Advertisement

Space Science Reviews

, Volume 170, Issue 1–4, pp 583–640 | Cite as

REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover

  • J. Gómez-ElviraEmail author
  • C. Armiens
  • L. Castañer
  • M. Domínguez
  • M. Genzer
  • F. Gómez
  • R. Haberle
  • A.-M. Harri
  • V. Jiménez
  • H. Kahanpää
  • L. Kowalski
  • A. Lepinette
  • J. Martín
  • J. Martínez-Frías
  • I. McEwan
  • L. Mora
  • J. Moreno
  • S. Navarro
  • M. A. de Pablo
  • V. Peinado
  • A. Peña
  • J. Polkko
  • M. Ramos
  • N. O. Renno
  • J. Ricart
  • M. Richardson
  • J. Rodríguez-Manfredi
  • J. Romeral
  • E. Sebastián
  • J. Serrano
  • M. de la Torre Juárez
  • J. Torres
  • F. Torrero
  • R. Urquí
  • L. Vázquez
  • T. Velasco
  • J. Verdasca
  • M.-P. Zorzano
  • J. Martín-Torres
Article

Abstract

The Rover Environmental Monitoring Station (REMS) will investigate environmental factors directly tied to current habitability at the Martian surface during the Mars Science Laboratory (MSL) mission. Three major habitability factors are addressed by REMS: the thermal environment, ultraviolet irradiation, and water cycling. The thermal environment is determined by a mixture of processes, chief amongst these being the meteorological. Accordingly, the REMS sensors have been designed to record air and ground temperatures, pressure, relative humidity, wind speed in the horizontal and vertical directions, as well as ultraviolet radiation in different bands. These sensors are distributed over the rover in four places: two booms located on the MSL Remote Sensing Mast, the ultraviolet sensor on the rover deck, and the pressure sensor inside the rover body. Typical daily REMS observations will collect 180 minutes of data from all sensors simultaneously (arranged in 5 minute hourly samples plus 60 additional minutes taken at times to be decided during the course of the mission). REMS will add significantly to the environmental record collected by prior missions through the range of simultaneous observations including water vapor; the ability to take measurements routinely through the night; the intended minimum of one Martian year of observations; and the first measurement of surface UV irradiation. In this paper, we describe the scientific potential of REMS measurements and describe in detail the sensors that constitute REMS and the calibration procedures.

Keywords

Mars Mars Science Laboratory Atmosphere Meteorology Pressure Relative Humidity Wind Ultraviolet radiation Temperature 

Notes

Acknowledgements

The authors thank José Barrera and all the great professionals from EADS-CRISA, which have participated in the project. We also wish to thank Jon Merrison from Aarhus University, for his collaboration on the wind tunnel tests with the wind sensor breadboards, as well as the team from Oxford University who also participated in the initial testing. Finally our thanks to the two reviewers of this paper and Ashwin Vasavada for their comments, which greatly helped to improve it.

The authors thanks to the Centro de Desarrollo Tecnológico e Industrial (CDTI), Ministerio de Economía y Competitividad (ESP2006-27267, ESP2007-65862, AYA2011-25720) and Instituto Nacional de Técnica Aeroespacial (INTA) of Spain for funding the project.

References

  1. G. Amaral, J. Martínez-Frías, L. Vázquez, World Appl. Sci. J. 2, 112–116 (2007) Google Scholar
  2. C.A. Barth, C.W. Hord, Science 173, 197–201 (1971) ADSCrossRefGoogle Scholar
  3. C.A. Barth, C.W. Hord, A.I. Stewart, A.L. Lane, M.L. Dick, G.P. Anderson, Science 179, 795–796 (1973) ADSCrossRefGoogle Scholar
  4. T. Chamberlain, H.L. Cole, R.G. Dutton, G.C. Greene, J.E. Tillman, Bull. Am. Metereol. Soc. 57, 1094–1104 (1976) CrossRefGoogle Scholar
  5. C.S. Cockell, D.C. Catling, W.L. Davis, K. Snook, R.L. Kepner, P. Lee, C.P. McKay, Icarus 146, 343–359 (2000) ADSCrossRefGoogle Scholar
  6. C. Cordoba-Jabonero, L.M. Lara, A.M. Mancho, A. Marquez, R. Rodrigo, Planet. Space Sci. 51, 399–410 (2003) ADSCrossRefGoogle Scholar
  7. C. Cordoba-Jabonero, M.-P. Zorzano, F. Selsis, M.R. Patel, C.S. Cockell, Icarus 175, 360–371 (2005) ADSCrossRefGoogle Scholar
  8. L.P. Daniel, NASA technical memorandum 102578 (1990) Google Scholar
  9. M. Domínguez, V. Jimenez, J. Ricart, L. Kowakski, J. Torres, S. Navarro, J. Romeral, L. Castañer, Planet. Space Sci. 56, 1169–1179 (2008) ADSCrossRefGoogle Scholar
  10. F. Ferri, P.H. Smith, M. Lemmon, N. Renno, J. Geophys. Res. 108, 5133 (2003) CrossRefGoogle Scholar
  11. J.A. Fisher, M.I. Richardson, C.E. Newman, M.A. Szwast, C. Graf, S. Basu, S.P. Ewald, A.D. Toigo, R.J. Wilson, J. Geophys. Res. 110, E03004 (2005) ADSCrossRefGoogle Scholar
  12. F. Forget, F. Hourdin, R. Fournier, C. Hourdin, O. Talagrand, M. Collins, S.R. Lewis, P.L. Read, J.-P. Huot, J. Geophys. Res. 104, 24155–24176 (1999) ADSCrossRefGoogle Scholar
  13. R. Greeley, D.A. Waller, N.A. Cabrol, G.A. Landis, M.T. Lemmon, L.D.V. Neakrase, M. Pendleton Hoffer, S.D. Thompson, P.L. Whelley, J. Geophys. Res. 115, E00F02 (2010) ADSCrossRefGoogle Scholar
  14. F. Gómez, E. Mateo-Martí, O. Prieto-Ballesteros, J. Martín-Gago, R. Amils, Icarus 209, 482–487 (2010) ADSCrossRefGoogle Scholar
  15. R.M. Haberle, H. Houben, R. Hertenstein, T. Herdtle, J. Atmos. Sci. 50, 1544–1559 (1993a) ADSCrossRefGoogle Scholar
  16. R.M. Haberle, J.B. Pollack, J.R. Barnes, R.W. Zurek, C.B. Leovy, J.R. Murphy, H. Lee, J. Schaeffer, J. Geophys. Res. 98, 3093–3123 (1993b) ADSCrossRefGoogle Scholar
  17. R.M. Haberle, M. Kahre, Mars 4, 68–75 (2010) ADSCrossRefGoogle Scholar
  18. A.-M. Harri, B. Fagerström, A. Lehto, G. Leppelmeier, T. Mäkinen, R. Pirjola, T. Siikonen, T. Siili, Planet. Space Sci. 46, 1383–1392 (1998a) ADSCrossRefGoogle Scholar
  19. A.-M. Harri, V. Linkin, J. Polkko, M. Marov, J.-P. Pommereau, A. Lipatov, T. Siili, K. Manuilov, V. Lebedev, A. Lehto, R. Pellinen, R. Pirjola, T. Carpentier, C. Malique, V. Makarov, L. Khloustova, L. Esposito, J. Maki, G. Lawrence, V. Lystev, Planet. Space Sci. 46, 779–793 (1998b) ADSCrossRefGoogle Scholar
  20. A.-M. Harri, T. Mäkinen, A. Lehto, H. Kahanpää, T. Siili, Planet. Space Sci. 54, 1117–1123 (2006) ADSCrossRefGoogle Scholar
  21. D.P. Hinson, M. Pátzold, S. Tellmann, B. Háusler, G.L. Tyler, Icarus 198, 57–66 (2008) ADSCrossRefGoogle Scholar
  22. C. Holstein-Rathlou et al., J. Geophys. Res. 115, E00E18 (2010) ADSCrossRefGoogle Scholar
  23. B.M. Jakosky, A.P. Zent, R.W. Zurek, Icarus 130, 87–95 (1997) ADSCrossRefGoogle Scholar
  24. B.M. Jakosky, R.M. Haberle, R.E. Arvidson, Science 310, 1439–1440 (2005) CrossRefGoogle Scholar
  25. P.B. James, R.T. Clancy, S.W. Lee, L.J. Martin, R.B. Singer, E. Smith, R.A. Kahnand, R.W. Zurek, Icarus 109, 79–101 (1994) ADSCrossRefGoogle Scholar
  26. H. Kieffer, G. Neugebauer, G. Munch, J.R. Chase, E. Miner, Icarus 16, 47–56 (1972) ADSCrossRefGoogle Scholar
  27. A. Kliore, D.L. Cain, G.S. Levy, R. von Eshlema, G. Fjeldbo, D.F. Drake, Science 149, 1243–1248 (1965) ADSCrossRefGoogle Scholar
  28. S.E. Larsen, H.E. Jørgensen, L. Landberg, J.E. Tillman, Bound.-Layer Meteorol. 105, 451–470 (2002) ADSCrossRefGoogle Scholar
  29. M.C. Malin, M.A. Caplinger, S.D. Davis, Science 294, 2146–2148 (2001) ADSCrossRefGoogle Scholar
  30. M.P. Martín-Redondo, S. Martínez, M.T. Fernández Sampedro, C. Armiens, J. Gómez-Elvira, J. Martinez-Frias, J. Environ. Monit. 11, 1428–1432 (2009) CrossRefGoogle Scholar
  31. D.J. McCleese, N.G. Heavens, J.T. Schofield, W.A. Abdou, J.L. Bandfield, S.B. Calcutt, P.G.J. Irwin, D.M. Kass, A. Kleinböhl, S.R. Lewis, D.A. Paige, P.L. Read, M.I. Richardson, J.H. Shirley, F.W. Taylor, N. Teanby, R.W. Zurek, J. Geophys. Res. 115, E12016 (2010) ADSCrossRefGoogle Scholar
  32. V.I. Moroz, E.V. Petrova, L.V. Ksanfomality, Planet. Space Sci. 41, 569–585 (1993) ADSCrossRefGoogle Scholar
  33. D.W. Mueller Jr., H.I. Abu-Mulaweh, Appl. Therm. Eng. 26, 1662–1668 (2006) CrossRefGoogle Scholar
  34. L.M. Mukhin, A.P. Koscheev, Y.P. Dikov, J. Hurth, H. Ranke, Nature 379, 141 (1996) ADSCrossRefGoogle Scholar
  35. M.R. Patel, J.C. Zarnecki, D.C. Catling, Planet. Space Sci. 50, 915–927 (2002) ADSCrossRefGoogle Scholar
  36. M.R. Patel, A. Bérces, C. Kolb, P. Rettberg, J.C. Zarnecki, F. Selsis, Int. J. Astrobiol. 2, 21–34 (2003) CrossRefGoogle Scholar
  37. M.R. Patel, A. Bärces, T. Kerekgyarto, G. Ronto, H. Lammer, J.C. Zarnecki, Adv. Space Res. 33, 1247–1252 (2004a) ADSCrossRefGoogle Scholar
  38. M.R. Patel, A.A. Christou, C.S. Cockell, T.J. Ringrose, J.C. Zarnecki, Icarus 168, 93–115 (2004b) ADSCrossRefGoogle Scholar
  39. S. Perrier, J.L. Bertaux, F. Lefevre, S. Lebonnois, O. Korablev, A. Fedorova, F. Montmessin, J. Geophys. Res. 111, E09S06 (2006) ADSCrossRefGoogle Scholar
  40. A. Petrosyan, B. Galperin, S.E. Larsen, S. Lewis, A. Maattanen, N. Renno, P. Rogberg, H. Savijärvi, T. Siili, A. Spiga, A. Toigo, L. Vazquez, Rev. Geophys. 49, RG3005 (2011) ADSCrossRefGoogle Scholar
  41. R.C. Quin, A.P. Zent, C.P. McKay, in Lunar Planet. Sci. Conf. XXXII, Houston, Texas, Boston (2001) Google Scholar
  42. S.C. Rafkin, R.M. Haberle, T.I. Michaels, Icarus 151, 228–256 (2001) ADSCrossRefGoogle Scholar
  43. M. Ramos, M.A. de Pablo, E. Sebastián, C. Armiens, J. Gómez-Elvira, Cold Reg. Sci. Technol. 72, 23–32 (2012) CrossRefGoogle Scholar
  44. M.I. Richardson, A.D. Toigo, C.E. Newman, J. Geophys. Res. 112, E09001 (2007) ADSCrossRefGoogle Scholar
  45. N.O. Renno, A.A. Nash, J. Lunine, J. Murphy, J. Geophys. Res. 105(E1), 1859–1865 (2000) ADSCrossRefGoogle Scholar
  46. R. Rodrigo, E. García-Alvarez, M.J. López-Gonzalez, J. Lopez-Moreno, J. Geophys. Res. 95, 14795–14810 (1990) ADSCrossRefGoogle Scholar
  47. E. Sebastián, C. Armiens, J. Gómez-Elvira, Appl. Therm. Eng. 30, 2403–2411 (2010) CrossRefGoogle Scholar
  48. E. Sebastián, C. Armiens, J. Gómez-Elvira, Infrared Phys. Technol. 54, 75–83 (2011) ADSCrossRefGoogle Scholar
  49. A. Seiff, J. Tilman, J.R. Murphy, J.T. Schofield, D. Crisp, J.R. Barnes, C. LaBaw, C. Mahoney, J.D. Mihalov, G.R. Wilson, R. Haberle, J. Geophys. Res. 102, 4045–4056 (1997) ADSCrossRefGoogle Scholar
  50. M.D. Smith, M.J. Wolff, N. Spanovich, A. Ghosh, D. Banfield, P.R. Christensen, G.A. Landis, S.W. Squyres, J. Geophys. Res. 111, E12S13 (2006) ADSCrossRefGoogle Scholar
  51. M.D. Smith, Annu. Rev. Earth Planet. Sci. 36, 191–219 (2008) ADSCrossRefGoogle Scholar
  52. R. Sullivan, D. Banfield, J.F. Bell III, W. Calvin, D. Fike, M. Golombek, R. Greeley, J. Grotzinger, K. Herkenhoff, D. Jerolmack, M. Malin, D. Ming, L.A. Soderblom, S.W. Squyres, S. Thompson, W.A. Watters, C.M. Weitz, A. Yen, Nature 436, 58–61 (2005) ADSCrossRefGoogle Scholar
  53. P.A. Taylor, D.C. Catling, M. Daly, C.S. Dickinson, H.P. Gunnlaugsson, A.-M. Harri, C.F. Lange, J. Geophys. Res. 113, E00A10 (2008) ADSCrossRefGoogle Scholar
  54. P.A. Taylor, H. Kahanpää, W. Weng, A. Akingunola, C. Cook, M. Daly, C. Dickinson, A. Harri, D. Hill, V. Hipkin, J. Polkko, J. Whiteway, J. Geophys. Res. 115, E00E15 (2010) ADSCrossRefGoogle Scholar
  55. J.E. Tillman, N.C. Johnson, P. Guttorp, D.B. Percival, J. Geophys. Res. 98(E6), 10,963–10,971 (1993) ADSCrossRefGoogle Scholar
  56. J.E. Tillman, L. Landberg, S.E. Larsen, J. Atmos. Sci. 51, 1709–1727 (1994) ADSCrossRefGoogle Scholar
  57. L. Vázquez, M.-P. Zorzano, S. Jimenez, Opt. Lett. 32, 2596–2598 (2007) ADSCrossRefGoogle Scholar
  58. M.J. Wolff, R.T. Clancy, J.D. Goguen, M.C. Malin, B.A. Cantor, Icarus 208, 143–155 (2010) ADSCrossRefGoogle Scholar
  59. A.S. Yen, S.S. Kim, M.H. Hecht, M.S. Frant, B. Murray, Science 289, 1909–1912 (2000) ADSCrossRefGoogle Scholar
  60. M.-P. Zorzano, C. Córdoba-Jabonero, Icarus 190, 492–503 (2007) ADSCrossRefGoogle Scholar
  61. M.-P. Zorzano, L. Vázquez, S. Jimenez, Inverse Probl. 25, 115023–115032 (2009) ADSCrossRefGoogle Scholar
  62. M.-P. Zorzano, J. Martín-Soler, J. Gómez-Elvira, in UV Photodiodes Response to Non-normal, Non-colimated and Diffusive Sources of Irradiance, ed. by J.-W. Shi, Photodiodes—Communications, Bio-Sensings, Measurements and High-Energy Physics (InTech Publishers, Shanghai, 2011). ISBN:978-953-307-277-7 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • J. Gómez-Elvira
    • 1
    Email author
  • C. Armiens
    • 1
  • L. Castañer
    • 3
  • M. Domínguez
    • 3
  • M. Genzer
    • 8
  • F. Gómez
    • 1
  • R. Haberle
    • 9
  • A.-M. Harri
    • 8
  • V. Jiménez
    • 3
  • H. Kahanpää
    • 8
  • L. Kowalski
    • 3
  • A. Lepinette
    • 1
  • J. Martín
    • 1
  • J. Martínez-Frías
    • 1
  • I. McEwan
    • 2
  • L. Mora
    • 1
  • J. Moreno
    • 6
  • S. Navarro
    • 1
  • M. A. de Pablo
    • 4
  • V. Peinado
    • 1
  • A. Peña
    • 6
  • J. Polkko
    • 8
  • M. Ramos
    • 4
  • N. O. Renno
    • 7
  • J. Ricart
    • 3
  • M. Richardson
    • 2
  • J. Rodríguez-Manfredi
    • 1
  • J. Romeral
    • 1
  • E. Sebastián
    • 1
  • J. Serrano
    • 6
  • M. de la Torre Juárez
    • 5
  • J. Torres
    • 1
  • F. Torrero
    • 6
  • R. Urquí
    • 10
  • L. Vázquez
    • 11
  • T. Velasco
    • 6
  • J. Verdasca
    • 1
  • M.-P. Zorzano
    • 1
  • J. Martín-Torres
    • 1
  1. 1.Centro de Astrobiología (CSIC-INTA)MadridSpain
  2. 2.Ashima ResearchPasadenaUSA
  3. 3.Universidad Politécnica de CataluñaBarcelonaSpain
  4. 4.Universidad de Alcalá de HenaresAlcalá de HenaresSpain
  5. 5.Jet Propulsion LaboratoryPasadenaUSA
  6. 6.EADS-CRISATres CantosSpain
  7. 7.Michigan UniversityAnn ArborUSA
  8. 8.FMIHelsinkiFinland
  9. 9.NASA Ames Research CenterMoffet FieldUSA
  10. 10.INSAMadridSpain
  11. 11.Universidad Complutence de MadridMadridSpain

Personalised recommendations