The Radiation Assessment Detector (RAD) Investigation
Abstract
The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) is an energetic particle detector designed to measure a broad spectrum of energetic particle radiation. It will make the first-ever direct radiation measurements on the surface of Mars, detecting galactic cosmic rays, solar energetic particles, secondary neutrons, and other secondary particles created both in the atmosphere and in the Martian regolith. The radiation environment on Mars, both past and present, may have implications for habitability and the ability to sustain life. Radiation exposure is also a major concern for future human missions. The RAD instrument combines charged- and neutral-particle detection capability over a wide dynamic range in a compact, low-mass, low-power instrument. These capabilities are required in order to measure all the important components of the radiation environment.
RAD consists of the RAD Sensor Head (RSH) and the RAD Electronics Box (REB) integrated together in a small, compact volume. The RSH contains a solid-state detector telescope with three silicon PIN diodes for charged particle detection, a thallium doped Cesium Iodide scintillator, plastic scintillators for neutron detection and anti-coincidence shielding, and the front-end electronics. The REB contains three circuit boards, one with a novel mixed-signal ASIC for processing analog signals and an associated control FPGA, another with a second FPGA to communicate with the rover and perform onboard analysis of science data, and a third board with power supplies and power cycling or “sleep”-control electronics. The latter enables autonomous operation, independent of commands from the rover. RAD is a highly capable and highly configurable instrument that paves the way for future compact energetic particle detectors in space.
Keywords
MSL Mars Science Laboratory Mars Mars radiation environment Radiation Human exploration detectors in spaceNotes
Acknowledgements
RAD is supported by NASA (HEOMD) under JPL subcontract #1273039 to Southwest Research Institute and in Germany by DLR and DLR’s Space Administration grant 50QM0501 to the Christian-Albrechts-University (CAU) Kiel. We would like to extend a huge thanks to Jeff Simmonds (MSL Payload Manager) and the Project Science Team John Grotzinger, Joy Crisp, and Ashwin Vasvada, the NASA Program Scientist Michael Meyer, and the first Project Scientist Edward Stolper. We would also like to extend a special thanks to Chris Moore and Gale Allen at NASA HQ (HEOMD) and Heiner Witte at DLR in Germany for their unwavering support of RAD over the years. Support for RAD calibration beam time at BNL/NSRL has been provided by the NASA HRP Program. We also thank the management and operators of the HIMAC facility at NIRS (Chiba, Japan), TSL in Uppsala, Sweden, and iThemba Labs in South Africa for their many hours of excellent beam time and support of RAD calibration.
References
- S. Agostinelli et al., GEANT4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250 (2003) ADSCrossRefGoogle Scholar
- G. Battistoni et al., Hadronic models for cosmic ray physics: the FLUKA code. Nucl. Phys. B 175–176, 88 (2008) Google Scholar
- G.A. Bazilevskaya et al., Cosmic ray induced ion production in the atmosphere. Space Sci. Rev. 137, 149 (2008) ADSCrossRefGoogle Scholar
- J.-P. Bibring et al., Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312(5772), 400 (2006) ADSCrossRefGoogle Scholar
- J.B. Birks, The Theory and Practice of Scintillation Counting (Pergamon Press, New York, 1964) Google Scholar
- D. Blake, D. Vaniman, R. Anderson, D. Bish, S. Chipera, S. Chemtob, J. Crisp et al., The CheMin mineralogical instrument on the Mars Science Laboratory mission, in 40th Lunar and Planetary Science Conference, March 23–27, 2009, Paper #1484 Google Scholar
- W.V. Boynton et al., Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits. Science 297, 81 (2002) ADSCrossRefGoogle Scholar
- W.V. Boynton et al., The Mars Odyssey Gamma-Ray Spectrometer instrument suite. Space Sci. Rev. 110, 37 (2004) ADSCrossRefGoogle Scholar
- M.A. Bullock, J.M. Moore, Atmospheric conditions on early Mars and the missing layered carbonates. Geophys. Res. Lett. 34, L19201 (2007) ADSCrossRefGoogle Scholar
- M.A. Bullock, C.R. Stoker, C.P. McKay, A.P. Zent, A coupled soil-atmosphere model of H2O2 on Mars. Icarus 107, 142 (1994) ADSCrossRefGoogle Scholar
- W.R. Burrus, V.V. Verbinski, Fast-neutron spectroscopy with thick organic scintillators. Nucl. Instrum. Methods 67, 181 (1969) ADSCrossRefGoogle Scholar
- H.V. Cane, L.G. Richardson, T.T. von Rosenvinge, A study of solar energetic particle events of 1997–2006: Their composition and associations. J. Geophys. Res. 115, A08101 (2010) ADSCrossRefGoogle Scholar
- C.R. Chapman, Space weathering of asteroid surfaces. Annu. Rev. Earth Planet. Sci. 32, 539–567 (2004) ADSCrossRefGoogle Scholar
- P. Chowdhury, B.N. Dwivedi, P.C. Ray, Solar modulation of galactic cosmic rays during 19–23 solar cycles. New Astron. 16, 430 (2011) ADSCrossRefGoogle Scholar
- P.R. Christensen, Formation of recent Martian gullies through melting of extensive water-rich snow deposits. Nature 422, 45 (2003) ADSCrossRefGoogle Scholar
- M.S. Clowdsley, J.W. Wilson, M.-Y. Kim, R.C. Singleterry, R.K. Tripathi, J.H. Heinbockel, F.F. Badavi, J.L. Shinn, Neutron environments on the Martian surface. Phys. Med. 17(Suppl. 1), 94 (2001) Google Scholar
- R. Craun, D. Smith, Analysis of response data for several organic scintillators. Nucl. Instrum. Methods 80, 239–244 (1970) ADSCrossRefGoogle Scholar
- F.A. Cucinotta, L.J. Chappell, Updates to radiation risks limits for astronauts: risks for never-smokers. Radiat. Res. 176, 102 (2011) CrossRefGoogle Scholar
- F.A. Cucinotta, W. Schimmerling, J.W. Wilson, L.E. Peterson, G.D. Badhwar, P.B. Saganti, J.F. Dicello, Space radiation cancer risks and uncertainties for Mars missions. Radiat. Res. 156, 682 (2001) CrossRefGoogle Scholar
- F.A. Cucinotta, P.B. Saganti, J.W. Wilson, L.C. Simonsen, Model predictions and visualization of the particle flux on the surface of Mars. J. Radiat. Res. 43, S35 (2002) CrossRefGoogle Scholar
- F.A. Cucinotta, M. Durante, Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. Lancet Oncol. 7, 431 (2006) CrossRefGoogle Scholar
- F.A. Cucinotta, M.-Y. Kim, S.I. Schneider, D.M. Hassler, Description of light ion production cross sections and fluxes on the Mars surface using the QMSFRG model. Radiat. Environ. Biophys. 46, 101 (2007) CrossRefGoogle Scholar
- F.A. Cucinotta, L. Chappell, M.Y. Kim, Space radiation cancer risk projections and uncertainties—2010, NASA TP 2011-216155 (2011) Google Scholar
- L.R. Dartnell, L. Desorgher, J.M. Ward, A.J. Coates, Modelling the surface and subsurface Martian radiation environment: implications for astrobiology. Geophys. Res. Lett. 34, L02207 (2007a) CrossRefGoogle Scholar
- L.R. Dartnell, L. Desorgher, J.M. Ward, A.J. Coates, Martian sub-surface ionizing radiation: biosignatures and geology. Biogeosciences 4, 545–558 (2007b) ADSCrossRefGoogle Scholar
- G. De Angelis, J.W. Wilson, M.S. Clowdsley, G.D. Quallys, R.C. Singleterry, Modeling of the Martian environment for radiation analysis. Radiat. Meas. 41, 1097 (2006) CrossRefGoogle Scholar
- G. De Angelis, F.F. Badavi, S.R. Blattnig, M.S. Clowdsley, J.E. Nealy, G.D. Qualls, R.C. Singleterry, R.K. Tripathi, J.W. Wilson, Modeling of the Martian environment for radiation analysis. Nucl. Phys. B 166, 184 (2007) CrossRefGoogle Scholar
- G.T. Delory, J.G. Luhmann, D. Brain, R.J. Lillis, D.L. Mitchell, R.A. Mewaldt, T.V. Falkenberg, Energetic particles detected by the Electron Reflectometer instrument on the Mars Global Surveyor, 1999–2006. Space Weather (2012). doi: 10.1029/2012SW000781 Google Scholar
- L. Dorman, L. Pustil’nik, A. Sternlieb, I. Zukerman, Using ground-level cosmic ray observations for automatically generating predictions of hazardous energetic particle levels. Adv. Space Res. 31, 847 (2003) ADSCrossRefGoogle Scholar
- B.G. Drake (ed.), Human Exploration of Mars Design Reference Architecture 5.0. NASA/SP-2009-566 (2009) Google Scholar
- B. Ehresmann, S. Burmeister, R.-F. Wimmer-Schweingruber, G. Reitz, Influence of higher atmospheric pressure on the Martian radiation environment: Implications for possible habitability in the Noachian epoch. J. Geophys. Res. 116, A10106 (2011) ADSCrossRefGoogle Scholar
- G. Failla, Biological effects of ionizing radiations. J. Appl. Phys. 12, 279 (1941) ADSCrossRefGoogle Scholar
- A.G. Fairén, D. Schulze-Makuch, A.P. Rodríguez, W. Fink, A.F. Davila, E.R. Uceda, R. Furfaro, R. Amils, C.P. McKay, Evidence for Amazonian acidic liquid water on Mars—A reinterpretation of MER mission results. Planet. Space Sci. 57, 276 (2009) ADSCrossRefGoogle Scholar
- A. Fassò et al., The FLUKA code: present application and future developments, in Computing in High Energy and Nuclear Physics, La Jolla, CA, USA (2003) Google Scholar
- F. Forget, R.T. Pierrehumbert, Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science 278, 1273 (1997) ADSCrossRefGoogle Scholar
- J. Gómez-Elvira et al. (REMS team), Environmental monitoring station for Mars Science Laboratory, in Third International Workshop on the Mars Atmosphere: Modeling and Observations, Williamsburg, Virginia, November 10–13, 2008 Google Scholar
- D. Grinspoon, Lonely Planets: The Natural Philosophy of Alien Life (HarperCollins, New York, 2003) Google Scholar
- R.M. Haberle, Early Mars climate models. J. Geophys. Res. 103(28), 28,467–28,479 (1998) ADSGoogle Scholar
- R.M. Haberle, J.B. Pollack, J.R. Barnes, R.W. Zurek, C.B. Leovy, J.R. Murphy, J. Schaeffer, H. Lee, Mars atmospheric dynamics as simulated by the NASA/Ames general circulation model I. The zonal mean circulation. J. Geophys. Res. 98, 3093 (1993) ADSCrossRefGoogle Scholar
- R.M. Haberle et al., Orbital change experiments with a Mars General Circulation Model. Icarus 161, 66–89 (2003) ADSCrossRefGoogle Scholar
- B. Hapke, Space weathering from Mercury to the asteroid belt. J. Geophys. Res. 106, 10,039 (2001) ADSCrossRefGoogle Scholar
- D.H. Hathaway, A standard law for the equatorward drift of the sunspot zones. Sol. Phys. 273, 221 (2011) ADSCrossRefGoogle Scholar
- J.W. Head, L. Wilson, K.L. Mitchell, Generation of recent massive water floods at Cerberus Fossae, Mars by dike emplacement, cryospheric cracking, and confined aquifer groundwater release. Geophys. Res. Lett. 30, 1577 (2003) ADSCrossRefGoogle Scholar
- M. Hecht et al., Detection of perchlorate and the soluble chemistry of the Martian soil at the Phoenix lander site. Science 325, 64–67 (2009) ADSGoogle Scholar
- S.L. Hess, R.M. Henry, C.B. Leovy, J.A. Ryan, J.E. Tillman, Meteorological results from the surface of Mars: Viking 1 and 2. J. Geophys. Res. 82, 4559 (1977) ADSCrossRefGoogle Scholar
- S.L. Hess, R.M. Henry, J.E. Tillman, The seasonal variation of atmospheric pressure on Mars as affected by the south polar cap. J. Geophys. Res. 84, 2923 (1979) ADSCrossRefGoogle Scholar
- International Commission on Radiological Protection (ICRP), ICRP Publication 60: 1990 Recommendations of the International Commission on Radiological Protection, Ann. ICRP 21 (1–3) (1991) Google Scholar
- B.M. Jakosky, R.C. Reedy, J. Masarik, Carbon 14 measurements of the Martian atmosphere as an indicator of atmosphere-regolith exchange of CO2. J. Geophys. Res. 101, 2247 (1996) ADSCrossRefGoogle Scholar
- J.R. Johnson, W.M. Grundy, M.T. Lemmon, Dust deposition at the Mars Pathfinder landing site: observations and modeling of visible/near-infrared spectra. Icarus 163, 330 (2003) ADSCrossRefGoogle Scholar
- J. Köhler, B. Ehresmann, C. Martin, E. Böhm, A. Kharytonov, O. Kortmann, C. Zeitlin, D.M. Hassler, R.F. Wimmer-Schweingruber, Inversion of neutron/gamma spectra from scintillator measurements. Nucl. Instrum. Methods B 269, 2641 (2011) ADSCrossRefGoogle Scholar
- O. Kortmann, Scintillator performance investigation for MSL/RAD, Ph.D. thesis, Christian-Albrechts-Universität zu Kiel (2010) Google Scholar
- J. Laskar, B. Levrard, J.F. Mustard, Orbital forcing of the Martian polar layered deposits. Nature 419, 375–377 (2002) ADSCrossRefGoogle Scholar
- J.G. Luhmann, C. Zeitlin, R. Turner, D.A. Brain, G. Delory, L.G. Lyon, W. Boynton, Solar energetic particles in near-Mars space. J. Geophys. Res. 112, E10001 (2007) ADSCrossRefGoogle Scholar
- P.R. Mahaffy et al., The sample analysis at Mars investigation and instrument suite. Space Sci. Rev. (2012). doi: 10.1007/s11214-012-9879-z Google Scholar
- F.B. McDonald, G.H. Ludwig, Measurement of low energy primary cosmic ray protons on the IMP-1 satellite. Phys. Rev. Lett. 13, 783 (1964). ADSCrossRefGoogle Scholar
- R.A. Mewaldt et al., Galactic Cosmic Ray intensities reach record levels in 2009, in American Geophysical Union Fall Meeting, 2009, abstract #SH13C-08 Google Scholar
- C. Mileikowsky, F. Cucinotta, J.W. Wilson, B. Gladman, G. Horneck, L. Lindgren, H.J. Melosh, H. Rickman, M.J. Valtonen, J.Q. Zheng, Natural transfer of viable microbes in space. Part 1: From Mars to Earth and Earth to Mars. Icarus 145, 391–427 (2000) ADSCrossRefGoogle Scholar
- I. Mitrofanov et al., Maps of subsurface hydrogen from the High Energy Neutron Detector, Mars Odyssey. Science 297, 78 (2002) ADSCrossRefGoogle Scholar
- R. Müller-Mellin et al., COSTEP—comprehensive suprathermal ad energetic particle analyzer. Sol. Phys. 162, 483 (1995) ADSCrossRefGoogle Scholar
- K. Nakamura et al. (Particle Data Group), Review of particle physics. J. Phys. G, Nucl. Part. Phys. 37, 075021 (2010) ADSCrossRefGoogle Scholar
- NCRP (National Council on Radiation Protection & Measurements), Report No. 132—Radiation Protection Guidance for Activities in Low-Earth Orbit (2000) Google Scholar
- NRC (National Research Council), Committee on the Evaluation of Radiation Shielding for Space Exploration, Managing Space Radiation Risk in the New Era of Space Exploration (National Academies Press, Washington, 2008). Chap. 3: “Radiation Effects” and references therein Google Scholar
- P.M. O’Neill, Badhwar-O’Neill 2010 galactic cosmic ray flux model—revised. IEEE Trans. Nucl. Sci. 57, 3148 (2010) Google Scholar
- N. Pace, The universal nature of biochemistry. Proc. Natl. Acad. Sci. USA 98, 805 (2001) ADSCrossRefGoogle Scholar
- A.K. Pavlov, A.V. Blinov, A.N. Konstantinov, Sterilization of Martian surface by cosmic radiation. Planet. Space Sci. 50, 669 (2002) ADSCrossRefGoogle Scholar
- G. Pfotzer, Dreifachkoinzidenzen der Ultrastrahlung aus vertikaler Richtung in der Stratosphäre. Z. Phys. 102, 23 (1936) ADSCrossRefGoogle Scholar
- J.B. Pollack, J.F. Kasting, S.M. Richardson, K. Poliakoff, The case for a wet, warm climate on early Mars. Icarus 71, 203 (1987) ADSCrossRefGoogle Scholar
- A. Posner, H. Kunow, Energy dispersion in solar ion events over 4 orders of magnitude: SOHO/COSTEP and Wind/STICS, in Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, ed. by T. Kajita et al., vol. 6 (Univ. Acad. Press, Tokyo, 2003), p. 3309 Google Scholar
- A. Posner, D.M. Hassler, D.J. McComas, S. Rafkin, R.F. Wimmer-Schweingruber, E. Bohm, S. Bottcher, S. Burmeister, W. Droge, B. Heber, A high energy telescope for the Solar Orbiter. Adv. Space Res. 36, 1426 (1995) ADSCrossRefGoogle Scholar
- A.V. Prokofiev, O. Byström, C. Ekström, V. Ziemann, J. Blomgren, S. Pomp, M. Österlund, U. Tippawan, A new neutron beam facility at TSL, in International Workshop on Fast Neutron Detectors, University of Cape Town, South Africa, April 3–6, 2006 Google Scholar
- R.C. Reedy, S.D. Howe, The Martian radiation environment from orbit and on the surface, in Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration, Lunar and Planetary Institute, Houston, TX, Oct 2–4, 1999 Google Scholar
- P.B. Saganti, F.A. Cucinotta, J.W. Wilson, L.C. Simonsen, C. Zeitlin, Radiation climate map for analyzing risks to astronauts on the Mars surface from galactic cosmic rays. Space Sci. Rev. 110, 143 (2004) ADSCrossRefGoogle Scholar
- J.T. Schofield, J.R. Barnes, D. Crisp, R.M. Haberle, S. Larsen, J.A. Magalhães, J.R. Murphy, A. Seiff, G. Wilson, The Mars Pathfinder Atmospheric Structure Investigation & Meteorology (ASI/MET) Experiment. Science 278, 1752 (1997) ADSCrossRefGoogle Scholar
- N.A. Schwadron et al., Lunar radiation environment and space weathering from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER). J. Geophys. Res. 117, E00H13 (2012) ADSCrossRefGoogle Scholar
- A.L. Sprague, W.V. Boynton, K.E. Kerry, D.M. Janes, D.M. Hunten, K.J. Kim, R.C. Reedy, A.E. Metzger, ‘Mars’ south polar Ar enhancement: A tracer for south polar seasonal meridional mixing. Science 306, 1364 (2004) ADSCrossRefGoogle Scholar
- A.L. Sprague, W.V. Boynton, K.E. Kerry, D.M. Janes, N.J. Kelly, M.K. Crombie, S.M. Nelli, J.R. Murphy, R.C. Reedy, A.E. Metzger, Mars’ atmospheric argon: Tracer for understanding Martian atmospheric circulation and dynamics. J. Geophys. Res. 112, E03S02 (2007) ADSCrossRefGoogle Scholar
- S.W. Squyres, A.H. Knoll, Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars. Earth Planet. Sci. Lett. 240, 1 (2005) ADSCrossRefGoogle Scholar
- J.E. Tillman, Mars global atmospheric oscillations: Annually synchronized, transient normal-mode oscillations and the triggering of global dust storms. J. Geophys. Res. 93, 9433 (1988) ADSCrossRefGoogle Scholar
- L.W. Townsend, J.E. Nealy, J.W. Wilson, L.C. Simonsen, Estimates of galactic cosmic ray shielding requirements during solar minimum, NASA TM-4167 (1990) Google Scholar
- L.W. Townsend, J.L. Shinn, J.W. Wilson, Interplanetary crew exposure estimates for the August 1972 and October 1989 Solar Particle Events. Radiat. Res. 126, 108–110 (1991) CrossRefGoogle Scholar
- V.I. Tretyakov, A.S. Kozyrev, M.L. Litvak, A.V. Malakhov, I.G. Mitrofanov, M.I. Mokrousov, A.B. Sanin, A.A. Vostrukhin, Comparison of neutron environment and neutron component of radiation doze for space around Earth and Mars from data of instruments HEND/Mars Odyssey and BTN/ISS, in 40th Lunar and Planetary Science Conference (2009), paper #1292 Google Scholar
- R.K. Tripathi, J.E. Nealy, Mars radiation risk assessment and shielding design for long-term exposure to ionizing space radiation, in IEEE Aerospace Conference, March 1–8, 2008, paper #1291 Google Scholar
- L.S. Waters, G.W. McKinney, J.W. Durkee, M.L. Fensin, J.S. Hendricks, M.R. James, R.C. Johns, D.B. Pelowitz, The MCNPX Monte Carlo radiation transport code. AIP Conf. Proc. 896, 81 (2007) ADSCrossRefGoogle Scholar
- J.W. Wilson, J.L. Shinn, L.W. Townsend, R.K. Tripathi, F.F. Badavi, S.Y. Chun, NUCFRG2: a semiempirical nuclear fragmentation model. Nucl. Instrum. Methods B 94, 95–102 (1994) ADSCrossRefGoogle Scholar
- J.W. Wilson, F. Badavi, F.A. Cucinotta, J.L. Shinn, G.D. Badhwar, R. Silberberg, C.H. Tsao, L.W. Townsend, R.K. Tripathi et al. HZETRN: Description of a free-space ion and nucleon transport and shielding computer program, NASA Technical Paper No. 3495 (1995) Google Scholar
- J.W. Wilson, M.Y. Kim, M.S. Clowdsley, J.H. Heinbockel, R.K. Tripathi, R.C. Singleterry, J.L. Shinn, R. Suggs, Mars surface ionizing radiation environment: Need for validation, in Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration, Lunar and Planetary Institute, Houston, TX, Oct 2–4, 1999 Google Scholar
- J.W. Wilson, F.A. Cucinotta, M.-H.Y. Kim, W. Schimmerling, Optimized shielding for space radiation protection. Phys. Med. XVII(Suppl. 1), 67 (2001) Google Scholar
- C.H. Yang, L.M. Craise, M. Durante, M. Mei, Heavy-ion induced genetic changes and evolution processes. Adv. Space Res. 14, 373 (1994) ADSCrossRefGoogle Scholar
- C. Zeitlin, L. Heilbronn, J. Miller, W. Schimmerling, L.W. Townsend, R.K. Tripathi, J.W. Wilson, The fragmentation of 510 MeV/nucleon Iron-56 in polyethylene, II. Comparisons between data and a model. Radiat. Res. 145, 666 (1996) CrossRefGoogle Scholar
- C. Zeitlin, D.M. Hassler et al., Mars Odyssey measurements of galactic cosmic rays and solar particles in Mars orbit, 2002–2008. Space Weather 8, S00E06 (2010a) CrossRefGoogle Scholar
- C. Zeitlin, S. Guetersloh, L. Heilbronn, J. Miller, A. Fukumura, Y. Iwata, T. Murakami, L. Sihver, Nuclear fragmentation database for GCR transport code development. Adv. Space Res. 46, 728 (2010b) ADSCrossRefGoogle Scholar
- A.P. Zent, C.P. McKay, The chemical reactivity of the Martian soil and implications for future missions. Icarus 108, 146–157 (1994) ADSCrossRefGoogle Scholar
- A.P. Zent, R.C. Quinn, Simultaneous adsorption of CO2 and H2O under Mars-like conditions and application to the evolution of the Martian climate. J. Geophys. Res. 100, 5341 (1995) ADSCrossRefGoogle Scholar