Space Science Reviews

, Volume 170, Issue 1–4, pp 503–558 | Cite as

The Radiation Assessment Detector (RAD) Investigation

  • D. M. Hassler
  • C. Zeitlin
  • R. F. Wimmer-Schweingruber
  • S. Böttcher
  • C. Martin
  • J. Andrews
  • E. Böhm
  • D. E. Brinza
  • M. A. Bullock
  • S. Burmeister
  • B. Ehresmann
  • M. Epperly
  • D. Grinspoon
  • J. Köhler
  • O. Kortmann
  • K. Neal
  • J. Peterson
  • A. Posner
  • S. Rafkin
  • L. Seimetz
  • K. D. Smith
  • Y. Tyler
  • G. Weigle
  • G. Reitz
  • F. A. Cucinotta
Article

Abstract

The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) is an energetic particle detector designed to measure a broad spectrum of energetic particle radiation. It will make the first-ever direct radiation measurements on the surface of Mars, detecting galactic cosmic rays, solar energetic particles, secondary neutrons, and other secondary particles created both in the atmosphere and in the Martian regolith. The radiation environment on Mars, both past and present, may have implications for habitability and the ability to sustain life. Radiation exposure is also a major concern for future human missions. The RAD instrument combines charged- and neutral-particle detection capability over a wide dynamic range in a compact, low-mass, low-power instrument. These capabilities are required in order to measure all the important components of the radiation environment.

RAD consists of the RAD Sensor Head (RSH) and the RAD Electronics Box (REB) integrated together in a small, compact volume. The RSH contains a solid-state detector telescope with three silicon PIN diodes for charged particle detection, a thallium doped Cesium Iodide scintillator, plastic scintillators for neutron detection and anti-coincidence shielding, and the front-end electronics. The REB contains three circuit boards, one with a novel mixed-signal ASIC for processing analog signals and an associated control FPGA, another with a second FPGA to communicate with the rover and perform onboard analysis of science data, and a third board with power supplies and power cycling or “sleep”-control electronics. The latter enables autonomous operation, independent of commands from the rover. RAD is a highly capable and highly configurable instrument that paves the way for future compact energetic particle detectors in space.

Keywords

MSL Mars Science Laboratory Mars Mars radiation environment Radiation Human exploration detectors in space 

Notes

Acknowledgements

RAD is supported by NASA (HEOMD) under JPL subcontract #1273039 to Southwest Research Institute and in Germany by DLR and DLR’s Space Administration grant 50QM0501 to the Christian-Albrechts-University (CAU) Kiel. We would like to extend a huge thanks to Jeff Simmonds (MSL Payload Manager) and the Project Science Team John Grotzinger, Joy Crisp, and Ashwin Vasvada, the NASA Program Scientist Michael Meyer, and the first Project Scientist Edward Stolper. We would also like to extend a special thanks to Chris Moore and Gale Allen at NASA HQ (HEOMD) and Heiner Witte at DLR in Germany for their unwavering support of RAD over the years. Support for RAD calibration beam time at BNL/NSRL has been provided by the NASA HRP Program. We also thank the management and operators of the HIMAC facility at NIRS (Chiba, Japan), TSL in Uppsala, Sweden, and iThemba Labs in South Africa for their many hours of excellent beam time and support of RAD calibration.

References

  1. S. Agostinelli et al., GEANT4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250 (2003) ADSCrossRefGoogle Scholar
  2. G. Battistoni et al., Hadronic models for cosmic ray physics: the FLUKA code. Nucl. Phys. B 175–176, 88 (2008) Google Scholar
  3. G.A. Bazilevskaya et al., Cosmic ray induced ion production in the atmosphere. Space Sci. Rev. 137, 149 (2008) ADSCrossRefGoogle Scholar
  4. J.-P. Bibring et al., Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312(5772), 400 (2006) ADSCrossRefGoogle Scholar
  5. J.B. Birks, The Theory and Practice of Scintillation Counting (Pergamon Press, New York, 1964) Google Scholar
  6. D. Blake, D. Vaniman, R. Anderson, D. Bish, S. Chipera, S. Chemtob, J. Crisp et al., The CheMin mineralogical instrument on the Mars Science Laboratory mission, in 40th Lunar and Planetary Science Conference, March 23–27, 2009, Paper #1484 Google Scholar
  7. W.V. Boynton et al., Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits. Science 297, 81 (2002) ADSCrossRefGoogle Scholar
  8. W.V. Boynton et al., The Mars Odyssey Gamma-Ray Spectrometer instrument suite. Space Sci. Rev. 110, 37 (2004) ADSCrossRefGoogle Scholar
  9. M.A. Bullock, J.M. Moore, Atmospheric conditions on early Mars and the missing layered carbonates. Geophys. Res. Lett. 34, L19201 (2007) ADSCrossRefGoogle Scholar
  10. M.A. Bullock, C.R. Stoker, C.P. McKay, A.P. Zent, A coupled soil-atmosphere model of H2O2 on Mars. Icarus 107, 142 (1994) ADSCrossRefGoogle Scholar
  11. W.R. Burrus, V.V. Verbinski, Fast-neutron spectroscopy with thick organic scintillators. Nucl. Instrum. Methods 67, 181 (1969) ADSCrossRefGoogle Scholar
  12. H.V. Cane, L.G. Richardson, T.T. von Rosenvinge, A study of solar energetic particle events of 1997–2006: Their composition and associations. J. Geophys. Res. 115, A08101 (2010) ADSCrossRefGoogle Scholar
  13. C.R. Chapman, Space weathering of asteroid surfaces. Annu. Rev. Earth Planet. Sci. 32, 539–567 (2004) ADSCrossRefGoogle Scholar
  14. P. Chowdhury, B.N. Dwivedi, P.C. Ray, Solar modulation of galactic cosmic rays during 19–23 solar cycles. New Astron. 16, 430 (2011) ADSCrossRefGoogle Scholar
  15. P.R. Christensen, Formation of recent Martian gullies through melting of extensive water-rich snow deposits. Nature 422, 45 (2003) ADSCrossRefGoogle Scholar
  16. M.S. Clowdsley, J.W. Wilson, M.-Y. Kim, R.C. Singleterry, R.K. Tripathi, J.H. Heinbockel, F.F. Badavi, J.L. Shinn, Neutron environments on the Martian surface. Phys. Med. 17(Suppl. 1), 94 (2001) Google Scholar
  17. R. Craun, D. Smith, Analysis of response data for several organic scintillators. Nucl. Instrum. Methods 80, 239–244 (1970) ADSCrossRefGoogle Scholar
  18. F.A. Cucinotta, L.J. Chappell, Updates to radiation risks limits for astronauts: risks for never-smokers. Radiat. Res. 176, 102 (2011) CrossRefGoogle Scholar
  19. F.A. Cucinotta, W. Schimmerling, J.W. Wilson, L.E. Peterson, G.D. Badhwar, P.B. Saganti, J.F. Dicello, Space radiation cancer risks and uncertainties for Mars missions. Radiat. Res. 156, 682 (2001) CrossRefGoogle Scholar
  20. F.A. Cucinotta, P.B. Saganti, J.W. Wilson, L.C. Simonsen, Model predictions and visualization of the particle flux on the surface of Mars. J. Radiat. Res. 43, S35 (2002) CrossRefGoogle Scholar
  21. F.A. Cucinotta, M. Durante, Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. Lancet Oncol. 7, 431 (2006) CrossRefGoogle Scholar
  22. F.A. Cucinotta, M.-Y. Kim, S.I. Schneider, D.M. Hassler, Description of light ion production cross sections and fluxes on the Mars surface using the QMSFRG model. Radiat. Environ. Biophys. 46, 101 (2007) CrossRefGoogle Scholar
  23. F.A. Cucinotta, L. Chappell, M.Y. Kim, Space radiation cancer risk projections and uncertainties—2010, NASA TP 2011-216155 (2011) Google Scholar
  24. L.R. Dartnell, L. Desorgher, J.M. Ward, A.J. Coates, Modelling the surface and subsurface Martian radiation environment: implications for astrobiology. Geophys. Res. Lett. 34, L02207 (2007a) CrossRefGoogle Scholar
  25. L.R. Dartnell, L. Desorgher, J.M. Ward, A.J. Coates, Martian sub-surface ionizing radiation: biosignatures and geology. Biogeosciences 4, 545–558 (2007b) ADSCrossRefGoogle Scholar
  26. G. De Angelis, J.W. Wilson, M.S. Clowdsley, G.D. Quallys, R.C. Singleterry, Modeling of the Martian environment for radiation analysis. Radiat. Meas. 41, 1097 (2006) CrossRefGoogle Scholar
  27. G. De Angelis, F.F. Badavi, S.R. Blattnig, M.S. Clowdsley, J.E. Nealy, G.D. Qualls, R.C. Singleterry, R.K. Tripathi, J.W. Wilson, Modeling of the Martian environment for radiation analysis. Nucl. Phys. B 166, 184 (2007) CrossRefGoogle Scholar
  28. G.T. Delory, J.G. Luhmann, D. Brain, R.J. Lillis, D.L. Mitchell, R.A. Mewaldt, T.V. Falkenberg, Energetic particles detected by the Electron Reflectometer instrument on the Mars Global Surveyor, 1999–2006. Space Weather (2012). doi: 10.1029/2012SW000781 Google Scholar
  29. L. Dorman, L. Pustil’nik, A. Sternlieb, I. Zukerman, Using ground-level cosmic ray observations for automatically generating predictions of hazardous energetic particle levels. Adv. Space Res. 31, 847 (2003) ADSCrossRefGoogle Scholar
  30. B.G. Drake (ed.), Human Exploration of Mars Design Reference Architecture 5.0. NASA/SP-2009-566 (2009) Google Scholar
  31. B. Ehresmann, S. Burmeister, R.-F. Wimmer-Schweingruber, G. Reitz, Influence of higher atmospheric pressure on the Martian radiation environment: Implications for possible habitability in the Noachian epoch. J. Geophys. Res. 116, A10106 (2011) ADSCrossRefGoogle Scholar
  32. G. Failla, Biological effects of ionizing radiations. J. Appl. Phys. 12, 279 (1941) ADSCrossRefGoogle Scholar
  33. A.G. Fairén, D. Schulze-Makuch, A.P. Rodríguez, W. Fink, A.F. Davila, E.R. Uceda, R. Furfaro, R. Amils, C.P. McKay, Evidence for Amazonian acidic liquid water on Mars—A reinterpretation of MER mission results. Planet. Space Sci. 57, 276 (2009) ADSCrossRefGoogle Scholar
  34. A. Fassò et al., The FLUKA code: present application and future developments, in Computing in High Energy and Nuclear Physics, La Jolla, CA, USA (2003) Google Scholar
  35. F. Forget, R.T. Pierrehumbert, Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science 278, 1273 (1997) ADSCrossRefGoogle Scholar
  36. J. Gómez-Elvira et al. (REMS team), Environmental monitoring station for Mars Science Laboratory, in Third International Workshop on the Mars Atmosphere: Modeling and Observations, Williamsburg, Virginia, November 10–13, 2008 Google Scholar
  37. D. Grinspoon, Lonely Planets: The Natural Philosophy of Alien Life (HarperCollins, New York, 2003) Google Scholar
  38. R.M. Haberle, Early Mars climate models. J. Geophys. Res. 103(28), 28,467–28,479 (1998) ADSGoogle Scholar
  39. R.M. Haberle, J.B. Pollack, J.R. Barnes, R.W. Zurek, C.B. Leovy, J.R. Murphy, J. Schaeffer, H. Lee, Mars atmospheric dynamics as simulated by the NASA/Ames general circulation model I. The zonal mean circulation. J. Geophys. Res. 98, 3093 (1993) ADSCrossRefGoogle Scholar
  40. R.M. Haberle et al., Orbital change experiments with a Mars General Circulation Model. Icarus 161, 66–89 (2003) ADSCrossRefGoogle Scholar
  41. B. Hapke, Space weathering from Mercury to the asteroid belt. J. Geophys. Res. 106, 10,039 (2001) ADSCrossRefGoogle Scholar
  42. D.H. Hathaway, A standard law for the equatorward drift of the sunspot zones. Sol. Phys. 273, 221 (2011) ADSCrossRefGoogle Scholar
  43. J.W. Head, L. Wilson, K.L. Mitchell, Generation of recent massive water floods at Cerberus Fossae, Mars by dike emplacement, cryospheric cracking, and confined aquifer groundwater release. Geophys. Res. Lett. 30, 1577 (2003) ADSCrossRefGoogle Scholar
  44. M. Hecht et al., Detection of perchlorate and the soluble chemistry of the Martian soil at the Phoenix lander site. Science 325, 64–67 (2009) ADSGoogle Scholar
  45. S.L. Hess, R.M. Henry, C.B. Leovy, J.A. Ryan, J.E. Tillman, Meteorological results from the surface of Mars: Viking 1 and 2. J. Geophys. Res. 82, 4559 (1977) ADSCrossRefGoogle Scholar
  46. S.L. Hess, R.M. Henry, J.E. Tillman, The seasonal variation of atmospheric pressure on Mars as affected by the south polar cap. J. Geophys. Res. 84, 2923 (1979) ADSCrossRefGoogle Scholar
  47. International Commission on Radiological Protection (ICRP), ICRP Publication 60: 1990 Recommendations of the International Commission on Radiological Protection, Ann. ICRP 21 (1–3) (1991) Google Scholar
  48. B.M. Jakosky, R.C. Reedy, J. Masarik, Carbon 14 measurements of the Martian atmosphere as an indicator of atmosphere-regolith exchange of CO2. J. Geophys. Res. 101, 2247 (1996) ADSCrossRefGoogle Scholar
  49. J.R. Johnson, W.M. Grundy, M.T. Lemmon, Dust deposition at the Mars Pathfinder landing site: observations and modeling of visible/near-infrared spectra. Icarus 163, 330 (2003) ADSCrossRefGoogle Scholar
  50. J. Köhler, B. Ehresmann, C. Martin, E. Böhm, A. Kharytonov, O. Kortmann, C. Zeitlin, D.M. Hassler, R.F. Wimmer-Schweingruber, Inversion of neutron/gamma spectra from scintillator measurements. Nucl. Instrum. Methods B 269, 2641 (2011) ADSCrossRefGoogle Scholar
  51. O. Kortmann, Scintillator performance investigation for MSL/RAD, Ph.D. thesis, Christian-Albrechts-Universität zu Kiel (2010) Google Scholar
  52. J. Laskar, B. Levrard, J.F. Mustard, Orbital forcing of the Martian polar layered deposits. Nature 419, 375–377 (2002) ADSCrossRefGoogle Scholar
  53. J.G. Luhmann, C. Zeitlin, R. Turner, D.A. Brain, G. Delory, L.G. Lyon, W. Boynton, Solar energetic particles in near-Mars space. J. Geophys. Res. 112, E10001 (2007) ADSCrossRefGoogle Scholar
  54. P.R. Mahaffy et al., The sample analysis at Mars investigation and instrument suite. Space Sci. Rev. (2012). doi: 10.1007/s11214-012-9879-z Google Scholar
  55. F.B. McDonald, G.H. Ludwig, Measurement of low energy primary cosmic ray protons on the IMP-1 satellite. Phys. Rev. Lett. 13, 783 (1964). ADSCrossRefGoogle Scholar
  56. R.A. Mewaldt et al., Galactic Cosmic Ray intensities reach record levels in 2009, in American Geophysical Union Fall Meeting, 2009, abstract #SH13C-08 Google Scholar
  57. C. Mileikowsky, F. Cucinotta, J.W. Wilson, B. Gladman, G. Horneck, L. Lindgren, H.J. Melosh, H. Rickman, M.J. Valtonen, J.Q. Zheng, Natural transfer of viable microbes in space. Part 1: From Mars to Earth and Earth to Mars. Icarus 145, 391–427 (2000) ADSCrossRefGoogle Scholar
  58. I. Mitrofanov et al., Maps of subsurface hydrogen from the High Energy Neutron Detector, Mars Odyssey. Science 297, 78 (2002) ADSCrossRefGoogle Scholar
  59. R. Müller-Mellin et al., COSTEP—comprehensive suprathermal ad energetic particle analyzer. Sol. Phys. 162, 483 (1995) ADSCrossRefGoogle Scholar
  60. K. Nakamura et al. (Particle Data Group), Review of particle physics. J. Phys. G, Nucl. Part. Phys. 37, 075021 (2010) ADSCrossRefGoogle Scholar
  61. NCRP (National Council on Radiation Protection & Measurements), Report No. 132—Radiation Protection Guidance for Activities in Low-Earth Orbit (2000) Google Scholar
  62. NRC (National Research Council), Committee on the Evaluation of Radiation Shielding for Space Exploration, Managing Space Radiation Risk in the New Era of Space Exploration (National Academies Press, Washington, 2008). Chap. 3: “Radiation Effects” and references therein Google Scholar
  63. P.M. O’Neill, Badhwar-O’Neill 2010 galactic cosmic ray flux model—revised. IEEE Trans. Nucl. Sci. 57, 3148 (2010) Google Scholar
  64. N. Pace, The universal nature of biochemistry. Proc. Natl. Acad. Sci. USA 98, 805 (2001) ADSCrossRefGoogle Scholar
  65. A.K. Pavlov, A.V. Blinov, A.N. Konstantinov, Sterilization of Martian surface by cosmic radiation. Planet. Space Sci. 50, 669 (2002) ADSCrossRefGoogle Scholar
  66. G. Pfotzer, Dreifachkoinzidenzen der Ultrastrahlung aus vertikaler Richtung in der Stratosphäre. Z. Phys. 102, 23 (1936) ADSCrossRefGoogle Scholar
  67. J.B. Pollack, J.F. Kasting, S.M. Richardson, K. Poliakoff, The case for a wet, warm climate on early Mars. Icarus 71, 203 (1987) ADSCrossRefGoogle Scholar
  68. A. Posner, H. Kunow, Energy dispersion in solar ion events over 4 orders of magnitude: SOHO/COSTEP and Wind/STICS, in Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, ed. by T. Kajita et al., vol. 6 (Univ. Acad. Press, Tokyo, 2003), p. 3309 Google Scholar
  69. A. Posner, D.M. Hassler, D.J. McComas, S. Rafkin, R.F. Wimmer-Schweingruber, E. Bohm, S. Bottcher, S. Burmeister, W. Droge, B. Heber, A high energy telescope for the Solar Orbiter. Adv. Space Res. 36, 1426 (1995) ADSCrossRefGoogle Scholar
  70. A.V. Prokofiev, O. Byström, C. Ekström, V. Ziemann, J. Blomgren, S. Pomp, M. Österlund, U. Tippawan, A new neutron beam facility at TSL, in International Workshop on Fast Neutron Detectors, University of Cape Town, South Africa, April 3–6, 2006 Google Scholar
  71. R.C. Reedy, S.D. Howe, The Martian radiation environment from orbit and on the surface, in Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration, Lunar and Planetary Institute, Houston, TX, Oct 2–4, 1999 Google Scholar
  72. P.B. Saganti, F.A. Cucinotta, J.W. Wilson, L.C. Simonsen, C. Zeitlin, Radiation climate map for analyzing risks to astronauts on the Mars surface from galactic cosmic rays. Space Sci. Rev. 110, 143 (2004) ADSCrossRefGoogle Scholar
  73. J.T. Schofield, J.R. Barnes, D. Crisp, R.M. Haberle, S. Larsen, J.A. Magalhães, J.R. Murphy, A. Seiff, G. Wilson, The Mars Pathfinder Atmospheric Structure Investigation & Meteorology (ASI/MET) Experiment. Science 278, 1752 (1997) ADSCrossRefGoogle Scholar
  74. N.A. Schwadron et al., Lunar radiation environment and space weathering from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER). J. Geophys. Res. 117, E00H13 (2012) ADSCrossRefGoogle Scholar
  75. A.L. Sprague, W.V. Boynton, K.E. Kerry, D.M. Janes, D.M. Hunten, K.J. Kim, R.C. Reedy, A.E. Metzger, ‘Mars’ south polar Ar enhancement: A tracer for south polar seasonal meridional mixing. Science 306, 1364 (2004) ADSCrossRefGoogle Scholar
  76. A.L. Sprague, W.V. Boynton, K.E. Kerry, D.M. Janes, N.J. Kelly, M.K. Crombie, S.M. Nelli, J.R. Murphy, R.C. Reedy, A.E. Metzger, Mars’ atmospheric argon: Tracer for understanding Martian atmospheric circulation and dynamics. J. Geophys. Res. 112, E03S02 (2007) ADSCrossRefGoogle Scholar
  77. S.W. Squyres, A.H. Knoll, Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars. Earth Planet. Sci. Lett. 240, 1 (2005) ADSCrossRefGoogle Scholar
  78. J.E. Tillman, Mars global atmospheric oscillations: Annually synchronized, transient normal-mode oscillations and the triggering of global dust storms. J. Geophys. Res. 93, 9433 (1988) ADSCrossRefGoogle Scholar
  79. L.W. Townsend, J.E. Nealy, J.W. Wilson, L.C. Simonsen, Estimates of galactic cosmic ray shielding requirements during solar minimum, NASA TM-4167 (1990) Google Scholar
  80. L.W. Townsend, J.L. Shinn, J.W. Wilson, Interplanetary crew exposure estimates for the August 1972 and October 1989 Solar Particle Events. Radiat. Res. 126, 108–110 (1991) CrossRefGoogle Scholar
  81. V.I. Tretyakov, A.S. Kozyrev, M.L. Litvak, A.V. Malakhov, I.G. Mitrofanov, M.I. Mokrousov, A.B. Sanin, A.A. Vostrukhin, Comparison of neutron environment and neutron component of radiation doze for space around Earth and Mars from data of instruments HEND/Mars Odyssey and BTN/ISS, in 40th Lunar and Planetary Science Conference (2009), paper #1292 Google Scholar
  82. R.K. Tripathi, J.E. Nealy, Mars radiation risk assessment and shielding design for long-term exposure to ionizing space radiation, in IEEE Aerospace Conference, March 1–8, 2008, paper #1291 Google Scholar
  83. L.S. Waters, G.W. McKinney, J.W. Durkee, M.L. Fensin, J.S. Hendricks, M.R. James, R.C. Johns, D.B. Pelowitz, The MCNPX Monte Carlo radiation transport code. AIP Conf. Proc. 896, 81 (2007) ADSCrossRefGoogle Scholar
  84. J.W. Wilson, J.L. Shinn, L.W. Townsend, R.K. Tripathi, F.F. Badavi, S.Y. Chun, NUCFRG2: a semiempirical nuclear fragmentation model. Nucl. Instrum. Methods B 94, 95–102 (1994) ADSCrossRefGoogle Scholar
  85. J.W. Wilson, F. Badavi, F.A. Cucinotta, J.L. Shinn, G.D. Badhwar, R. Silberberg, C.H. Tsao, L.W. Townsend, R.K. Tripathi et al. HZETRN: Description of a free-space ion and nucleon transport and shielding computer program, NASA Technical Paper No. 3495 (1995) Google Scholar
  86. J.W. Wilson, M.Y. Kim, M.S. Clowdsley, J.H. Heinbockel, R.K. Tripathi, R.C. Singleterry, J.L. Shinn, R. Suggs, Mars surface ionizing radiation environment: Need for validation, in Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration, Lunar and Planetary Institute, Houston, TX, Oct 2–4, 1999 Google Scholar
  87. J.W. Wilson, F.A. Cucinotta, M.-H.Y. Kim, W. Schimmerling, Optimized shielding for space radiation protection. Phys. Med. XVII(Suppl. 1), 67 (2001) Google Scholar
  88. C.H. Yang, L.M. Craise, M. Durante, M. Mei, Heavy-ion induced genetic changes and evolution processes. Adv. Space Res. 14, 373 (1994) ADSCrossRefGoogle Scholar
  89. C. Zeitlin, L. Heilbronn, J. Miller, W. Schimmerling, L.W. Townsend, R.K. Tripathi, J.W. Wilson, The fragmentation of 510 MeV/nucleon Iron-56 in polyethylene, II. Comparisons between data and a model. Radiat. Res. 145, 666 (1996) CrossRefGoogle Scholar
  90. C. Zeitlin, D.M. Hassler et al., Mars Odyssey measurements of galactic cosmic rays and solar particles in Mars orbit, 2002–2008. Space Weather 8, S00E06 (2010a) CrossRefGoogle Scholar
  91. C. Zeitlin, S. Guetersloh, L. Heilbronn, J. Miller, A. Fukumura, Y. Iwata, T. Murakami, L. Sihver, Nuclear fragmentation database for GCR transport code development. Adv. Space Res. 46, 728 (2010b) ADSCrossRefGoogle Scholar
  92. A.P. Zent, C.P. McKay, The chemical reactivity of the Martian soil and implications for future missions. Icarus 108, 146–157 (1994) ADSCrossRefGoogle Scholar
  93. A.P. Zent, R.C. Quinn, Simultaneous adsorption of CO2 and H2O under Mars-like conditions and application to the evolution of the Martian climate. J. Geophys. Res. 100, 5341 (1995) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • D. M. Hassler
    • 1
  • C. Zeitlin
    • 1
  • R. F. Wimmer-Schweingruber
    • 2
  • S. Böttcher
    • 2
  • C. Martin
    • 2
  • J. Andrews
    • 1
  • E. Böhm
    • 2
  • D. E. Brinza
    • 3
  • M. A. Bullock
    • 1
  • S. Burmeister
    • 2
  • B. Ehresmann
    • 1
  • M. Epperly
    • 4
  • D. Grinspoon
    • 5
  • J. Köhler
    • 2
  • O. Kortmann
    • 2
    • 6
  • K. Neal
    • 1
  • J. Peterson
    • 1
  • A. Posner
    • 7
  • S. Rafkin
    • 1
  • L. Seimetz
    • 2
  • K. D. Smith
    • 4
  • Y. Tyler
    • 4
  • G. Weigle
    • 4
  • G. Reitz
    • 8
  • F. A. Cucinotta
    • 9
  1. 1.Southwest Research InstituteBoulderUSA
  2. 2.Christian Albrechts UniversityKielGermany
  3. 3.NASA Jet Propulsion LaboratoryPasadenaUSA
  4. 4.Southwest Research InstituteSan AntonioUSA
  5. 5.Denver Museum of Nature and ScienceDenverUSA
  6. 6.Space Sciences LaboratoryBerkeleyUSA
  7. 7.NASA HeadquartersWashingtonUSA
  8. 8.Deutsches Zentrum für Luft- und RaumfahrtKölnGermany
  9. 9.NASA Johnson Space CenterHoustonUSA

Personalised recommendations