda, H.M. Zhang, J.L. Zhang, N.J. Zhang, X.Y. Zhang, Y. Zhang, Y. Zhang, Zhaxisangzhu, X.X. Zhou, Tibet ASγ Collaboration, Anisotropy and corotation of galactic cosmic rays. Science 314, 439–443 (2006). doi: 10.1126/science.1131702 ADSCrossRefGoogle Scholar
  5. J.W. Armstrong, R. Woo, Solar wind motion within 30 R solar masses—spacecraft radio scintillation observations. Astron. Astrophys. 103, 415–421 (1981) ADSGoogle Scholar
  6. J.W. Armstrong, B.J. Rickett, S.R. Spangler, Electron density power spectrum in the local interstellar medium. Astrophys. J. 443, 209–221 (1995). doi: 10.1086/175515 ADSCrossRefGoogle Scholar
  7. A.R. Bell, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353, 550–558 (2004). doi: 10.1111/j.1365-2966.2004.08097.x ADSCrossRefGoogle Scholar
  8. A. Bemporad, Spectroscopic detection of turbulence in post-CME current sheets. Astrophys. J. 689, 572–584 (2008). doi: 10.1086/592377 ADSCrossRefGoogle Scholar
  9. A. Beresnyak, Spectral slope and Kolmogorov constant of MHD turbulence. Phys. Rev. Lett. 106(7), 075001 (2011). doi: 10.1103/PhysRevLett.106.075001 ADSCrossRefGoogle Scholar
  10. A. Beresnyak, Universal nonlinear small-scale dynamo. Phys. Rev. Lett. 108(3), 035002 (2012). doi: 10.1103/PhysRevLett.108.035002 ADSCrossRefGoogle Scholar
  11. A. Beresnyak, A. Lazarian, Polarization intermittency and its influence on MHD turbulence. Astrophys. J. Lett. 640, 175–178 (2006). doi: 10.1086/503708 ADSCrossRefGoogle Scholar
  12. A. Beresnyak, A. Lazarian, Wave decay in magnetohydrodynamic turbulence. Astrophys. J. 678, 961–967 (2008). doi: 10.1086/587052 ADSCrossRefGoogle Scholar
  13. A. Beresnyak, A. Lazarian, Comparison of spectral slopes of magnetohydrodynamic and hydrodynamic turbulence and measurements of alignment effects. Astrophys. J. 702, 1190–1198 (2009). doi: 10.1088/0004-637X ADSCrossRefGoogle Scholar
  14. A. Beresnyak, A. Lazarian, Scaling laws and diffuse locality of balanced and imbalanced magnetohydrodynamic turbulence. Astrophys. J. Lett. 722, 110–113 (2010). doi: 10.1088/2041-8205 ADSCrossRefGoogle Scholar
  15. A. Beresnyak, A. Lazarian, J. Cho, Density scaling and anisotropy in supersonic magnetohydrodynamic turbulence. Astrophys. J. Lett. 624, 93–96 (2005). doi: 10.1086/430702 ADSCrossRefGoogle Scholar
  16. A. Beresnyak, T.W. Jones, A. Lazarian, Turbulence-induced magnetic fields and structure of cosmic ray modified shocks. Astrophys. J. 707, 1541–1549 (2009). doi: 10.1088/0004-637X ADSCrossRefGoogle Scholar
  17. A. Beresnyak, H. Yan, A. Lazarian, Numerical study of cosmic ray diffusion in magnetohydrodynamic turbulence. Astrophys. J. 728, 60 (2011). doi: 10.1088/0004-637X ADSCrossRefGoogle Scholar
  18. L. Bettarini, G. Lapenta, Spontaneous non-steady magnetic reconnection within the solar environment. Astron. Astrophys. 518, 57 (2010). doi: 10.1051/0004-6361 ADSCrossRefGoogle Scholar
  19. A. Bhattacharjee, Y.-M. Huang, H. Yang, B. Rogers, Fast reconnection in high-Lundquist-number plasmas due to the plasmoid instability. Phys. Plasmas 16(11), 112102 (2009). doi: 10.1063/1.3264103 ADSCrossRefGoogle Scholar
  20. N.H. Bian, P.K. Browning, Particle acceleration in a model of a turbulent reconnecting plasma: a fractional diffusion approach. Astrophys. J. Lett. 687, 111–114 (2008). doi: 10.1086/593145 ADSCrossRefGoogle Scholar
  21. J.W. Bieber, C.W. Smith, W.H. Matthaeus, Cosmic-ray pitch-angle scattering in isotropic turbulence. Astrophys. J. 334, 470–475 (1988). doi: 10.1086/166851 ADSCrossRefGoogle Scholar
  22. J.W. Bieber, W.H. Matthaeus, C.W. Smith, W. Wanner, M.-B. Kallenrode, G. Wibberenz, Proton and electron mean free paths: the Palmer consensus revisited. Astrophys. J. 420, 294–306 (1994). doi: 10.1086/173559 ADSCrossRefGoogle Scholar
  23. D. Biskamp, Magnetic reconnection in plasmas. Astrophys. Space Sci. 242, 165–207 (1996). doi: 10.1007/BF00645113 ADSMATHCrossRefGoogle Scholar
  24. D. Biskamp, Magnetohydrodynamic Turbulence 2003 Google Scholar
  25. P. Blasi, E. Amato, A kinetic approach to non resonant modes and growth rates of streaming instability: consequences for shock acceleration, in International Cosmic Ray Conference, vol. 2 (2008), pp. 235–238 Google Scholar
  26. S. Boldyrev, On the spectrum of magnetohydrodynamic turbulence. Astrophys. J. Lett. 626, 37–40 (2005). doi: 10.1086/431649 ADSCrossRefGoogle Scholar
  27. S. Boldyrev, Spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 96(11), 115002 (2006). doi: 10.1103/PhysRevLett.96.115002 ADSCrossRefGoogle Scholar
  28. G. Brunetti, Particle acceleration processes in galaxy clusters and future low frequency radio observations, in IAU Joint Discussion, vol. 12 (2006) Google Scholar
  29. G. Brunetti, A. Lazarian, Compressible turbulence in galaxy clusters: physics and stochastic particle re-acceleration. Mon. Not. R. Astron. Soc. 378, 245–275 (2007). doi: 10.1111/j.1365-2966.2007.11771.x ADSCrossRefGoogle Scholar
  30. G. Brunetti, A. Lazarian, Acceleration of cosmic rays by reconnection in galaxy clusters. Mon. Not. R. Astron. Soc. (in preparation) Google Scholar
  31. G. Brunetti, R. Cassano, K. Dolag, G. Setti, On the evolution of giant radio halos and their connection with cluster mergers. Astron. Astrophys. 507, 661–669 (2009). doi: 10.1051/0004-6361 ADSCrossRefGoogle Scholar
  32. R. Bruno, V. Carbone, The Solar Wind as a Turbulence Laboratory. Living Rev. Sol. Phys. 2, 4 (2005) ADSGoogle Scholar
  33. R. Cassano, G. Brunetti, Cluster mergers and non-thermal phenomena: a statistical magneto-turbulent model. Mon. Not. R. Astron. Soc. 357, 1313–1329 (2005). doi: 10.1111/j.1365-2966.2005.08747.x ADSCrossRefGoogle Scholar
  34. B.D.G. Chandran, Scattering of energetic particles by anisotropic magnetohydrodynamic turbulence with a Goldreich-Sridhar power spectrum. Phys. Rev. Lett. 85, 4656–4659 (2000). doi: 10.1103/PhysRevLett.85.4656 ADSCrossRefGoogle Scholar
  35. B.D.G. Chandran, Weak compressible magnetohydrodynamic turbulence in the Solar Corona. Phys. Rev. Lett. 95(26), 265004 (2005). doi: 10.1103/PhysRevLett.95.265004 ADSCrossRefGoogle Scholar
  36. B.D.G. Chandran, Strong anisotropic MHD turbulence with cross helicity. Astrophys. J. 685, 646–658 (2008). doi: 10.1086/589432 ADSCrossRefGoogle Scholar
  37. A. Chepurnov, A. Lazarian, Extending the big power law in the sky with turbulence spectra from Wisconsin Hα mapper data. Astrophys. J. 710, 853–858 (2010). doi: 10.1088/0004-637X ADSCrossRefGoogle Scholar
  38. A. Chepurnov, A. Lazarian, S. Stanimirović, C. Heiles, J.E.G. Peek, Velocity spectrum for H I at high latitudes. Astrophys. J. 714, 1398–1406 (2010). doi: 10.1088/0004-637X ADSCrossRefGoogle Scholar
  39. J. Cho, A. Lazarian, Compressible sub-Alfvénic MHD turbulence in low-β plasmas. Phys. Rev. Lett. 88(24), 245001 (2002). doi: 10.1103/PhysRevLett.88.245001 ADSCrossRefGoogle Scholar
  40. J. Cho, A. Lazarian, Compressible magnetohydrodynamic turbulence: mode coupling, scaling relations, anisotropy, viscosity-damped regime and astrophysical implications. Mon. Not. R. Astron. Soc. 345, 325–339 (2003). doi: 10.1046/j.1365-8711.2003.06941.x ADSCrossRefGoogle Scholar
  41. J. Cho, A. Lazarian, Generation of compressible modes in MHD turbulence. Theor. Comput. Fluid Dyn. 19, 127–157 (2005). doi: 10.1007/s00162-004-0157-x MATHCrossRefGoogle Scholar
  42. J. Cho, E.T. Vishniac, The anisotropy of magnetohydrodynamic Alfvénic turbulence. Astrophys. J. 539, 273–282 (2000). doi: 10.1086/309213 ADSCrossRefGoogle Scholar
  43. J. Cho, A. Lazarian, E.T. Vishniac, Simulations of magnetohydrodynamic turbulence in a strongly magnetized medium. Astrophys. J. 564, 291–301 (2002). doi: 10.1086/324186 ADSCrossRefGoogle Scholar
  44. J. Cho, A. Lazarian, E.T. Vishniac, MHD turbulence: scaling laws and astrophysical implications, in Turbulence and Magnetic Fields in Astrophysics, ed. by E. Falgarone, T. Passot. Lecture Notes in Physics, vol. 614 (Springer, Berlin, 2003), pp. 56–98 CrossRefGoogle Scholar
  45. J. Cho, E.T. Vishniac, A. Beresnyak, A. Lazarian, D. Ryu, Growth of magnetic fields induced by turbulent motions. Astrophys. J. 693, 1449–1461 (2009). doi: 10.1088/0004-637X ADSCrossRefGoogle Scholar
  46. A. Ciaravella, J.C. Raymond, The current sheet associated with the 2003 November 4 coronal mass ejection: density, temperature, thickness, and line width. Astrophys. J. 686, 1372–1382 (2008). doi: 10.1086/590655 ADSCrossRefGoogle Scholar
  47. J.P.J. Coleman, Turbulence, viscosity, and dissipation in the solar-wind plasma. Astrophys. J. 153, 371 (1968). doi: 10.1086/149674 ADSCrossRefGoogle Scholar
  48. S.R. Cranmer, A.A. van Ballegooijen, On the generation, propagation, and reflection of Alfvén waves from the solar photosphere to the distant heliosphere. Astrophys. J. Suppl. Ser. 156, 265–293 (2005). doi: 10.1086/426507 ADSCrossRefGoogle Scholar
  49. A.C. Cummings, E.C. Stone, Anomalous cosmic rays and solar modulation. Space Sci. Rev. 83, 51–62 (1998) ADSCrossRefGoogle Scholar
  50. W. Daughton, J. Scudder, H. Karimabadi, Fully kinetic simulations of undriven magnetic reconnection with open boundary conditions. Phys. Plasmas 13(7), 072101 (2006). doi: 10.1063/1.2218817 ADSCrossRefGoogle Scholar
  51. W. Daughton, V. Roytershteyn, B.J. Albright, K. Bowers, L. Yin, H. Karimabadi, Reconnection Dynamics in Semi-Collisional Plasmas. AGU Fall Meeting Abstracts, 1705 (2008) Google Scholar
  52. E.M. de Gouveia Dal Pino, A. Lazarian, Ultra-high-energy cosmic-ray acceleration by magnetic reconnection in newborn accretion-induced collapse pulsars. Astrophys. J. Lett. 536, 31–34 (2000). doi: 10.1086/312730 ADSCrossRefGoogle Scholar
  53. E.M. de Gouveia Dal Pino, A. Lazarian, Constraints on the acceleration of ultra-high-energy cosmic rays in accretion-induced collapse pulsars. Astrophys. J. 560, 358–364 (2001). doi: 10.1086/322509 ADSCrossRefGoogle Scholar
  54. E.M. de Gouveia Dal Pino, A. Lazarian, The role of violent magnetic reconnection on the production of the large scale superluminal ejections of the microquasar GRS 1915+105. ArXiv Astrophysics e-prints (2003) Google Scholar
  55. E.M. de Gouveia Dal Pino, A. Lazarian, Production of the large scale superluminal ejections of the microquasar GRS 1915+105 by violent magnetic reconnection. Astron. Astrophys. 441, 845–853 (2005). doi: 10.1051/0004-6361:20042590 ADSCrossRefGoogle Scholar
  56. E.M. de Gouveia Dal Pino, P.P. Piovezan, L.H.S. Kadowaki, The role of magnetic reconnection on jet/accretion disk systems. Astron. Astrophys. 518, 5 (2010a). doi: 10.1051/0004-6361 CrossRefGoogle Scholar
  57. E.M. de Gouveia Dal Pino, G. Kowal, L.H.S. Kadowaki, P. Piovezan, A. Lazarian, Magnetic field effects near the launching region of astrophysical jets. Int. J. Mod. Phys. D 19, 729–739 (2010b). doi: 10.1142/S0218271810016920 ADSCrossRefGoogle Scholar
  58. E.M. de Gouveia Dal Pino, G. Kowal, A. Lazarian, R. Santos-Lima, Particle acceleration by magnetic reconnection in AGNs and in the IGM. ArXiv e-prints (2011) Google Scholar
  59. M.V. del Valle, G.E. Romero, P.L. Luque-Escamilla, J. Martí, J. Ramón Sánchez-Sutil, Are T Tauri Stars Gamma-Ray Emitters? Astrophys. J. 738, 115 (2011). doi: 10.1088/0004-637X ADSCrossRefGoogle Scholar
  60. P. Desiati, A. Lazarian, Anisotropy of TeV cosmic rays and the outer heliospheric boundaries. ArXiv e-prints (2011) Google Scholar
  61. P.H. Diamond, M.A. Malkov, Dynamics of mesoscale magnetic field in diffusive shock acceleration. Astrophys. J. 654, 252–266 (2007). doi: 10.1086/508857 ADSCrossRefGoogle Scholar
  62. N.H. Dieter, W.J. Welch, J.D. Romney, A very small interstellar neutral hydrogen cloud observed with VLBI techniques. Astrophys. J. Lett. 206, 113–115 (1976). doi: 10.1086/182145 ADSCrossRefGoogle Scholar
  63. J. Ding, F. Yuan, E. Liang, Electron heating and acceleration by magnetic reconnection in hot accretion flows. Astrophys. J. 708, 1545–1550 (2010). doi: 10.1088/0004-637X ADSCrossRefGoogle Scholar
  64. P. Dmitruk, W.H. Matthaeus, L.J. Milano, S. Oughton, Conditions for sustainment of magnetohydrodynamic turbulence driven by Alfvén waves. Phys. Plasmas 8, 2377–2384 (2001). doi: 10.1063/1.1344563 ADSCrossRefGoogle Scholar
  65. M. Dobrowolny, A. Mangeney, P. Veltri, Properties of magnetohydrodynamic turbulence in the solar wind. Astron. Astrophys. 83, 26–32 (1980) ADSGoogle Scholar
  66. E.A. Dorfi, L.O. Drury, A cosmic ray driven instability, in International Cosmic Ray Conference, ed. by F.C. Jones, vol. 3 (1985), pp. 121–123 Google Scholar
  67. B.T. Draine, A. Lazarian, Electric dipole radiation from spinning dust grains. Astrophys. J. 508, 157–179 (1998). doi: 10.1086/306387 ADSCrossRefGoogle Scholar
  68. J.F. Drake, Magnetic explosions in space. Nature 410, 525–526 (2001) ADSCrossRefGoogle Scholar
  69. J.F. Drake, M. Swisdak, K.M. Schoeffler, B.N. Rogers, S. Kobayashi, Formation of secondary islands during magnetic reconnection. Geophys. Res. Lett. 33, 13105 (2006). doi: 10.1029/2006GL025957 ADSCrossRefGoogle Scholar
  70. J.F. Drake, P.A. Cassak, M.A. Shay, M. Swisdak, E. Quataert, A magnetic reconnection mechanism for ion acceleration and abundance enhancements in impulsive flares. Astrophys. J. Lett. 700, 16–20 (2009). doi: 10.1088/0004-637X ADSCrossRefGoogle Scholar
  71. J.F. Drake, M. Opher, M. Swisdak, J.N. Chamoun, A magnetic reconnection mechanism for the generation of anomalous cosmic rays. Astrophys. J. 709, 963–974 (2010). doi: 10.1088/0004-637X ADSCrossRefGoogle Scholar
  72. L.O. Drury, Reaction effects in diffusive shock acceleration. Adv. Space Res. 4, 185–191 (1984). doi: 10.1016/0273-1177(84)90311-9 ADSCrossRefGoogle Scholar
  73. L.O. Drury, First-order Fermi acceleration driven by magnetic reconnection. Mon. Not. R. Astron. Soc., 2661 (2012). doi: 10.1111/j.1365-2966.2012.20804.x
  74. T.H. Dupree, A perturbation theory for strong plasma turbulence. Phys. Fluids 9, 1773–1782 (1966). doi: 10.1063/1.1761932 MathSciNetADSCrossRefGoogle Scholar
  75. B.G. Elmegreen, J. Scalo, Interstellar turbulence I: observations and processes. Annu. Rev. Astron. Astrophys. 42, 211–273 (2004). doi: 10.1146/annurev.astro.41.011802.094859 ADSCrossRefGoogle Scholar
  76. T.A. Enßlin, C. Vogt, Magnetic turbulence in cool cores of galaxy clusters. Astron. Astrophys. 453, 447–458 (2006). doi: 10.1051/0004-6361:20053518 ADSCrossRefGoogle Scholar
  77. G.L. Eyink, A. Lazarian, E.T. Vishniac, Fast magnetic reconnection and spontaneous stochasticity. Astrophys. J. 743, 51 (2011). doi: 10.1088/0004-637X ADSCrossRefGoogle Scholar
  78. H. Falcke, E. Körding, S. Markoff, A scheme to unify low-power accreting black holes. Jet-dominated accretion flows and the radio/X-ray correlation. Astron. Astrophys. 414, 895–903 (2004). doi: 10.1051/0004-6361:20031683 ADSCrossRefGoogle Scholar
  79. A.J. Farmer, P. Goldreich, Wave damping by magnetohydrodynamic turbulence and its effect on cosmic-ray propagation in the interstellar medium. Astrophys. J. 604, 671–674 (2004). doi: 10.1086/382040 ADSCrossRefGoogle Scholar
  80. G.M. Felice, R.M. Kulsrud, Cosmic-ray pitch-angle scattering through 90 deg. Astrophys. J. 553, 198–210 (2001). doi: 10.1086/320651 ADSCrossRefGoogle Scholar
  81. S.E.S. Ferreira, M.S. Potgieter, K. Scherer, Transport and acceleration of anomalous cosmic rays in the inner heliosheath. J. Geophys. Res. 112, 11101 (2007). doi: 10.1029/2007JA012477 CrossRefGoogle Scholar
  82. K.M. Ferrière, The interstellar environment of our galaxy. Rev. Mod. Phys. 73, 1031–1066 (2001). doi: 10.1103/RevModPhys.73.1031 ADSCrossRefGoogle Scholar
  83. L.A. Fisk, G. Gloeckler, T.H. Zurbuchen, Acceleration of low-energy ions at the termination shock of the solar wind. Astrophys. J. 644, 631–637 (2006). doi: 10.1086/503535 ADSCrossRefGoogle Scholar
  84. L.A. Fisk, M.L. Goldstein, A.J. Klimas, G. Sandri, The Fokker-Planck coefficient for pitch-angle scattering of cosmic rays. Astrophys. J. 190, 417–428 (1974). doi: 10.1086/152893 ADSCrossRefGoogle Scholar
  85. R. Fitzpatrick, Plasma Physics (, 2008)
  86. V. Florinski, G.P. Zank, Particle acceleration at a dynamic termination shock. Geophys. Res. Lett. 33, 15110 (2006). doi: 10.1029/2006GL026371 ADSCrossRefGoogle Scholar
  87. D.B. Fox, D.A. Frail, P.A. Price, S.R. Kulkarni, E. Berger, T. Piran, A.M. Soderberg, S.B. Cenko, P.B. Cameron, A. Gal-Yam, M.M. Kasliwal, D.-S. Moon, F.A. Harrison, E. Nakar, B.P. Schmidt, B. Penprase, R.A. Chevalier, P. Kumar, K. Roth, D. Watson, B.L. Lee, S. Shectman, M.M. Phillips, M. Roth, P.J. McCarthy, M. Rauch, L. Cowie, B.A. Peterson, J. Rich, N. Kawai, K. Aoki, G. Kosugi, T. Totani, H.-S. Park, A. MacFadyen, K.C. Hurley, The afterglow of GRB 050709 and the nature of the short-hard γ-ray bursts. Nature 437, 845–850 (2005). doi: 10.1038/nature04189 ADSCrossRefGoogle Scholar
  88. T.J. Galama, P.M. Vreeswijk, J. van Paradijs, C. Kouveliotou, T. Augusteijn, H. Böhnhardt, J.P. Brewer, V. Doublier, J.-F. Gonzalez, B. Leibundgut, C. Lidman, O.R. Hainaut, F. Patat, J. Heise, J. in’t Zand, K. Hurley, P.J. Groot, R.G. Strom, P.A. Mazzali, K. Iwamoto, K. Nomoto, H. Umeda, T. Nakamura, T.R. Young, T. Suzuki, T. Shigeyama, T. Koshut, M. Kippen, C. Robinson, P. de Wildt, R.A.M.J. Wijers, N. Tanvir, J. Greiner, E. Pian, E. Palazzi, F. Frontera, N. Masetti, L. Nicastro, M. Feroci, E. Costa, L. Piro, B.A. Peterson, C. Tinney, B. Boyle, R. Cannon, R. Stathakis, E. Sadler, M.C. Begam, P. Ianna, An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 395, 670–672 (1998). doi: 10.1038/27150 ADSCrossRefGoogle Scholar
  89. S. Galtier, S.V. Nazarenko, A.C. Newell, A. Pouquet, A weak turbulence theory for incompressible magnetohydrodynamics. J. Plasma Phys. 63, 447–488 (2000). doi: 10.1017/S0022377899008284 ADSCrossRefGoogle Scholar
  90. S. Galtier, S.V. Nazarenko, A.C. Newell, A. Pouquet, Anisotropic turbulence of Shear-Alfvén waves. Astrophys. J. Lett. 564, 49–52 (2002). doi: 10.1086/338791 ADSCrossRefGoogle Scholar
  91. C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (1994) Google Scholar
  92. S. Ghosh, D.J. Thomson, W.H. Matthaeus, L.J. Lanzerotti, Turbulence in the interplanetary medium: can discrete modes co-exist with turbulence?, in American Institute of Physics Conference Series, ed. by D. Vassiliadis, S.F. Fung, X. Shao, I.A. Daglis, J.D. Huba. vol. 1320 (2011), pp. 166–173. doi: 10.1063/1.3544321 Google Scholar
  93. J. Giacalone, J.R. Jokipii, The transport of cosmic rays across a turbulent magnetic field. Astrophys. J. 520, 204–214 (1999). doi: 10.1086/307452 ADSCrossRefGoogle Scholar
  94. J. Giacalone, J.R. Jokipii, Magnetic field amplification by shocks in turbulent fluids. Astrophys. J. Lett. 663, 41–44 (2007). doi: 10.1086/519994 ADSCrossRefGoogle Scholar
  95. D. Giannios, UHECRs from magnetic reconnection in relativistic jets. Mon. Not. R. Astron. Soc. 408, 46–50 (2010). doi: 10.1111/j.1745-3933.2010.00925.x ADSCrossRefGoogle Scholar
  96. V.L. Ginzburg, S.I. Syrovatskii, The Origin of Cosmic Rays (1964) Google Scholar
  97. P. Goldreich, S. Sridhar, Toward a theory of interstellar turbulence. 2. Strong Alfvenic turbulence. Astrophys. J. 438, 763–775 (1995). doi: 10.1086/175121 ADSCrossRefGoogle Scholar
  98. P. Goldreich, S. Sridhar, Folded fields as the source of extreme radio-wave scattering in the galactic center. Astrophys. J. Lett. 640, 159–162 (2006). doi: 10.1086/503668 ADSCrossRefGoogle Scholar
  99. M.L. Goldstein, A nonlinear theory of cosmic-ray pitch-angle diffusion in homogeneous magnetostatic turbulence. Astrophys. J. 204, 900–919 (1976). doi: 10.1086/154239 ADSCrossRefGoogle Scholar
  100. M.L. Goldstein, A.J. Klimas, G. Sandri, Mirroring in the Fokker-Planck coefficient for cosmic-ray pitch-angle scattering in homogeneous magnetic turbulence. Astrophys. J. 195, 787–799 (1975). doi: 10.1086/153383 ADSCrossRefGoogle Scholar
  101. M. Gordovskyy, P.K. Browning, Particle acceleration by magnetic reconnection in a twisted coronal loop. Astrophys. J. 729, 101 (2011). doi: 10.1088/0004-637X ADSCrossRefGoogle Scholar
  102. M. Gordovskyy, P.K. Browning, G.E. Vekstein, Particle acceleration in fragmenting periodic reconnecting current sheets in solar flares. Astrophys. J. 720, 1603–1611 (2010). doi: 10.1088/0004-637X ADSCrossRefGoogle Scholar
  103. T. Gotoh, D. Fukayama, T. Nakano, Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Phys. Fluids 14, 1065–1081 (2002). doi: 10.1063/1.1448296 MathSciNetADSMATHCrossRefGoogle Scholar
  104. G. Guillian, J. Hosaka, K. Ishihara, J. Kameda, Y. Koshio, A. Minamino, C. Mitsuda, M. Miura, S. Moriyama, M. Nakahata, T. Namba, Y. Obayashi, H. Ogawa, M. Shiozawa, Y. Suzuki, A. Takeda, Y. Takeuchi, S. Yamada, I. Higuchi, M. Ishitsuka, T. Kajita, K. Kaneyuki, G. Mitsuka, S. Nakayama, H. Nishino, A. Okada, K. Okumura, C. Saji, Y. Takenaga, S. Desai, E. Kearns, J.L. Stone, L.R. Sulak, W. Wang, M. Goldhaber, D. Casper, W. Gajewski, J. Griskevich, W.R. Kropp, D.W. Liu, S. Mine, M.B. Smy, H.W. Sobel, M.R. Vagins, K.S. Ganezer, J. Hill, W.E. Keig, K. Scholberg, C.W. Walter, R.W. Ellsworth, S. Tasaka, A. Kibayashi, J.G. Learned, S. Matsuno, M.D. Messier, Y. Hayato, A.K. Ichikawa, T. Ishida, T. Ishii, T. Iwashita, T. Kobayashi, T. Nakadaira, K. Nakamura, K. Nitta, Y. Oyama, Y. Totsuka, A.T. Suzuki, M. Hasegawa, I. Kato, H. Maesaka, T. Nakaya, K. Nishikawa, H. Sato, S. Yamamoto, M. Yokoyama, T.J. Haines, S. Dazeley, S. Hatakeyama, R. Svoboda, E. Blaufuss, J.A. Goodman, G.W. Sullivan, D. Turcan, A. Habig, Y. Fukuda, Y. Itow, M. Sakuda, M. Yoshida, S.B. Kim, J. Yoo, H. Okazawa, T. Ishizuka, C.K. Jung, T. Kato, K. Kobayashi, M. Malek, C. Mauger, C. McGrew, E. Sharkey, C. Yanagisawa, Y. Gando, T. Hasegawa, K. Inoue, J. Shirai, A. Suzuki, K. Nishijima, H. Ishino, Y. Watanabe, M. Koshiba, D. Kielczewska, H.G. Berns, R. Gran, K.K. Shiraishi, A.L. Stachyra, K. Washburn, R.J. Wilkes, K. Munakata, Observation of the anisotropy of 10 TeV primary cosmic ray nuclei flux with the Super-Kamiokande-I detector. Phys. Rev. D 75(6), 062003 (2007). doi: 10.1103/PhysRevD.75.062003 ADSCrossRefGoogle Scholar
  105. D.L. Hall, K. Munakata, S. Yasue, S. Mori, C. Kato, M. Koyama, S. Akahane, Z. Fujii, K. Fujimoto, J.E. Humble, A.G. Fenton, K.B. Fenton, M.L. Duldig, Gaussian analysis of two hemisphere observations of galactic cosmic ray sidereal anisotropies. J. Geophys. Res. 104, 6737–6750 (1999). doi: 10.1029/1998JA900107 ADSCrossRefGoogle Scholar
  106. C. Heiles, Tiny-scale atomic structure and the cold neutral medium. Astrophys. J. 481, 193 (1997). doi: 10.1086/304033 ADSCrossRefGoogle Scholar
  107. J.C. Higdon, Density fluctuations in the interstellar medium: evidence for anisotropic magnetogasdynamic turbulence. I. Model and astrophysical sites. Astrophys. J. 285, 109–123 (1984). doi: 10.1086/162481 ADSCrossRefGoogle Scholar
  108. D.E. Innes, B. Inhester, W.I. Axford, K. Wilhelm, Bi-directional plasma jets produced by magnetic reconnection on the Sun. Nature 386, 811–813 (1997). doi: 10.1038/386811a0 ADSCrossRefGoogle Scholar
  109. V.V. Izmodenov, R. Kallenbach (eds.), The Physics of the Heliospheric Boundaries (2006) Google Scholar
  110. A.R. Jacobson, R.W. Moses, Nonlocal dc electrical conductivity of a Lorentz plasma in a stochastic magnetic field. Phys. Rev. A 29, 3335–3342 (1984). doi: 10.1103/PhysRevA.29.3335 ADSCrossRefGoogle Scholar
  111. J.R. Jokipii, The rate of separation of magnetic lines of force in a random magnetic field. Astrophys. J. 183, 1029–1036 (1973). doi: 10.1086/152289 ADSCrossRefGoogle Scholar
  112. J.R. Jokipii, Energetic particles near and beyond the solar-wind termination, in Physics of the Inner Heliosheath, ed. by J. Heerikhuisen, V. Florinski G.P. Zank, N.V. Pogorelov. American Institute of Physics Conference Series, vol. 858 (2006), pp. 143–152. doi: 10.1063/1.2359319 Google Scholar
  113. J.R. Jokipii, J. Giacalone, The theory of anomalous cosmic rays. Space Sci. Rev. 83, 123–136 (1998) ADSCrossRefGoogle Scholar
  114. F.C. Jones, T.J. Birmingham, T.B. Kaiser, Investigation of resonance integrals occurring in cosmic-ray diffusion theory. Astrophys. J. Lett. 180, 139 (1973). doi: 10.1086/181170 ADSCrossRefGoogle Scholar
  115. F.C. Jones, T.J. Birmingham, T.B. Kaiser, Partially averaged field approach to cosmic ray diffusion. Phys. Fluids 21, 347–360 (1978). doi: 10.1063/1.862233 ADSCrossRefGoogle Scholar
  116. H. Kang, T.W. Jones, D. Ryu, Acoustic instability in cosmic ray mediated shocks. Astrophys. J. 385, 193–204 (1992). doi: 10.1086/170927 ADSCrossRefGoogle Scholar
  117. A.P. Kazantsev, Enhancement of a magnetic field by a conducting fluid. Sov. Phys. JETP 26, 1031 (1968) ADSGoogle Scholar
  118. R.S. Klessen, P. Hennebelle, Accretion-driven turbulence as universal process: galaxies, molecular clouds, and protostellar disks. Astron. Astrophys. 520, 17 (2010). doi: 10.1051/0004-6361 ADSCrossRefGoogle Scholar
  119. A. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Akad. Nauk SSSR Dokl. 30, 301–305 (1941) ADSGoogle Scholar
  120. J. Kóta, J.R. Jokipii, Velocity correlation and the spatial diffusion coefficients of cosmic rays: compound diffusion. Astrophys. J. 531, 1067–1070 (2000). doi: 10.1086/308492 ADSCrossRefGoogle Scholar
  121. K. Kotera, A.V. Olinto, The astrophysics of ultrahigh-energy cosmic rays. Annu. Rev. Astron. Astrophys. 49, 119–153 (2011). doi: 10.1146/annurev-astro-081710-102620 ADSCrossRefGoogle Scholar
  122. G. Kowal, A. Lazarian, Velocity field of compressible magnetohydrodynamic turbulence: wavelet decomposition and mode scalings. Astrophys. J. 720, 742 (2010) ADSCrossRefGoogle Scholar
  123. G. Kowal, E.M. de Gouveia Dal Pino, A. Lazarian, Magnetohydrodynamic simulations of reconnection and particle acceleration: three-dimensional effects. Astrophys. J. 735, 102 (2011) ADSCrossRefGoogle Scholar
  124. G. Kowal, A. Lazarian, A. Beresnyak, Density fluctuations in MHD turbulence: spectra, intermittency, and topology. Astrophys. J. 658, 423 (2007) ADSCrossRefGoogle Scholar
  125. G. Kowal, A. Lazarian, E.T. Vishniac, K. Otmianowska-Mazur, Numerical tests of fast reconnection in weakly stochastic magnetic fields. Astrophys. J. 700, 63–85 (2009). doi: 10.1088/0004-637X ADSCrossRefGoogle Scholar
  126. G. Kowal, E.M. de Gouveia Dal Pino, A. Lazarian, Particle acceleration in turbulence and weakly stochastic reconnection. ArXiv e-prints (2012a) Google Scholar
  127. G. Kowal, A. Lazarian, E.T. Vishniac, K. Otmianowska-Mazur, Reconnection studies under different types of turbulence driving. ArXiv e-prints (2012b) Google Scholar
  128. H. Koyama, S.-i. Inutsuka, An origin of supersonic motions in interstellar clouds. Astrophys. J. Lett. 564, 97–100 (2002). doi: 10.1086/338978 ADSCrossRefGoogle Scholar
  129. A.G. Kritsuk, M.L. Norman, Thermal instability-induced interstellar turbulence. Astrophys. J. Lett. 569, 127–131 (2002). doi: 10.1086/340785 ADSCrossRefGoogle Scholar
  130. R.M. Kulsrud, MHD description of plasma, in Basic Plasma Physics: Selected Chapters, ed. by A.A. Galeev, R.N. Sudan. Handbook of Plasma Physics, vol. 1 (1983), p. 1 Google Scholar
  131. R.M. Kulsrud, Plasma Physics for Astrophysics (2005) Google Scholar
  132. R.M. Kulsrud, S.W. Anderson, The spectrum of random magnetic fields in the mean field dynamo theory of the Galactic magnetic field. Astrophys. J. 396, 606–630 (1992). doi: 10.1086/171743 ADSCrossRefGoogle Scholar
  133. A. Kupiainen, Nondeterministic dynamics and turbulent transport. Ann. Henri Poincare 4, 713–726 (2003). doi: 10.1007/s00023-003-0957-3 MathSciNetADSCrossRefGoogle Scholar
  134. L.D. Landau, E.M. Lifshitz, The classical theory of fields (1975) Google Scholar
  135. U.W. Langner, M.S. Potgieter, Possible explanations of anomalous spectra observed with Voyager 1 crossing the solar wind termination shock, in Physics of the Inner Heliosheath, ed. by J. Heerikhuisen, V. Florinski, G.P. Zank, N.V. Pogorelov. American Institute of Physics Conference Series, vol. 858 (2006), pp. 233–238. doi: 10.1063/1.2359333 Google Scholar
  136. G. Lapenta, Self-feeding turbulent magnetic reconnection on macroscopic scales. Phys. Rev. Lett. 100(23), 235001 (2008). doi: 10.1103/PhysRevLett.100.235001 MathSciNetADSCrossRefGoogle Scholar
  137. G. Lapenta, A. Lazarian, Achieving fast reconnection in resistive MHD models via turbulent means. Nonlinear Process. Geophys. 19, 251–263 (2012). doi: 10.5194/npg-19-251-2012 ADSCrossRefGoogle Scholar
  138. R.B. Larson, Turbulence and star formation in molecular clouds. Mon. Not. R. Astron. Soc. 194, 809–826 (1981) ADSGoogle Scholar
  139. A. Lazarian, Turbulence statistics from spectral line observations. ArXiv Astrophysics e-prints (2005) Google Scholar
  140. A. Lazarian, Enhancement and suppression of heat transfer by MHD turbulence. Astrophys. J. Lett. 645, 25–28 (2006). doi: 10.1086/505796 ADSCrossRefGoogle Scholar
  141. A. Lazarian, SINS of viscosity damped turbulence, in SINS—Small Ionized and Neutral Structures in the Diffuse Interstellar Medium, ed. by M. Haverkorn, W.M. Goss. Astronomical Society of the Pacific Conference Series, vol. 365 (2007), p. 324 Google Scholar
  142. A. Lazarian, Obtaining spectra of turbulent velocity from observations. Space Sci. Rev. 143, 357–385 (2009). doi: 10.1007/s11214-008-9460-y ADSCrossRefGoogle Scholar
  143. A. Lazarian, Power of turbulent reconnection: star formation, acceleration of cosmic rays, heat transfer, flares and gamma ray bursts. ArXiv e-prints (2011) Google Scholar
  144. A. Lazarian, G. Brunetti, Turbulence, reconnection and cosmic rays in galaxy clusters. Mem. Soc. Astron. Ital. 82, 636 (2011) ADSGoogle Scholar
  145. A. Lazarian, P. Desiati, Magnetic reconnection as the cause of cosmic ray excess from the heliospheric tail. Astrophys. J. 722, 188–196 (2010). doi: 10.1088/0004-637X ADSCrossRefGoogle Scholar
  146. A. Lazarian, M. Opher, A model of acceleration of anomalous cosmic rays by reconnection in the heliosheath. Astrophys. J. 703, 8–21 (2009). doi: 10.1088/0004-637X ADSCrossRefGoogle Scholar
  147. A. Lazarian, D. Pogosyan, Velocity modification of H I power spectrum. Astrophys. J. 537, 720–748 (2000). doi: 10.1086/309040 ADSCrossRefGoogle Scholar
  148. A. Lazarian, D. Pogosyan, Velocity modification of the power spectrum from an absorbing medium. Astrophys. J. 616, 943–965 (2004). doi: 10.1086/422462 ADSCrossRefGoogle Scholar
  149. A. Lazarian, D. Pogosyan, Studying turbulence using Doppler-broadened lines: velocity coordinate spectrum. Astrophys. J. 652, 1348–1365 (2006). doi: 10.1086/508012 ADSCrossRefGoogle Scholar
  150. A. Lazarian, D. Pogosyan, Studying velocity turbulence from Doppler-broadened absorption lines: statistics of optical depth fluctuations. Astrophys. J. 686, 350–362 (2008). doi: 10.1086/591238 ADSCrossRefGoogle Scholar
  151. A. Lazarian, E.T. Vishniac, Reconnection in a weakly stochastic field. Astrophys. J. 517, 700–718 (1999). doi: 10.1086/307233 ADSCrossRefGoogle Scholar
  152. A. Lazarian, E.T. Vishniac, Model of reconnection of weakly stochastic magnetic field and its implications, in Revista Mexicana de Astronomia y Astrofisica Conference Series. vols. 27, 36 (2009), pp. 81–88 Google Scholar
  153. A. Lazarian, V. Petrosian, H. Yan, J. Cho, Physics of Gamma-Ray Bursts: Turbulence, Energy Transfer and Reconnection. ArXiv Astrophysics e-prints (2003a) Google Scholar
  154. A. Lazarian, V. Petrosian, H. Yan, J. Cho, Physics of gamma-ray bursts: turbulence, energy transfer and reconnection (2003b). arXiv:astro-ph/0301181
  155. A. Lazarian, E.T. Vishniac, J. Cho, Magnetic field structure and stochastic reconnection in a partially ionized gas. Astrophys. J. 603, 180–197 (2004). doi: 10.1086/381383 ADSCrossRefGoogle Scholar
  156. R.J. Leamon, W.H. Matthaeus, C.W. Smith, H.K. Wong, Contribution of cyclotron-resonant damping to kinetic dissipation of interplanetary turbulence. Astrophys. J. Lett. 507, 181–184 (1998). doi: 10.1086/311698 ADSCrossRefGoogle Scholar
  157. Y. Lithwick, P. Goldreich, Compressible magnetohydrodynamic turbulence in interstellar plasmas. Astrophys. J. 562, 279–296 (2001). doi: 10.1086/323470 ADSCrossRefGoogle Scholar
  158. Y. Lithwick, P. Goldreich, Imbalanced weak magnetohydrodynamic turbulence. Astrophys. J. 582, 1220–1240 (2003). doi: 10.1086/344676 ADSCrossRefGoogle Scholar
  159. Y. Lithwick, P. Goldreich, S. Sridhar, Imbalanced strong MHD turbulence. Astrophys. J. 655, 269–274 (2007). doi: 10.1086/509884 ADSCrossRefGoogle Scholar
  160. M.S. Longair, High Energy Astrophysics. Vol.1: Particles, Photons and Their Detection (1992) Google Scholar
  161. M.S. Longair, The high-energy radiation of active galactic nuclei, ed. by G. Munch, A. Mampaso, F. Sánchez (1997), p. 218 Google Scholar
  162. M.S. Longair, High Energy Astrophysics (2010) Google Scholar
  163. N.F. Loureiro, A.A. Schekochihin, S.C. Cowley, Instability of current sheets and formation of plasmoid chains. Phys. Plasmas 14, 100703 (2007) ADSCrossRefGoogle Scholar
  164. N.F. Loureiro, D.A. Uzdensky, A.A. Schekochihin, S.C. Cowley, T.A. Yousef, Turbulent magnetic reconnection in two dimensions. Mon. Not. R. Astron. Soc. 399, 146–150 (2009). doi: 10.1111/j.1745-3933.2009.00742.x ADSCrossRefGoogle Scholar
  165. R.V.E. Lovelace, Dynamo model of double radio sources. Nature 262, 649–652 (1976). doi: 10.1038/262649a0 ADSCrossRefGoogle Scholar
  166. S.G. Lucek, A.R. Bell, Non-linear amplification of a magnetic field driven by cosmic ray streaming. Mon. Not. R. Astron. Soc. 314, 65–74 (2000). doi: 10.1046/j.1365-8711.2000.03363.x ADSCrossRefGoogle Scholar
  167. M. Lyutikov, R. Blandford, Gamma Ray Bursts as Electromagnetic Outflows. ArXiv Astrophysics e-prints (2003) Google Scholar
  168. M.-M. Mac Low, The energy dissipation rate of supersonic, magnetohydrodynamic turbulence in molecular clouds. Astrophys. J. 524, 169–178 (1999). doi: 10.1086/307784 ADSCrossRefGoogle Scholar
  169. R.L. Mace, W.H. Matthaeus, J.W. Bieber, Numerical investigation of perpendicular diffusion of charged test particles in weak magnetostatic slab turbulence. Astrophys. J. 538, 192–202 (2000). doi: 10.1086/309093 ADSCrossRefGoogle Scholar
  170. J. Maron, P. Goldreich, Simulations of incompressible magnetohydrodynamic turbulence. Astrophys. J. 554, 1175–1196 (2001). doi: 10.1086/321413 ADSCrossRefGoogle Scholar
  171. S. Masuda, T. Kosugi, H. Hara, S. Tsuneta, Y. Ogawara, A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature 371, 495–497 (1994). doi: 10.1038/371495a0 ADSCrossRefGoogle Scholar
  172. W.H. Matthaeus, M.L. Goldstein, Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind. J. Geophys. Res. 87, 6011–6028 (1982). doi: 10.1029/JA087iA08p06011 ADSCrossRefGoogle Scholar
  173. W.H. Matthaeus, S.L. Lamkin, Rapid magnetic reconnection caused by finite amplitude fluctuations. Phys. Fluids 28, 303–307 (1985). doi: 10.1063/1.865147 ADSCrossRefGoogle Scholar
  174. W.H. Matthaeus, S.L. Lamkin, Turbulent magnetic reconnection. Phys. Fluids 29, 2513–2534 (1986). doi: 10.1063/1.866004 ADSCrossRefGoogle Scholar
  175. W.H. Matthaeus, M.L. Goldstein, C. Smith, Evaluation of magnetic helicity in homogeneous turbulence. Phys. Rev. Lett. 48, 1256–1259 (1982). doi: 10.1103/PhysRevLett.48.1256 ADSCrossRefGoogle Scholar
  176. W.H. Matthaeus, D.C. Montgomery, M.L. Goldstein, Turbulent generation of outward-traveling interplanetary Alfvenic fluctuations. Phys. Rev. Lett. 51, 1484–1487 (1983). doi: 10.1103/PhysRevLett.51.1484 ADSCrossRefGoogle Scholar
  177. W.H. Matthaeus, G. Qin, J.W. Bieber, G.P. Zank, Nonlinear collisionless perpendicular diffusion of charged particles. Astrophys. J. Lett. 590, 53–56 (2003). doi: 10.1086/376613 ADSCrossRefGoogle Scholar
  178. W.H. Matthaeus, P. Dmitruk, L.J. Milano, Mini-conference on plasma turbulence in the corona, heliosphere and interstellar medium. Phys. Plasmas 9, 2440–2445 (2002). doi: 10.1063/1.1463067 MathSciNetADSCrossRefGoogle Scholar
  179. D.J. McComas, N.A. Schwadron, An explanation of the Voyager paradox: particle acceleration at a blunt termination shock. Geophys. Res. Lett. 33, 4102 (2006). doi: 10.1029/2005GL025437 CrossRefGoogle Scholar
  180. C.F. McKee, J.P. Ostriker, A theory of the interstellar medium—three components regulated by supernova explosions in an inhomogeneous substrate. Astrophys. J. 218, 148–169 (1977). doi: 10.1086/155667 ADSCrossRefGoogle Scholar
  181. C.F. McKee, E.C. Ostriker, Theory of star formation. Annu. Rev. Astron. Astrophys. 45, 565–687 (2007). doi: 10.1146/annurev.astro.45.051806.110602 ADSCrossRefGoogle Scholar
  182. J.C. McKinney, D.A. Uzdensky, A reconnection switch to trigger gamma-ray burst jet dissipation. Mon. Not. R. Astron. Soc. 419, 573–607 (2012). doi: 10.1111/j.1365-2966.2011.19721.x ADSCrossRefGoogle Scholar
  183. D.B. Melrose, Acceleration Mechanisms. ArXiv e-prints (2009) Google Scholar
  184. P. Meszaros, M.J. Rees, Poynting jets from black holes and cosmological gamma-ray bursts. Astrophys. J. Lett. 482, 29 (1997) ADSCrossRefGoogle Scholar
  185. R. Metzler, J. Klafter, The random Walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000). doi: 10.1016/S0370-1573(00)00070-3 MathSciNetADSMATHCrossRefGoogle Scholar
  186. H.K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids (1978) Google Scholar
  187. D. Montgomery, L. Turner, Anisotropic magnetohydrodynamic turbulence in a strong external magnetic field. Phys. Fluids 24, 825–831 (1981). doi: 10.1063/1.863455 ADSMATHCrossRefGoogle Scholar
  188. D. Montgomery, M.R. Brown, W.H. Matthaeus, Density fluctuation spectra in magnetohydrodynamic turbulence. J. Geophys. Res. 92, 282–284 (1987). doi: 10.1029/JA092iA01p00282 ADSCrossRefGoogle Scholar
  189. H. Moraal, R.A. Caballero-Lopez, K.G. McCracken, F.B. McDonald, R.A. Mewaldt, V. Ptuskin, M.E. Wiedenbeck, Cosmic ray energy changes at the termination shock and in the heliosheath, in Physics of the Inner Heliosheath, ed. by J. Heerikhuisen, V. Florinski, G.P. Zank, N.V. Pogorelov. American Institute of Physics Conference Series, vol. 858 (2006), pp. 219–225. doi: 10.1063/1.2359331 Google Scholar
  190. K. Nagashima, K. Fujimoto, R.M. Jacklyn, Galactic and heliotail-in anisotropies of cosmic rays as the origin of sidereal daily variation in the energy region <formula><104 GeV. J. Geophys. Res. 103, 17429–17440 (1998). doi: 10.1029/98JA01105 ADSCrossRefGoogle Scholar
  191. F. Nakamura, Z.-Y. Li, Protostellar turbulence driven by collimated outflows. Astrophys. J. 662, 395–412 (2007). doi: 10.1086/517515 ADSCrossRefGoogle Scholar
  192. F. Nakamura, C.F. McKee, R.I. Klein, R.T. Fisher, On the hydrodynamic interaction of shock waves with interstellar clouds. II. The effect of smooth cloud boundaries on cloud destruction and cloud turbulence. Astrophys. J. Suppl. Ser. 164, 477–505 (2006). doi: 10.1086/501530 ADSCrossRefGoogle Scholar
  193. R. Narayan, M.V. Medvedev, Thermal conduction in clusters of galaxies. Astrophys. J. Lett. 562, 129–132 (2001). doi: 10.1086/338325 ADSCrossRefGoogle Scholar
  194. C.S. Ng, A. Bhattacharjee, Interaction of shear-Alfven wave packets: implication for weak magnetohydrodynamic turbulence in astrophysical plasmas. Astrophys. J. 465, 845 (1996). doi: 10.1086/177468 ADSCrossRefGoogle Scholar
  195. C.S. Ng, A. Bhattacharjee, Scaling of anisotropic spectra due to the weak interaction of shear-Alfvén wave packets. Phys. Plasmas 4, 605–610 (1997). doi: 10.1063/1.872158 ADSCrossRefGoogle Scholar
  196. N. Nishizuka, K. Shibata, Fractal reconnection and particle acceleration in the solar atmosphere, in 38th COSPAR Scientific Assembly, vol. 38 (2010), p. 1959 Google Scholar
  197. C.A. Norman, A. Ferrara, The turbulent interstellar medium: generalizing to a scale-dependent phase continuum. Astrophys. J. 467, 280 (1996). doi: 10.1086/177603 ADSCrossRefGoogle Scholar
  198. M. Ossendrijver, The solar dynamo. Astron. Astrophys. Rev. 11, 287–367 (2003). doi: 10.1007/s00159-003-0019-3 ADSCrossRefGoogle Scholar
  199. E.C. Ostriker, Developing diagnostics of molecular clouds using numerical Mhd simulations, in Turbulence and Magnetic Fields in Astrophysics, ed. by E. Falgarone, T. Passot. Lecture Notes in Physics, vol. 614 (Springer, Berlin, 2003), pp. 252–270 CrossRefGoogle Scholar
  200. M. Ostrowski, Mechanisms and sites of ultra high energy cosmic ray origin. Astropart. Phys. 18, 229–236 (2002). doi: 10.1016/S0927-6505(02)00154-8 ADSCrossRefGoogle Scholar
  201. S. Oughton, P. Dmitruk, W.H. Matthaeus, Coronal heating and reduced Mhd, in Turbulence and Magnetic Fields in Astrophysics, ed. by E. Falgarone, T. Passot. Lecture Notes in Physics, vol. 614 (Springer, Berlin, 2003), pp. 28–55 CrossRefGoogle Scholar
  202. A.J. Owens, The effects of nonlinear terms in cosmic-ray diffusion theory. Astrophys. J. 191, 235–244 (1974). doi: 10.1086/152960 ADSCrossRefGoogle Scholar
  203. B. Paczynski, Gamma-ray bursters at cosmological distances. Astrophys. J. Lett. 308, 43–46 (1986). doi: 10.1086/184740 ADSCrossRefGoogle Scholar
  204. P. Padoan, R. Jimenez, M. Juvela, Å. Nordlund, The average magnetic field strength in molecular clouds: new evidence of super-Alfvénic turbulence. Astrophys. J. Lett. 604, 49–52 (2004). doi: 10.1086/383308 ADSCrossRefGoogle Scholar
  205. P. Padoan, M. Juvela, A. Kritsuk, M.L. Norman, The power spectrum of turbulence in NGC 1333: outflows or large-scale driving? Astrophys. J. Lett. 707, 153–157 (2009). doi: 10.1088/0004-637X ADSCrossRefGoogle Scholar
  206. E.N. Parker, Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62, 509–520 (1957). doi: 10.1029/JZ062i004p00509 ADSCrossRefGoogle Scholar
  207. E.N. Parker, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664 (1958). doi: 10.1086/146579 ADSCrossRefGoogle Scholar
  208. E.N. Parker, The generation of magnetic fields in astrophysical bodies. I. The dynamo equations. Astrophys. J. 162, 665 (1970). doi: 10.1086/150697 ADSCrossRefGoogle Scholar
  209. E.N. Parker, Cosmical Magnetic Fields: Their Origin and Their Activity (1979) Google Scholar
  210. E.N. Parker, A solar dynamo surface wave at the interface between convection and nonuniform rotation. Astrophys. J. 408, 707–719 (1993). doi: 10.1086/172631 ADSCrossRefGoogle Scholar
  211. T. Passot, E. Vázquez-Semadeni, Density probability distribution in one-dimensional polytropic gas dynamics. Phys. Rev. E 58, 4501–4510 (1998). doi: 10.1103/PhysRevE.58.4501 ADSCrossRefGoogle Scholar
  212. J.C. Perez, S. Boldyrev, Role of cross-helicity in magnetohydrodynamic turbulence. Phys. Rev. Lett. 102(2), 025003 (2009). doi: 10.1103/PhysRevLett.102.025003 ADSCrossRefGoogle Scholar
  213. V. Petrosian, A. Bykov, Y. Rephaeli, Nonthermal radiation mechanisms. Space Sci. Rev. 134, 191–206 (2008). doi: 10.1007/s11214-008-9327-2 ADSCrossRefGoogle Scholar
  214. A. Petrosyan, A. Balogh, M.L. Goldstein, J. Léorat, E. Marsch, K. Petrovay, B. Roberts, R. von Steiger, J.C. Vial, Turbulence in the solar atmosphere and solar wind. Space Sci. Rev. 156, 135–238 (2010). doi: 10.1007/s11214-010-9694-3 ADSCrossRefGoogle Scholar
  215. H.E. Petschek, Magnetic field annihilation. NASA Spec. Publ. 50, 425 (1964) ADSGoogle Scholar
  216. T. Piran, Gamma-ray bursts and the fireball model. Phys. Rep. 314, 575–667 (1999). doi: 10.1016/S0370-1573(98)00127-6 ADSCrossRefGoogle Scholar
  217. T. Piran, Magnetic fields in gamma-ray bursts: a short overview, in Magnetic Fields in the Universe: From Laboratory and Stars to Primordial Structures., ed. by E.M. de Gouveia dal Pino, G. Lugones, A. Lazarian. American Institute of Physics Conference Series, vol. 784 (2005), pp. 164–174. doi: 10.1063/1.2077181 Google Scholar
  218. N.V. Pogorelov, J. Heerikhuisen, G.P. Zank, J.J. Mitchell, I.H. Cairns, Heliospheric asymmetries due to the action of the interstellar magnetic field. Adv. Space Res. 44, 1337–1344 (2009a). doi: 10.1016/j.asr.2009.07.019 ADSCrossRefGoogle Scholar
  219. N.V. Pogorelov, S.N. Borovikov, G.P. Zank, T. Ogino, Three-dimensional features of the outer heliosphere due to coupling between the interstellar and interplanetary magnetic fields. III. The effects of solar rotation and activity cycle. Astrophys. J. 696, 1478–1490 (2009b). doi: 10.1088/0004-637X ADSCrossRefGoogle Scholar
  220. E.R. Priest, T.G. Forbes, The magnetic nature of solar flares. Astron. Astrophys. Rev. 10, 313–377 (2002). doi: 10.1007/s001590100013 ADSCrossRefGoogle Scholar
  221. G. Qin, W.H. Matthaeus, J.W. Bieber, Perpendicular transport of charged particles in composite model turbulence: recovery of diffusion. Astrophys. J. Lett. 578, 117–120 (2002). doi: 10.1086/344687 ADSCrossRefGoogle Scholar
  222. M.A. Riquelme, A. Spitkovsky, Nonlinear study of Bell’s cosmic ray current-driven instability. Astrophys. J. 694, 626–642 (2009). doi: 10.1088/0004-637X ADSCrossRefGoogle Scholar
  223. D.A. Roberts, M.L. Goldstein, L.W. Klein, W.H. Matthaeus, Origin and evolution of fluctuations in the solar wind—HELIOS observations and Helios-Voyager comparisons. J. Geophys. Res. 92, 12023–12035 (1987a). doi: 10.1029/JA092iA11p12023 ADSCrossRefGoogle Scholar
  224. D.A. Roberts, L.W. Klein, M.L. Goldstein, W.H. Matthaeus, The nature and evolution of magnetohydrodynamic fluctuations in the solar wind—Voyager observations. J. Geophys. Res. 92, 11021–11040 (1987b). doi: 10.1029/JA092iA10p11021 ADSCrossRefGoogle Scholar
  225. F. Sahraoui, M. Goldstein, Structures and intermittency in small scales solar wind turbulence, in Twelfth International Solar Wind Conference, vol. 1216 (2010), pp. 140–143. doi: 10.1063/1.3395820 Google Scholar
  226. K.H. Schatten, Large-scale properties of the interplanetary magnetic field. Rev. Geophys. Space Phys. 9, 773–812 (1971) ADSCrossRefGoogle Scholar
  227. A.A. Schekochihin, S.C. Cowley, J.L. Maron, J.C. McWilliams, Critical magnetic Prandtl number for small-scale dynamo. Phys. Rev. Lett. 92(5), 054502 (2004). doi: 10.1103/PhysRevLett.92.054502 ADSCrossRefGoogle Scholar
  228. A.A. Schekochihin, S.C. Cowley, W. Dorland, Interplanetary and interstellar plasma turbulence. Plasma Phys. Control. Fusion 49, 195 (2007). doi: 10.1088/0741-3335 ADSCrossRefGoogle Scholar
  229. A.A. Schekochihin, S.C. Cowley, W. Dorland, G.W. Hammett, G.G. Howes, E. Quataert, T. Tatsuno, Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. Ser. 182, 310–377 (2009). doi: 10.1088/0067-0049 ADSCrossRefGoogle Scholar
  230. R. Schlickeiser, Particle acceleration processes in cosmic plasmas, in Energy Conversion and Particle Acceleration in the Solar Corona, ed. by L. Klein. Lecture Notes in Physics, vol. 612 (Springer, Berlin, 2003), pp. 230–260 CrossRefGoogle Scholar
  231. J.A. Sellwood, S.A. Balbus, Differential rotation and turbulence in extended H I disks. Astrophys. J. 511, 660–665 (1999). doi: 10.1086/306728 ADSCrossRefGoogle Scholar
  232. M.A. Shay, J.F. Drake, R.E. Denton, D. Biskamp, Structure of the dissipation region during collisionless magnetic reconnection. J. Geophys. Res. 103, 9165–9176 (1998). doi: 10.1029/97JA03528 ADSCrossRefGoogle Scholar
  233. J.V. Shebalin, W.H. Matthaeus, D. Montgomery, Anisotropy in MHD turbulence due to a mean magnetic field. J. Plasma Phys. 29, 525–547 (1983). doi: 10.1017/S0022377800000933 ADSCrossRefGoogle Scholar
  234. A. Shemi, T. Piran, The appearance of cosmic fireballs. Astrophys. J. Lett. 365, 55–58 (1990). doi: 10.1086/185887 ADSCrossRefGoogle Scholar
  235. K. Shibata, S. Tanuma, Plasmoid-induced-reconnection and fractal reconnection. Earth Planets Space 53, 473–482 (2001) ADSGoogle Scholar
  236. T. Shimizu, K. Kondoh, M. Ugai, Three-dimensional non-linear instability of spontaneous fast magnetic reconnection. Earth Planets Space 61, 569–572 (2009a) ADSGoogle Scholar
  237. T. Shimizu, K. Kondoh, K. Shibata, M. Ugai, Magnetohydrodynamic study of three-dimensional instability of the spontaneous fast magnetic reconnection. Phys. Plasmas 16(5), 052903 (2009b). doi: 10.1063/1.3095562 ADSCrossRefGoogle Scholar
  238. J. Skilling, Cosmic ray streaming. I. effect of Alfven waves on particles. Mon. Not. R. Astron. Soc. 172, 557–566 (1975) ADSGoogle Scholar
  239. T.W. Speiser, Conductivity without collisions or noise. Planet. Space Sci. 18, 613 (1970). doi: 10.1016/0032-0633(70)90136-4 ADSCrossRefGoogle Scholar
  240. S. Stanimirović, J.M. Weisberg, A. Hedden, K. Devine, T. Green, S.B. Anderson, The tiny-scale atomic structure: gas cloudlets or scintillation phenomenon? Astrophys. Space Sci. 292, 103–109 (2004). doi: 10.1023/B:ASTR.0000045005.36554.36 ADSCrossRefGoogle Scholar
  241. M. Stix, Modulation of acoustic waves by solar convection. Sol. Phys. 196, 19–27 (2000) ADSCrossRefGoogle Scholar
  242. J.M. Stone, E.C. Ostriker, C.F. Gammie, Dissipation in compressible magnetohydrodynamic turbulence. Astrophys. J. Lett. 508, 99–102 (1998). doi: 10.1086/311718 ADSCrossRefGoogle Scholar
  243. H.R. Strauss, Nonlinear, three-dimensional magnetohydrodynamics of noncircular tokamaks. Phys. Fluids 19, 134–140 (1976). doi: 10.1063/1.861310 ADSCrossRefGoogle Scholar
  244. M. Strauss, Buildup of X-ray laser gain by fluctuations in channeled relativistic beam systems. Phys. Rev. A 38, 1358–1362 (1988). doi: 10.1103/PhysRevA.38.1358 ADSCrossRefGoogle Scholar
  245. P.A. Sturrock, Model of the high-energy phase of solar flares. Nature 211, 695–697 (1966). doi: 10.1038/211695a0 ADSCrossRefGoogle Scholar
  246. S.T. Suess, S. Nerney, Flow speed inside the brightness boundary of coronal streamers. Geophys. Res. Lett. 33, 10104 (2006). doi: 10.1029/2006GL026182 ADSCrossRefGoogle Scholar
  247. P.A. Sweet, The neutral point theory of solar flares, in Electromagnetic Phenomena in Cosmical Physics, ed. by B. Lehnert. IAU Symposium, vol. 6 (1958), p. 123 Google Scholar
  248. C. Thompson, A model of gamma-ray bursts. Mon. Not. R. Astron. Soc. 270, 480 (1994) ADSGoogle Scholar
  249. A.C. Ting, D. Montgomery, W.H. Matthaeus, Turbulent relaxation processes in magnetohydrodynamics. Phys. Fluids 29, 3261–3274 (1986). doi: 10.1063/1.865843 ADSCrossRefGoogle Scholar
  250. V.V. Usov, Millisecond pulsars with extremely strong magnetic fields as a cosmological source of gamma-ray bursts. Nature 357, 472–474 (1992). doi: 10.1038/357472a0 ADSCrossRefGoogle Scholar
  251. D.A. Uzdensky, Magnetic reconnection in extreme astrophysical environments. Space Sci. Rev. 160, 45–71 (2011). doi: 10.1007/s11214-011-9744-5 ADSCrossRefGoogle Scholar
  252. D.A. Uzdensky, J.C. McKinney, Magnetic reconnection with radiative cooling. I. Optically thin regime. Phys. Plasmas 18(4), 042105 (2011). doi: 10.1063/1.3571602 ADSCrossRefGoogle Scholar
  253. E. Vázquez-Semadeni, N. García, The probability distribution function of column density in molecular clouds. Astrophys. J. 557, 727–735 (2001). doi: 10.1086/321688 ADSCrossRefGoogle Scholar
  254. A. Verdini, M. Velli, Alfvén waves and turbulence in the solar atmosphere and solar wind. Astrophys. J. 662, 669–676 (2007). doi: 10.1086/510710 ADSCrossRefGoogle Scholar
  255. S. Vernetto, Z. Guglielmotto, J.L. Zhang, for the ARGO-YBJ Collaboration, Sky monitoring with ARGO-YBJ. ArXiv e-prints (2009) Google Scholar
  256. J.G. Vestuto, E.C. Ostriker, J.M. Stone, Spectral properties of compressible magnetohydrodynamic turbulence from numerical simulations. Astrophys. J. 590, 858–873 (2003). doi: 10.1086/375021 ADSCrossRefGoogle Scholar
  257. E.T. Vishniac, A. Lazarian, Fast reconnection in a weakly stochastic field, in Plasma Turbulence and Energetic Particles in Astrophysics, ed. by M. Ostrowski R. Schlickeiser (1999), pp. 182–189 Google Scholar
  258. E.T. Vishniac, A. Lazarian, J. Cho, Problems and progress in astrophysical dynamos, in Turbulence and Magnetic Fields in Astrophysics, ed. by E. Falgarone, T. Passot. Lecture Notes in Physics, vol. 614 (Springer, Berlin, 2003), pp. 376–401 CrossRefGoogle Scholar
  259. A. Vladimirov, D.C. Ellison, A. Bykov, Nonlinear diffusive shock acceleration with magnetic field amplification. Astrophys. J. 652, 1246–1258 (2006). doi: 10.1086/508154 ADSCrossRefGoogle Scholar
  260. L. Vlahos, H. Isliker, F. Lepreti, Particle acceleration in an evolving network of unstable current sheets. Astrophys. J. 608, 540–553 (2004). doi: 10.1086/386364 ADSCrossRefGoogle Scholar
  261. L. Vlahos, H. Isliker, Y. Kominis, K. Hizanidis, Normal and Anomalous Diffusion: A Tutorial. ArXiv e-prints (2008) Google Scholar
  262. H.J. Völk, Nonlinear perturbation theory for cosmic ray propagation in random magnetic fields. Astrophys. Space Sci. 25, 471–490 (1973). doi: 10.1007/BF00649186 ADSCrossRefGoogle Scholar
  263. H.J. Völk, Cosmic ray propagation in interplanetary space. Rev. Geophys. Space Phys. 13, 547–566 (1975) CrossRefGoogle Scholar
  264. F.L. Waelbroeck, Current sheets and nonlinear growth of the m=1 kink-tearing mode. Phys. Fluids, B Plasma Phys. 1, 2372–2380 (1989). doi: 10.1063/1.859172 MathSciNetCrossRefGoogle Scholar
  265. H. Yan, A. Lazarian, Scattering of cosmic rays by magnetohydrodynamic interstellar turbulence. Phys. Rev. Lett. 89, 1102 (2002). doi: 10.1103/PhysRevLett.89.281102 ADSCrossRefGoogle Scholar
  266. H. Yan, A. Lazarian, Cosmic-ray scattering and streaming in compressible magnetohydrodynamic turbulence. Astrophys. J. 614, 757–769 (2004). doi: 10.1086/423733 ADSCrossRefGoogle Scholar
  267. H. Yan, A. Lazarian, Cosmic-ray propagation: nonlinear diffusion parallel and perpendicular to mean magnetic field. Astrophys. J. 673, 942–953 (2008). doi: 10.1086/524771 ADSCrossRefGoogle Scholar
  268. H. Yan, A. Lazarian, V. Petrosian, Particle acceleration by fast modes in solar flares. Astrophys. J. 684, 1461–1468 (2008). doi: 10.1086/589962 ADSCrossRefGoogle Scholar
  269. P.K. Yeung, Y. Zhou, Universality of the Kolmogorov constant in numerical simulations of turbulence. Phys. Rev. E 56, 1746–1752 (1997). doi: 10.1103/PhysRevE.56.1746 ADSCrossRefGoogle Scholar
  270. T. Yokoyama, K. Shibata, Magnetic reconnection as the origin of X-ray jets and Hα surges on the Sun. Nature 375, 42–44 (1995). doi: 10.1038/375042a0 ADSCrossRefGoogle Scholar
  271. G.P. Zank, W.H. Matthaeus, The equations of reduced magnetohydrodynamics. J. Plasma Phys. 48, 85 (1992a). doi: 10.1017/S002237780001638X ADSCrossRefGoogle Scholar
  272. G.P. Zank, W.H. Matthaeus, Waves and turbulence in the solar wind. J. Geophys. Res. 97, 17189 (1992b). doi: 10.1029/92JA01734 ADSCrossRefGoogle Scholar
  273. B. Zhang, H. Yan, The internal-collision-induced magnetic reconnection and turbulence (ICMART) model of gamma-ray bursts. Astrophys. J. 726, 90 (2011). doi: 10.1088/0004-637X ADSCrossRefGoogle Scholar
  274. M. Zhang, Acceleration of galactic and anomalous cosmic rays in the heliosheath, in Physics of the Inner Heliosheath, ed. by J. Heerikhuisen, V. Florinski, G.P. Zank, N.V. Pogorelov. American Institute of Physics Conference Series, vol. 858, 2006, pp. 226–232. doi: 10.1063/1.2359332 Google Scholar
  275. V.V. Zharkova, K. Arzner, A.O. Benz, P. Browning, C. Dauphin, A.G. Emslie, L. Fletcher, E.P. Kontar, G. Mann, M. Onofri, V. Petrosian, R. Turkmani, N. Vilmer, L. Vlahos, Recent advances in understanding particle acceleration processes in solar flares. Space Sci. Rev. 159, 357–420 (2011). doi: 10.1007/s11214-011-9803-y ADSCrossRefGoogle Scholar
  276. G. Zimbardo, A. Greco, L. Sorriso-Valvo, S. Perri, Z. Vörös, G. Aburjania, K. Chargazia, O. Alexandrova, Magnetic turbulence in the geospace environment. Space Sci. Rev. 156, 89–134 (2010). doi: 10.1007/s11214-010-9692-5 ADSCrossRefGoogle Scholar
  277. V.N. Zirakashvili, V.S. Ptuskin, H.J. Völk, Modeling Bell’s nonresonant cosmic-ray instability. Astrophys. J. 678, 255–261 (2008). doi: 10.1086/529579 ADSCrossRefGoogle Scholar
  278. E.G. Zweibel, Cosmic-ray history and its implications for galactic magnetic fields. Astrophys. J. 587, 625–637 (2003). doi: 10.1086/368256 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • A. Lazarian
    • 1
  • L. Vlahos
    • 2
  • G. Kowal
    • 3
  • H. Yan
    • 4
  • A. Beresnyak
    • 5
    • 6
  • E. M. de Gouveia Dal Pino
    • 3
  1. 1.Department of AstronomyUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of PhysicsUniversity of ThessalonikiThessalonikiGreece
  3. 3.Instituto de Astronomia, Geofísica e Ciências AtmosféricasUniversidade de São PauloSão PauloBrazil
  4. 4.Kavli InstitutePeking UniversityBejingChina
  5. 5.Los Alamos LaboratoryLos AlamosUSA
  6. 6.Ruhr-University BochumBochumGermany

Personalised recommendations