Space Science Reviews

, Volume 173, Issue 1–4, pp 247–281

Shock Acceleration of Ions in the Heliosphere



Energetic particles constitute an important component of the heliospheric plasma environment. They range from solar energetic particles in the inner heliosphere to the anomalous cosmic rays accelerated at the interface of the heliosphere with the local interstellar medium. Although stochastic acceleration by fluctuating electric fields and processes associated with magnetic reconnection may account for some of the particle populations, the majority are accelerated by the variety of shock waves present in the solar wind. This review focuses on “gradual” solar energetic particle (SEP) events including their energetic storm particle (ESP) phase, which is observed if and when an associated shock wave passes Earth. Gradual SEP events are the intense long-duration events responsible for most space weather disturbances of Earth’s magnetosphere and upper atmosphere. The major characteristics of gradual SEP events are first described including their association with shocks and coronal mass ejections (CMEs), their ion composition, and their energy spectra. In the context of acceleration mechanisms in general, the acceleration mechanism responsible for SEP events, diffusive shock acceleration, is then described in some detail including its predictions for a planar stationary shock, shock modification by the energetic particles, and wave excitation by the accelerating ions. Finally, some complexities of shock acceleration are addressed, which affect the predictive ability of the theory. These include the role of temporal and spatial variations, the distinction between the plasma and wave compression ratios at the shock, the injection of thermal plasma at the shock into the process of shock acceleration, and the nonlinear evolution of ion-excited waves in the vicinity of the shock.


Particle acceleration Solar energetic particles Diffusive shock acceleration 

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Space Science CenterUniversity of New HampshireDurhamUSA
  2. 2.290-17 Cahill LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Department of Planetary SciencesUniversity of ArizonaTucsonUSA

Personalised recommendations