Space Science Reviews

, Volume 173, Issue 1–4, pp 247–281 | Cite as

Shock Acceleration of Ions in the Heliosphere

  • Martin A. LeeEmail author
  • R. A. Mewaldt
  • J. Giacalone


Energetic particles constitute an important component of the heliospheric plasma environment. They range from solar energetic particles in the inner heliosphere to the anomalous cosmic rays accelerated at the interface of the heliosphere with the local interstellar medium. Although stochastic acceleration by fluctuating electric fields and processes associated with magnetic reconnection may account for some of the particle populations, the majority are accelerated by the variety of shock waves present in the solar wind. This review focuses on “gradual” solar energetic particle (SEP) events including their energetic storm particle (ESP) phase, which is observed if and when an associated shock wave passes Earth. Gradual SEP events are the intense long-duration events responsible for most space weather disturbances of Earth’s magnetosphere and upper atmosphere. The major characteristics of gradual SEP events are first described including their association with shocks and coronal mass ejections (CMEs), their ion composition, and their energy spectra. In the context of acceleration mechanisms in general, the acceleration mechanism responsible for SEP events, diffusive shock acceleration, is then described in some detail including its predictions for a planar stationary shock, shock modification by the energetic particles, and wave excitation by the accelerating ions. Finally, some complexities of shock acceleration are addressed, which affect the predictive ability of the theory. These include the role of temporal and spatial variations, the distinction between the plasma and wave compression ratios at the shock, the injection of thermal plasma at the shock into the process of shock acceleration, and the nonlinear evolution of ion-excited waves in the vicinity of the shock.


Particle acceleration Solar energetic particles Diffusive shock acceleration 



The authors wish to acknowledge the hospitality of the International Space Science Institute, the stimulating program of the Workshop on Particle Acceleration in Cosmic Plasmas, and the patience of Dr. Andre Balogh while awaiting this typescript. The contribution of M.A.L. was supported, in part, by NASA grants NNX08AJ13G, NNX11AO97G and NNX12AB32G. The contribution of R.A.M. was sponsored by NASA under grants NNX8AI11G, NNX06AC21G, and under subcontract SA2715-26309 from UC Berkeley under NASA contract NAS5-03131. The contribution of J.G. was supported, in part, by NASA grants NNX11AO64G and NNX10AF24G.


  1. O. Adriani et al., Observations of the 2006 December 13 and 14 solar particle events in the 80 MeVn-1-3 GeVn-1 range from space with the PAMELA detector. Astrophys. J. 742, 102 (2011) ADSCrossRefGoogle Scholar
  2. W.I. Axford, Acceleration of cosmic rays by shock waves, in Proc. Int. Conf. Cosmic Rays 17th, vol. 12 (1981), p. 155 Google Scholar
  3. W.I. Axford, E. Leer, G. Skadron, The acceleration of cosmic rays by shock waves, in Proc. Int. Conf. Cosmic Rays 15th, vol. 11, (1977), p. 132 Google Scholar
  4. D. Band et al., Batse observations of gamma ray burst spectra. 1—Spectral diversity. Astrophys. J. 413, 281 (1993) ADSCrossRefGoogle Scholar
  5. A.R. Bell, The acceleration of cosmic rays in shock fronts. Mon. Not. R. Astron. Soc. 182, 147 (1978) ADSGoogle Scholar
  6. A.R. Bell, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353, 550 (2004) ADSCrossRefGoogle Scholar
  7. A.R. Bell, S.G. Lucek, Cosmic ray acceleration to very high energy through the non-linear amplification by cosmic rays of the seed magnetic field. Mon. Not. R. Astron. Soc. 321, 433 (2001) ADSCrossRefGoogle Scholar
  8. R.D. Blandford, J.P. Ostriker, Particle acceleration by astrophysical shocks. Astrophys. J. 221, L29 (1978) ADSCrossRefGoogle Scholar
  9. P. Bochsler, E. Möbius, Energetic neutral atoms: an additional source for heliospheric pickup ions. Astrophys. J. 721, L6 (2010) ADSCrossRefGoogle Scholar
  10. T.J. Bogdan, M.A. Lee, P. Schneider, Coupled quasi-linear wave damping and stochastic acceleration of pickup ions in the solar wind. J. Geophys. Res. 96, 161 (1991) ADSCrossRefGoogle Scholar
  11. C. Bonifazi, G. Moreno, Reflected and diffuse ions backstreaming from the Earth’s bow shock, 2. Origin. J. Geophys. Res. 86, 4405 (1981) ADSCrossRefGoogle Scholar
  12. H.H. Breneman, E.C. Stone, Solar coronal and photospheric abundances from solar energetic particle measurements. Astrophys. J. 299, L57 (1985) ADSCrossRefGoogle Scholar
  13. D. Burgess, E. Möbius, M. Scholer, Ion acceleration at the Earth’s bow shock. Space Sci. Rev. (2012, this issue). doi: 10.1007/s11214-012-9901-5
  14. M. Bzowski, M. Krolikowska, Are the sungrazing comets the inner source of pickup ions and energetic neutral atoms? Astron. Astrophys. 435, 723 (2005) ADSCrossRefGoogle Scholar
  15. H.V. Cane, T.T. von Rosenvinge, C.M.S. Cohen, R.A. Mewaldt, Two components in major solar particle events. Geophys. Res. Lett. 30, 8017 (2003). doi: 10.1029/2002GL016580 ADSCrossRefGoogle Scholar
  16. H.V. Cane, R.A. Mewaldt, C.M.S. Cohen, T.T. von Rosenvinge, Role of flares and shocks in determining solar energetic particle abundances. J. Geophys. Res. 111, A06S90 (2006). doi: 10.1029/2005JA011071 ADSCrossRefGoogle Scholar
  17. P.J. Cargill, L. Vlahos, G. Baumann, J.F. Drake, A. Nordlund, Current fragmentation and particle acceleration in solar flares. Space Sci. Rev. (2012, this issue). doi: 10.1007/s11214-012-9888-y
  18. S.V. Chalov, H.J. Fahr, Energetic particles from the outer heliosphere appearing as a secondary pick-up ion component. Astron. Astrophys. 401, L1 (2003) ADSCrossRefGoogle Scholar
  19. C.M.S. Cohen et al., New observations of heavy-ion-rich solar particle events from ACE. Geophys. Res. Lett. 26, 2697 (1999a) ADSCrossRefGoogle Scholar
  20. C.M.S. Cohen et al., Inferred charge states of high energy solar particles from the solar isotope spectrometer on ACE. Geophys. Res. Lett. 26, 149 (1999b) ADSCrossRefGoogle Scholar
  21. C.M.S. Cohen et al., Heavy ion abundances and spectra from the large solar energetic particle events of October-November 2003. J. Geophys. Res. 110, A09S16 (2005). doi: 10.1029/2005JA011004 ADSCrossRefGoogle Scholar
  22. R.B. Decker, The modulation of low-energy proton distributions by propagating interplanetary shock waves: a numerical simulation. J. Geophys. Res. 86, 4537 (1981) ADSCrossRefGoogle Scholar
  23. M.I. Desai et al., Spectral properties of heavy ions associated with the passage of interplanetary shocks at 1 AU. Astrophys. J. 611, 1156 (2004) ADSCrossRefGoogle Scholar
  24. M.I. Desai et al., Heavy-ion elemental abundances in large solar energetic particle events and their implications for the seed population. Astrophys. J. 649, 470 (2006a) ADSCrossRefGoogle Scholar
  25. M.I. Desai, G.M. Mason, J.E. Mazur, J.R. Dwyer, Solar cycle variations in the composition of the suprathermal heavy-ion population near 1 AU. Astrophys. J. 645, L81 (2006b) ADSCrossRefGoogle Scholar
  26. L.O’C. Drury, An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep. Prog. Phys. 46, 973 (1983) ADSCrossRefGoogle Scholar
  27. L.O’C. Drury, W.I. Axford, D. Summers, Particle acceleration in modified shocks. Mon. Not. R. Astron. Soc. 198, 833 (1982) ADSzbMATHGoogle Scholar
  28. J.A. Earl, The effect of adiabatic focusing upon charged particle propagation in random magnetic fields. Astrophys. J. 205, 900 (1976) ADSCrossRefGoogle Scholar
  29. D. Eichler, A cosmic ray mediated shock in the solar system. Astrophys. J. 247, 1089 (1981) ADSCrossRefGoogle Scholar
  30. D.C. Ellison, R. Ramaty, Shock acceleration of electrons and ions in solar flares. Astrophys. J. 298, 400 (1985) ADSCrossRefGoogle Scholar
  31. A.G. Emslie et al., Energy partition in two solar flare/CME events. J. Geophys. Res. 109, A10104 (2004). doi: 10.1029/2004JA010571 ADSCrossRefGoogle Scholar
  32. A.G. Emslie, B.R. Dennis, G.D. Holman, H.S. Hudson, Refinements to flare energy estimates: a followup to “Energy partition in two solar flare/CME events” by A.G. Emslie et al. J. Geophys. Res. 110, A11103 (2005). doi: 10.1029/2005JA011305 ADSCrossRefGoogle Scholar
  33. A. Falcone et al., Observation of GeV solar energetic particles from the 1997 November 6 event using Milagrito. Astrophys. J. 588, 557 (2003) ADSCrossRefGoogle Scholar
  34. E. Fermi, On the origin of the cosmic radiation. Phys. Rev. 75, 1169 (1949) ADSzbMATHCrossRefGoogle Scholar
  35. E. Fermi, Galactic magnetic fields and the origin of cosmic radiation. Astrophys. J. 119, 1 (1954) ADSCrossRefGoogle Scholar
  36. L.A. Fisk, G. Gloeckler, Acceleration of suprathermal tails in the solar wind. Astrophys. J. 686, 1466 (2008) ADSCrossRefGoogle Scholar
  37. L.A. Fisk, G. Gloeckler, Particle acceleration in the heliosphere: implications for astrophysics. Space Sci. Rev. (2012, this issue). doi: 10.1007/s11214-012-9899-8
  38. L.A. Fisk, M.A. Lee, Shock acceleration of energetic particles in corotating interaction regions in the solar wind. Astrophys. J. 237, 620 (1980) ADSCrossRefGoogle Scholar
  39. V. Florinski, R.B. Decker, J.A. le Roux, G.P. Zank, An energetic-particle-mediated termination shock observed by Voyager 2. Geophys. Res. Lett. 36, L12101 (2009). doi: 10.1029/2009GL038423 ADSCrossRefGoogle Scholar
  40. S.E. Forbush, Three unusual cosmic-ray increases possibly due to charged particles from the Sun. Phys. Rev. 70, 771 (1946) ADSCrossRefGoogle Scholar
  41. M.A. Forman, L.O’C. Drury, Time dependent shock acceleration: approximations and exact solutions, in Proc. Int. Conf. Cosmic Rays 18th, vol. 2 (1983), p. 267 Google Scholar
  42. J. Geiss, G. Gloeckler, L.A. Fisk, R. von Steiger, C+ pickup ions in the heliosphere and their origin. J. Geophys. Res. 100, 23373 (1995) ADSCrossRefGoogle Scholar
  43. J. Giacalone, The efficient acceleration of thermal protons by perpendicular shocks. Astrophys. J. 628, L37 (2005) ADSCrossRefGoogle Scholar
  44. J. Giacalone, J.R. Jokipii, The transport of cosmic rays across a turbulent magnetic field. Astrophys. J. 520, 204 (1999) ADSCrossRefGoogle Scholar
  45. J. Giacalone, J.R. Jokipii, Magnetic field amplification by shocks in turbulent fluids. Astrophys. J. 663, L41 (2007) ADSCrossRefGoogle Scholar
  46. J. Giacalone, J.R. Jokipii, Suprathermal ions associated with strong interplanetary shocks, in Particle Acceleration and Transport. AIP Conf. Proc., vol. 1436 (AIP, New York, 2012), p. 130 Google Scholar
  47. J. Giacalone, M. Neugebauer, The energy spectrum of energetic particles downstream of turbulent collisionless shocks. Astrophys. J. 673, 629 (2008) ADSCrossRefGoogle Scholar
  48. J. Giacalone, J.F. Drake, J.R. Jokipii, The acceleration mechanism of anomalous cosmic rays. Space Sci. Rev. (2012, this issue). doi: 10.1007/s11214-012-9915-z
  49. G. Gloeckler et al., Acceleration of interstellar pickup ions in the disturbed solar wind observed on Ulysses. J. Geophys. Res. 99, 17637 (1994) ADSCrossRefGoogle Scholar
  50. G. Gloeckler et al., Interception of comet Hyakutake’s ion tail at a distance of 500 million kilometres. Nature 404, 576 (2000a) ADSCrossRefGoogle Scholar
  51. G. Gloeckler, L.A. Fisk, J. Geiss, N.A. Schwadron, T.H. Zurbuchen, Elemental composition of the inner source pickup ions. J. Geophys. Res. 105, 7459 (2000b) ADSCrossRefGoogle Scholar
  52. G. Gloeckler et al., Sources, injection and acceleration of heliospheric ion populations, in Acceleration and Transport of Energetic Particles Observed the Heliosphere: ACE 2000 Symposium, ed. by R.A. Mewaldt et al., AIP Conference Proceedings, vol. 528 (AIP, New York, 2000c), p. 221 Google Scholar
  53. N. Gopalswamy, Coronal mass ejections of Solar Cycle 23. J. Astrophys. Astron. 27, 243 (2006) ADSCrossRefGoogle Scholar
  54. N. Gopalswamy et al., Interacting coronal mass ejections and solar energetic particles. Astrophys. J. 572, L103 (2002) ADSCrossRefGoogle Scholar
  55. N. Gopalswamy, S. Yashiro, S. Krucker, G. Stenborg, R.A. Howard, Intensity variation of large solar energetic particle events associated with coronal mass ejections. J. Geophys. Res. 109, A12105 (2004). doi: 10.1029/2004JA010602 ADSCrossRefGoogle Scholar
  56. N. Gopalswamy, H. Xie, S. Yashiro, S. Akiyama, P. Mäkelä, I.G. Usoskin, Properties of ground level enhancement events and the associated solar eruptions during Solar Cycle 23. Space Sci. Rev. (2012). doi: 10.1007/s11214-012-9890-4 Google Scholar
  57. B.E. Gordon, M.A. Lee, E. Möbius, K.J. Trattner, Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks and Earth’s bow shock revisited. J. Geophys. Res. 104, 28263 (1999) ADSCrossRefGoogle Scholar
  58. T. Hada, C.F. Kennel, T. Terasawa, Excitation of compressional waves and the formation of shocklets in the Earth’s foreshock. J. Geophys. Res. 92, 4423 (1987) ADSCrossRefGoogle Scholar
  59. E.A. Helder, J. Vink, A.M. Bykov, Y. Ohira, J.C. Raymond, R. Terrier, Observational signatures of particle acceleration in supernova remnants. Space Sci. Rev. (2012, this issue). doi: 10.1007/s11214-012-9919-8
  60. M.M. Hoppe, C.T. Russell, L.A. Frank, T.E. Eastman, E.W. Greenstadt, Upstream hydromagnetic waves and their association with backstreaming ion populations—ISEE 1 and 2 observations. J. Geophys. Res. 86, 4471 (1981) ADSCrossRefGoogle Scholar
  61. P.D. Hudson, Reflection of charged particles by plasma shocks. Mon. Not. R. Astron. Soc. 131, 23 (1965) ADSGoogle Scholar
  62. P.A. Isenberg, A hemispherical model of anisotropic interstellar pickup ions. J. Geophys. Res. 102, 4719 (1997) ADSCrossRefGoogle Scholar
  63. J.R. Jokipii, Propagation of cosmic rays in the solar wind. Rev. Geophys. Space Phys. 9, 27 (1971) ADSCrossRefGoogle Scholar
  64. J.R. Jokipii, Rate of energy gain and maximum energy in diffusive shock acceleration. Astrophys. J. 313, 842 (1987) ADSCrossRefGoogle Scholar
  65. J.R. Jokipii, M.A. Lee, Compression acceleration in astrophysical plasmas and the production of f(v)∝v −5 spectra in the heliosphere. Astrophys. J. 713, 475 (2010) ADSCrossRefGoogle Scholar
  66. S.W. Kahler, The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: effects of ambient particle intensities and energy spectra. J. Geophys. Res. 106, 20947 (2001) ADSCrossRefGoogle Scholar
  67. S.W. Kahler et al., Associations between coronal mass ejections and solar energetic proton events. J. Geophys. Res. 89, 9683 (1984) ADSCrossRefGoogle Scholar
  68. C.F. Kennel, F.V. Coroniti, F.L. Scarf, W.A. Livesey, C.T. Russell, E.J. Smith, A test of Lee’s quasi-linear theory of ion acceleration by interplanetary traveling shocks. J. Geophys. Res. 91, 11917 (1986) ADSCrossRefGoogle Scholar
  69. B. Klecker, E. Möbius, M.A. Popecki, Ionic charge states of solar energetic particles: a clue to the source. Space Sci. Rev. 130, 273 (2007) ADSCrossRefGoogle Scholar
  70. J. Kota, Anomalous cosmic rays at a blunt termination shock, in Proc. Int. Conf. Cosmic Rays 30th, vol. 1 (2008), p. 853 Google Scholar
  71. G.F. Krymsky, A regular mechanism for the acceleration of charged particles on the front of a shock wave. Dokl. Akad. Nauk SSSR 234, 1306 (1977) ADSGoogle Scholar
  72. H. Kucharek et al., On the source and acceleration of energetic He+: a long-term observation with ACE/SEPICA. J. Geophys. Res. 108(A10), 8040 (2003). doi: 10.1029/2003JA009938 CrossRefGoogle Scholar
  73. D. Lario, G.C. Ho, R.B. Decker, E.C. Roelof, M.I. Desai, C.W. Smith, ACE observations of energetic particles associated with transient interplanetary shocks, in Solar Wind Ten. AIP Conference Proceedings, vol. 679 (AIP, New York, 2003) 640 Google Scholar
  74. M.A. Lee, Coupled hydromagnetic wave excitation and ion acceleration upstream of the Earth’s bow shock. J. Geophys. Res. 87, 5063 (1982) ADSCrossRefGoogle Scholar
  75. M.A. Lee, Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks. J. Geophys. Res. 88, 6109 (1983) ADSCrossRefGoogle Scholar
  76. M.A. Lee, Coupled hydromagnetic wave excitation and ion acceleration at an evolving coronal/interplanetary shock. Astrophys. J. Suppl. 158, 38 (2005) ADSCrossRefGoogle Scholar
  77. M.A. Lee, H.J. Völk, Hydromagnetic waves and cosmic ray diffusion theory. Astrophys. J. 198, 485 (1975) ADSCrossRefGoogle Scholar
  78. R.A. Leske et al., Solar isotopic composition as determined using solar energetic particles. Space Sci. Rev. 130, 195 (2007). doi: 10.1007/s11214-007-9185-3 ADSCrossRefGoogle Scholar
  79. G. Li, G.P. Zank, Mixed particle acceleration at CME-driven shocks and flares. Geophys. Res. Lett. 32, L02101 (2005a). doi: 10.1029/2004GL021250 CrossRefGoogle Scholar
  80. G. Li, G.P. Zank, Multiple CMEs and large gradual SEP events, in Proc. Int. Conf. Cosmic Rays 29th, vol. 1 (2005b), p. 173 Google Scholar
  81. G. Li, G.P. Zank, W.K.M. Rice, Acceleration and transport of heavy ions at coronal mass ejection-driven shocks. J. Geophys. Res. 110, A06104 (2005). doi: 10.1029/2004JA010600 ADSCrossRefGoogle Scholar
  82. G. Li et al., Shock geometry and spectral breaks in large SEP events. Astrophys. J. 702, 998 (2009) ADSCrossRefGoogle Scholar
  83. G. Li, R. Moore, R.A. Mewaldt, L. Zhao, A.W. Labrador, A twin-CME scenario for ground level enhancement events. Space Sci. Rev. (2012). doi: 10.1007/s11214-011-9823-7 Google Scholar
  84. R.P. Lin, Energy release and particle acceleration in flares: summary and future prospects. Space Sci. Rev. 159, 421 (2011). doi: 10.1007/s11214-011-9801-0 ADSCrossRefGoogle Scholar
  85. C. Lopate, Fifty years of ground level solar particle event observations, in Solar Eruptions and Energetic Particles, ed. by N. Gopalswamy, R.A. Mewaldt, J. Torsti, AGU Monograph Series (AGU, Washington, 2006), p. 283 CrossRefGoogle Scholar
  86. E.A. Lucek, T.S. Horbury, I. Dandouras, H. Reme, Cluster observations of the Earth’s quasi-parallel bow shock. J. Geophys. Res. 113, A07S02 (2008). doi: 10.1029/2007JA012756 ADSCrossRefGoogle Scholar
  87. G. Mann, A. Klassen, H. Aurass, H.-T. Classen, Formation and development of shock waves in the solar corona and the near-Sun interplanetary space. Astron. Astrophys. 400, 329 (2003) ADSCrossRefGoogle Scholar
  88. G.M. Mason et al., Particle acceleration and sources in the November 1997 solar energetic particle events. Geophys. Res. Lett. 26, 141 (1999a) ADSCrossRefGoogle Scholar
  89. G.M. Mason, J.E. Mazur, J.R. Dwyer, 3He enhancements in large solar energetic particle events. Astrophys. J. 525, L133 (1999b) ADSCrossRefGoogle Scholar
  90. G.M. Mason et al., Abundances of heavy and ultraheavy ions in 3He-rich solar flares. Astrophys. J. 606, 555 (2004) ADSCrossRefGoogle Scholar
  91. S. Masson et al., Acceleration of relativistic protons during the 20 January 2005 flare and CME. Sol. Phys. 257, 305 (2009) ADSCrossRefGoogle Scholar
  92. J.E. Mazur, G.M. Mason, M.D. Looper, R.A. Leske, R.A. Mewaldt, Charge states of solar energetic particles using the geomagnetic cutoff technique: SAMPEX measurements in the 6 November 1997 solar particle event. Geophys. Res. Lett. 26, 173 (1999) ADSCrossRefGoogle Scholar
  93. D.J. McComas, N.A. Schwadron, An explanation of the Voyager paradox: particle acceleration at a blunt termination shock. Geophys. Res. Lett. 33, L04102 (2006). doi: 10.1029/2005GL025437 CrossRefGoogle Scholar
  94. K.G. McCracken, H. Moraal, P.H. Stoker, Investigation of the multiple-component structure of the 20 January 2005 cosmic ray ground level enhancement. J. Geophys. Res. 113, A12101 (2008). doi: 10.1029/2007JA012829 ADSCrossRefGoogle Scholar
  95. R.B. McKibben, Azimuthal propogation of low-energy solar-flare protons as observed from spacecraft very widely separated in solar azimuth. J. Geophys. Res. 77, 3957 (1972) ADSCrossRefGoogle Scholar
  96. R.A. Mewaldt, Solar energetic particle composition, energy spectra, and space weather. Space Sci. Rev. 124, 303 (2007). doi: 10.1007/s11214-006-9091-0 ADSCrossRefGoogle Scholar
  97. R.A. Mewaldt et al. (eds.), Acceleration and Transport of Energetic Particles Observed in the Heliosphere: ACE 2000 Symposium. AIP Conference Proceedings, vol. 528 (2000). Cover picture Google Scholar
  98. R.A. Mewaldt et al., Proton, helium, and electron spectra during the large solar particle events of October-November 2003. J. Geophys. Res. 110, A09S18 (2005). doi: 10.1029/2005JA011038 ADSCrossRefGoogle Scholar
  99. R.A. Mewaldt, C.M.S. Cohen, G.M. Mason, The source material for large solar energetic particle events, in Solar Eruptions and Energetic Particles, ed. by N. Gopalswamy, R.A. Mewaldt, J. Torsti, AGU Monograph Series, vol. 165 (2006), p. 115 CrossRefGoogle Scholar
  100. R.A. Mewaldt et al., On the differences in composition between solar energetic particles and solar wind. Space Sci. Rev. 130, 207 (2007) ADSCrossRefGoogle Scholar
  101. R.A. Mewaldt et al., How efficient are coronal mass ejections at accelerating solar energetic particles? in Particle Acceleration and Transport in the Heliosphere and Beyond. AIP Conference Proceedings, vol. 1039 (2008), p. 111 Google Scholar
  102. R.A. Mewaldt et al., STEREO observations of energetic neutral hydrogen atoms during the 2006 December 5 solar flare. Astrophys. J. 693, L11 (2009) ADSCrossRefGoogle Scholar
  103. R.A. Mewaldt et al., Observations and interpretations of energetic neutral hydrogen atoms from the December 5, 2006 solar event, in Twelfth International Solar Wind Conference. AIP Conference Proceedings, vol. 1216 (AIP, New York, 2010), p. 592 Google Scholar
  104. R.A. Mewaldt et al., Energy spectra, composition, and other properties of ground-level events during Solar Cycle 23. Space Sci. Rev. (2012). doi: 10.1007/s11214-012-9884-2 Google Scholar
  105. P.M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), pp. 865–869 zbMATHGoogle Scholar
  106. M. Neugebauer, J. Giacalone, Multispacecraft observations of interplanetary shocks: nonplanarity and energetic particles. J. Geophys. Res. 110, A12106 (2005). doi: 10.1029/2005JA011380 ADSCrossRefGoogle Scholar
  107. M. Neugebauer et al., Encounter of the Ulysses spacecraft with the ion tail of Comet McNaught. Astrophys. J. 667, 1262 (2007) ADSCrossRefGoogle Scholar
  108. C.K. Ng, D.V. Reames, Focused interplanetary transport of approximately 1 MeV solar energetic protons through self-generated Alfvén waves. Astrophys. J. 424, 1032 (1994) ADSCrossRefGoogle Scholar
  109. C.K. Ng, D.V. Reames, A.J. Tylka, Effect of proton-amplified waves on the evolution of solar energetic particle composition in gradual events. Geophys. Res. Lett. 26, 2145 (1999) ADSCrossRefGoogle Scholar
  110. V. Ontiveros, A. Vourlidas, Quantitative measurements of coronal mass ejection-driven shocks from LASCO observations. Astrophys. J. 693, 267 (2009) ADSCrossRefGoogle Scholar
  111. E.N. Parker, The passage of energetic charged particles through interplanetary space. Planet. Space Sci. 13, 9 (1965) ADSCrossRefGoogle Scholar
  112. G. Paschmann et al., Characteristics of reflected and diffuse ions upstream from the Earth’s bow shock. J. Geophys. Res. 86, 4355 (1981) ADSCrossRefGoogle Scholar
  113. V.S. Ptuskin, Cosmic-ray acceleration by long-wave turbulence. Pis’ma Astron. Zh. 14, 599 (1988) ADSGoogle Scholar
  114. V.S. Ptuskin, Propagation, confinement models, and large-scale dynamical effects of galactic cosmic rays. Space Sci. Rev. 99, 281 (2001) ADSCrossRefGoogle Scholar
  115. K.R. Pyle, J.A. Simpson, A. Barnes, J.D. Mihalov, Shock acceleration of nuclei and electrons in the heliosphere beyond 24 AU. Astrophys. J. 282, 107 (1984) ADSCrossRefGoogle Scholar
  116. J.C. Raymond, S. Krucker, R.P. Lin, V. Petrosian, Observational aspects of particle acceleration in large solar flares. Space Sci. Rev. (2012, this issue). doi: 10.1007/s11214-012-9897-x
  117. D.V. Reames, Acceleration of energetic particles by shock waves from large solar flares. Astrophys. J. 358, L63 (1990) ADSCrossRefGoogle Scholar
  118. D.V. Reames, Coronal abundances determined from energetic particles. Adv. Space Res. 15, 41 (1995) ADSCrossRefGoogle Scholar
  119. D.V. Reames, Particle acceleration by CME-driven shock waves, in Proc. Int. Conf. Cosmic Rays 26th. AIP Conference Proceedings, vol. 516 (AIP, New York, 2000), pp. 289–300 Google Scholar
  120. D.V. Reames, C.K. Ng, Streaming-limited intensities of solar energetic particles. Astrophys. J. 504, 1002 (1998) ADSCrossRefGoogle Scholar
  121. D.V. Reames, C.K. Ng, Streaming-limited intensities of solar energetic particles on the intensity plateau. Astrophys. J. 723, 1286 (2010) ADSCrossRefGoogle Scholar
  122. D.V. Reames et al., Energy spectra of ions accelerated in impulsive and gradual solar events. Astrophys. J. 483, 515 (1997a) ADSCrossRefGoogle Scholar
  123. D.V. Reames, S.W. Kahler, C.K. Ng, Spatial and temporal invariance in the spectra of energetic particles in gradual solar events. Astrophys. J. 491, 414 (1997b) ADSCrossRefGoogle Scholar
  124. D.V. Reames et al., Late-phase acceleration of energetic ions in corotating interaction regions. Geophys. Res. Lett. 24, 2917 (1997c) ADSCrossRefGoogle Scholar
  125. E.C. Roelof, Propagation of solar cosmic rays in the interplanetary magnetic field, in Lectures in High-Energy Astrophysics, ed. by H. Ögelman, J.R. Wayland, NASA SP-199 (NASA, Washington, 1969), p. 111 Google Scholar
  126. E.T. Sarris, J.A. Van Allen, Effects of interplanetary shock waves on energetic charged particles. J. Geophys. Res. 79, 4157 (1974) ADSCrossRefGoogle Scholar
  127. K.M. Schure, A.R. Bell, L. O’C. Drury, A.M. Bykov, Diffusive shock acceleration and magnetic field amplification. Space Sci. Rev. (2012, this issue). doi: 10.1007/s11214-012-9871-7
  128. N.A. Schwadron, D.J. McComas, Pickup ions from energetic neutral atoms. Astrophys. J. 712, L157 (2010) ADSCrossRefGoogle Scholar
  129. N.A. Schwadron, M.A. Lee, D.J. McComas, Diffusive acceleration at the blunt termination shock. Astrophys. J. 675, 1584 (2008) ADSCrossRefGoogle Scholar
  130. S.J. Schwartz, D. Burgess, Quasi-parallel shocks—a patchwork of three-dimensional structures. Geophys. Res. Lett. 18, 373 (1991) ADSCrossRefGoogle Scholar
  131. E.C. Stone et al., The advanced composition explorer. Space Sci. Rev. 86, 1 (1998) ADSCrossRefGoogle Scholar
  132. B.T. Tsurutani, E.J. Smith, D.E. Jones, Waves observed upstream of interplanetary shocks. J. Geophys. Res. 88, 5645 (1983) ADSCrossRefGoogle Scholar
  133. A.J. Tylka, W.F. Dietrich, A new and comprehensive analysis of proton spectra in ground-level enhanced (GLE) solar particle events, in Int. Cosmic Ray Conf. 31st (2009). Google Scholar
  134. A.J. Tylka, M.A. Lee, A model for spectral and compositional variability at high energies in large, gradual solar particle events. Astrophys. J. 646, 1319 (2006) ADSCrossRefGoogle Scholar
  135. A.J. Tylka, D.V. Reames, C.K. Ng, Observations of systematic temporal evolution in elemental composition during gradual solar energetic particle events. Geophys. Res. Lett. 26, 2141 (1999) ADSCrossRefGoogle Scholar
  136. A.J. Tylka, P.R. Boberg, R.E. McGuire, C.K. Ng, D.V. Reames, Temporal evolution in the spectra of gradual solar energetic particle events, in Acceleration and Transport of Energetic Particles Observed in the Heliosphere: ACE 2000 Symposium, ed. by R.A. Mewaldt et al., AIP Conference Proceedings, vol. 528 (AIP, New York, 2000), pp. 147–152 Google Scholar
  137. A.J. Tylka et al., Evidence for remnant flare suprathermals in the source population of solar energetic particles in the 2000 Bastille Day event. Astrophys. J. 558, L59 (2001) ADSCrossRefGoogle Scholar
  138. A.J. Tylka et al., Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events. Astrophys. J. 625, 474 (2005) ADSCrossRefGoogle Scholar
  139. R. Vainio, On the generation of Alfvén waves by solar energetic particles. Astron. Astrophys. 406, 735 (2003) ADSCrossRefGoogle Scholar
  140. P. van Nes, R. Reinhard, T.R. Sanderson, K.-P. Wenzel, R.D. Zwickl, The energy spectrum of 35- to 1600-keV protons associated with interplanetary shocks. J. Geophys. Res. 89, 2122 (1984) ADSCrossRefGoogle Scholar
  141. L. Wang, R.P. Lin, S. Krucker, G.M. Mason, A statistical study of solar electron events over one solar cycle. Astrophys. J. (2012, submitted) Google Scholar
  142. M.E. Wiedenbeck et al., How common is energetic 3He in the inner heliosphere? in Solar Wind 10 Proceedings of the Tenth International Solar Wind Conference, ed. by M. Velli, R. Bruno, F. Malara, AIP Conf. Proc., vol. 679 (AIP, New York, 2003), pp. 652–655 Google Scholar
  143. G.P. Zank, G. Li, V. Florinski, Q. Hu, D. Lario, C.W. Smith, Particle acceleration at perpendicular shock waves: model and observations. J. Geophys. Res. 111, A06108 (2006). doi: 10.1029/2005JA011524 ADSCrossRefGoogle Scholar
  144. M. Zhang, M.A. Lee, Stochastic acceleration of energetic particles in the heliosphere. Space Sci. Rev. (2011). doi: 10.1007/s11214-011-9754-3 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Space Science CenterUniversity of New HampshireDurhamUSA
  2. 2.290-17 Cahill LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Department of Planetary SciencesUniversity of ArizonaTucsonUSA

Personalised recommendations