Space Science Reviews

, Volume 170, Issue 1–4, pp 95–166 | Cite as

The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description

  • S. Maurice
  • R. C. Wiens
  • M. Saccoccio
  • B. Barraclough
  • O. Gasnault
  • O. Forni
  • N. Mangold
  • D. Baratoux
  • S. Bender
  • G. Berger
  • J. Bernardin
  • M. Berthé
  • N. Bridges
  • D. Blaney
  • M. Bouyé
  • P. Caïs
  • B. Clark
  • S. Clegg
  • A. Cousin
  • D. Cremers
  • A. Cros
  • L. DeFlores
  • C. Derycke
  • B. Dingler
  • G. Dromart
  • B. Dubois
  • M. Dupieux
  • E. Durand
  • L. d’Uston
  • C. Fabre
  • B. Faure
  • A. Gaboriaud
  • T. Gharsa
  • K. Herkenhoff
  • E. Kan
  • L. Kirkland
  • D. Kouach
  • J.-L. Lacour
  • Y. Langevin
  • J. Lasue
  • S. Le Mouélic
  • M. Lescure
  • E. Lewin
  • D. Limonadi
  • G. Manhès
  • P. Mauchien
  • C. McKay
  • P.-Y. Meslin
  • Y. Michel
  • E. Miller
  • H. E. Newsom
  • G. Orttner
  • A. Paillet
  • L. Parès
  • Y. Parot
  • R. Pérez
  • P. Pinet
  • F. Poitrasson
  • B. Quertier
  • B. Sallé
  • C. Sotin
  • V. Sautter
  • H. Séran
  • J. J. Simmonds
  • J.-B. Sirven
  • R. Stiglich
  • N. Striebig
  • J.-J. Thocaven
  • M. J. Toplis
  • D. Vaniman
Article

Abstract

ChemCam is a remote sensing instrument suite on board the “Curiosity” rover (NASA) that uses Laser-Induced Breakdown Spectroscopy (LIBS) to provide the elemental composition of soils and rocks at the surface of Mars from a distance of 1.3 to 7 m, and a telescopic imager to return high resolution context and micro-images at distances greater than 1.16 m. We describe five analytical capabilities: rock classification, quantitative composition, depth profiling, context imaging, and passive spectroscopy. They serve as a toolbox to address most of the science questions at Gale crater. ChemCam consists of a Mast-Unit (laser, telescope, camera, and electronics) and a Body-Unit (spectrometers, digital processing unit, and optical demultiplexer), which are connected by an optical fiber and an electrical interface. We then report on the development, integration, and testing of the Mast-Unit, and summarize some key characteristics of ChemCam. This confirmed that nominal or better than nominal performances were achieved for critical parameters, in particular power density (>1 GW/cm2). The analysis spot diameter varies from 350 μm at 2 m to 550 μm at 7 m distance. For remote imaging, the camera field of view is 20 mrad for 1024×1024 pixels. Field tests demonstrated that the resolution (∼90 μrad) made it possible to identify laser shots on a wide variety of images. This is sufficient for visualizing laser shot pits and textures of rocks and soils. An auto-exposure capability optimizes the dynamical range of the images. Dedicated hardware and software focus the telescope, with precision that is appropriate for the LIBS and imaging depths-of-field. The light emitted by the plasma is collected and sent to the Body-Unit via a 6 m optical fiber. The companion to this paper (Wiens et al. this issue) reports on the development of the Body-Unit, on the analysis of the emitted light, and on the good match between instrument performance and science specifications.

Keywords

Mars Spectroscopy LIBS Instruments Planetary surfaces Chemical composition 

List

ADC

Analog-to-Digital Converter

APXS

Alpha Proton X-ray Spectrometer

AZ

Azimuth (ref. Mast pointing direction)

BU

Body-Unit

CCCT

ChemCam Calibration Targets

CTF

Contrast Transfer Function

CW

Continuous Wavelength (laser)

DOF

Depth of Field

DPU

Digital Processing Unit

EBOX

Electronics Box

EL

Elevation (ref. Mast Pointing direction)

FOV

Field of View

FPGA

Field Programmable Gate Array

GSE

Ground Support Equipment

LIBS

Laser Induced Breakdown Spectroscopy

MER

Mars Exploration Rovers

MSL

Mars Science Laboratory

MTF

Modulation Transfer Function

MU

Mast-Unit

OBOX

Optical Box

R

Distance to target

RCE

Rover Compute Element (∼ rover DPU)

RMI

Remote micro-imager

ROI

Region of Interest

RWEB

Remote Warm Electronics Box

References

  1. R.B. Anderson, J.F. Bell, Geologic mapping and characterization of Gale Crater and implications for its potential as a Mars Science Laboratory landing site. Mars 5, 76–128 (2010) ADSCrossRefGoogle Scholar
  2. Z.A. Arp, D.A. Cremers, R.C. Wiens, D.M. Wayne, B. Salle, S. Maurice, Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: application to Mars polar exploration. Appl. Spectrosc. 58, 897–909 (2004) ADSCrossRefGoogle Scholar
  3. R.A. Bagnold, The Physics of Blown Sand and Desert Dunes (Dover, London, 1941), 320 pages Google Scholar
  4. J.L. Bandfield, V.E. Hamilton, P.R. Christensen, H.Y. McSween, Identification of quartzofeldspathic materials on Mars. J. Geophys. Res. 109, E10009 (2004) ADSCrossRefGoogle Scholar
  5. D. Baratoux, M. Toplis, M. Monnereau, O. Gasnault, Thermal history of Mars inferred from orbital geochemistry of volcanic provinces. Nature 475, 254 (2011) ADSCrossRefGoogle Scholar
  6. G. Berger, M. Toplis, E. Treguier, C. d’Uston, P. Pinet, Evidence in favor of ephemeral and transient water during alteration at Meridiani Planum, Mars. Am. Mineral. 94, 1279–1282 (2009) ADSCrossRefGoogle Scholar
  7. J.P. Bibring, Y. Langevin, J.F. Mustard, F. Poulet, R. Arvidson, A. Gendrin, B. Gondet, N. Mangold, P. Pinet, F. Forget (The OMEGA Team), Global mineralogical and aqueous Mars history derived from the OMEGA/Mars express data. Science 312, 400–404 (2006) ADSCrossRefGoogle Scholar
  8. J.-P. Bibring, P. Lamy, Y. Langevin, A. Soufflot, M. Berthé, J. Borg, F. Poulet, S. Motola, CIVA, Space Science Reviews 128 (2007) Google Scholar
  9. J.D. Blacic, D.R. Petit, D.A. Cremers, N. Roessler, Laser-induced breakdown spectroscopy for remote elemental analysis of planetary surfaces. Proc. Int. Symp. Spectral Sens. (1992), pp. 302–312 Google Scholar
  10. W.V. Boynton, W.C. Feldman, S.W. Squyres et al., Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science 297, 81–85 (2002) ADSCrossRefGoogle Scholar
  11. J. Brückner, G. Dreibus, R. Rieder, H. Wänke, Refined data of APXS analyses of soils and rocks at the Mars pathfinder site: implications for surface chemistry. J. Geophys. Res. 108, E8094 (2003) ADSCrossRefGoogle Scholar
  12. B.A. Cantor, MOC observations of the 2001 Mars planet-encircling dust storm. Icarus 186, 60–96 (2007) ADSCrossRefGoogle Scholar
  13. M.H. Carr, Water on Mars (Oxford Univ. Press, New York, 1996), 229 pages Google Scholar
  14. M. Carr, J.W. Head, Geologic history of Mars. Earth Planet. Sci. Lett. 294, 185–203 (2010) ADSCrossRefGoogle Scholar
  15. S.M. Clegg, R.C. Wiens, J.E. Barefield, E. Sklute, M.D. Dyar, Quantitative remote laser induced breakdown spectroscopy by multivariate analysis. Spectrochim. Acta B 64, 79–88 (2009) ADSCrossRefGoogle Scholar
  16. M. Coche, T. Berthoud, P. Mauchien, P. Camus, Laser-enhanced ionization in a laser produced plasma at atmospheric pressure: theoretical and experimental considerations. Appl. Spectrosc. 43, 646–650 (1989) ADSCrossRefGoogle Scholar
  17. A. Cousin, S. Maurice, Y. Parot, Y. Michel, N. Le Roch, J. Dalmau, L. Parès, R. Pérez, A. Cros, R.C. Wiens (The ChemCam Team), ChemCam (MSL) autofocus capabilities. Lunar Planet. Sci. XL, 1684 (2009) ADSGoogle Scholar
  18. A. Cousin, O. Forni, S. Maurice, O. Gasnault, C. Fabre, V. Sautter, R.C. Wiens, J. Mazoyer, Laser induced breakdown spectroscopy library for the Martian environment. Spectrochim. Acta B (2011). doi:10.1016/j.sab.2011.10.004 MATHGoogle Scholar
  19. D.A. Cremers, L.J. Radziemski, Detection of chlorine and fluorine in air by laser-induced breakdown spectroscopy. Anal. Chem. 55, 1252–1256 (1983) CrossRefGoogle Scholar
  20. D.A. Cremers, L.J. Radziemski, Laser plasmas for chemical analysis, in Laser Spectroscopy and Its Applications, ed. by L.J. Radziemski, R.W. Solarz, J.A. Paisner (Marcel Dekker, New York, 1987) Chapter 5 Google Scholar
  21. C. Dufour, N. Le Roch, M. Berthé, Y. Langevin, R. Perez, S. Saccoccio, O. Forni, S. Maurice, Determination of the first level image processing of the ChemCam instrument for the Mars Science Laboratory. ICSO (2010) Google Scholar
  22. E. Durand, C. Derycke, C. Simon-Boisson, S. Muller, B. Faure, M. Saccoccio, S. Maurice, Conduction cooled compact laser for ChemCam instrument. ICSO (2006) Google Scholar
  23. C. Fabre, S. Maurice, A. Cousin, R.C. Wiens, O. Forni, V. Sautter, D. Guillaume, Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument. Spectrochim. Acta Part B 66, 280–289 (2011) ADSCrossRefGoogle Scholar
  24. B. Faure, M. Saccoccio, S. Maurice, E. Durand, C. Derycke, F. Montmessin, D. Bruneau, Development of a Compact Laser for ChemCam Instrument and Potential Use for Wind Measurement on Mars (SPIE Remote Sensing, Berlin, 2009) Google Scholar
  25. F. El-Baz, D. Prestel, Desert Varnish on Sand Grains from the Western Desert of Egypt: Importance of the Clay Component and Implications to Mars. LUNAR AND PLANETARY SCIENCE XI, 254–256 (1980) ADSGoogle Scholar
  26. L.T. Elkins-Tanton, P.C. Hess, E.M. Parmentier, Possible formation of ancient crust on Mars through magma ocean processes. J. Geophys. Res. 110, E12S01 (2005) ADSCrossRefGoogle Scholar
  27. W.C. Feldman, W.V. Boynton, R.L. Tokar, T.H. Prettyman, O. Gasnault, S.W. Squyres, R.C. Elphic, D.J. Lawrence, S.L. Lawson, S. Maurice, G.W. McKinney, K.R. Moore, R.C. Reedy, Global distribution of neutrons from Mars: results from Mars Odyssey. Science 297, 75–78 (2002) ADSCrossRefGoogle Scholar
  28. W.C. Feldman, M.T. Mellon, S. Maurice, T.H. Prettyman, J.W. Carey, D.T. Vaniman, D.L. Bish, C.I. Fialips, S.J. Chipera, J.S. Kargel, R.C. Elphic, H.O. Funsten, D.J. Lawrence, R.L. Tokar, Hydrated states of MgSO4 at equatorial latitudes on Mars. Geophys. Res. Lett. 31, L16702 (2004) ADSCrossRefGoogle Scholar
  29. J. Flahaut, J.F. Mustard, C. Quantin, H. Clenet, P. Allemand, P. Thomas, Dikes of distinct composition intruded into Noachian-aged crust exposed in the walls of Valles Marineris. Geophys. Res. Lett. 38, L15202 (2011) ADSCrossRefGoogle Scholar
  30. F. Forget, R.M. Haberle, F. Montmessin, B. Levrard, J.W. Head, Formation of glaciers on Mars by atmospheric precipitation at high obliquity. Science 311, 368–371 (2006) ADSCrossRefGoogle Scholar
  31. O. Gasnault, J.G. Taylor, S. Karunatillake, J. Dohm, H. Newsom, O. Forni, P. Pinet, W.V. Boynton, Quantitative geochemical mapping of martian elemental provinces. Icarus 207, 226–247 (2010) ADSCrossRefGoogle Scholar
  32. R. Gellert, R. Rieder, R.C. Anderson, J. Bruckner, B.C. Clark, G. Dreibus, T. Economou, G. Klingelhofer, G.W. Lugmair, D.W. Ming, S.W. Squyres, C. d’Uston, H. Wanke, A. Yen, J. Zipfel, Chemistry of rocks and soils in Gusev Crater from the Alpha Particle X-ray spectrometer. Science 305, 829–832 (2004) ADSCrossRefGoogle Scholar
  33. R. Greeley, J.D. Iversen, Wind as a Geological Process: On Earth, Mars, Venus, and Titan (Cambridge University Press, Cambridge, 1985), 333 pages CrossRefGoogle Scholar
  34. J. Grotzinger, D. Beaty, G. Dromart, S. Gupta, M. Harris, J. Hurowitz, G. Kocurek, S. Mclennan, R. Milliken, G. Ori, Sumner D. Mars, Sedimentary Geology: key concepts and outstanding questions. Astrobiology 11(1), 77–87 (2011) ADSCrossRefGoogle Scholar
  35. E.A. Guinness, R.E. Arvidson, I.H.D. Clark, M.K. Shepard, Optical scattering properties of terrestrial varnished basalts compared with rocks and soils at the Viking Lander sites. J. Geophys. Res. 102(E12), 28687–28704 (1997) ADSCrossRefGoogle Scholar
  36. R.L. Huguenin, K.J. Miller, W.S. Harwood, Frost weathering on Mars: experimental evidence for peroxide formation. J. Mol. Evol. 14, 57–64 (1979) CrossRefGoogle Scholar
  37. J. Lasue, R. Wiens, T. Stepinski, O. Forni, S. Clegg, S. Maurice (The ChemCam Team), Nonlinear mapping technique for data visualization and clustering assessment of LIBS data: application to ChemCam data. Anal. Bioanal. Chem. 1–14 (2011) Google Scholar
  38. N. Le Roch, J. Dalmau, L. Pares, H. Valentin, K. Gasc, B. Faure, C. Dufour, Y. Parot, A. Paillet, J. Sanisidro, R. Pérez, M. Saccoccio, A. Cousin, A. Cros, S. Maurice, ChemCam on the next NASA mission to Mars (MSL 2011): Measured performances of the high power LIBS laser beam. ICSO (2010) Google Scholar
  39. N. Mangold, V. Ansan, Ph. Mason, C. Vincendon, Estimate of Aeolian thickness in Arabia Terra, Mars: Implications of a thick mantle (>20 m) for hydrogen detection. Géomorphologie 1, 23–32 (2009) CrossRefGoogle Scholar
  40. S. Maurice, R. Wiens, L. Parès, S. Bender, N. le Roch, J. Dalmau, M. Berthé, Y. Langevin, K. Herkenhoff, N. Bridges, Characterization of ChemCam (MSL) imaging capability. Lunar Planet. Sci. XL, 1864 (2009) ADSGoogle Scholar
  41. S. Maurice, W.C. Feldman, B. Diez, O. Gasnault, D.J. Lawrence, A. Pathare, T. Prettyman, Mars Odyssey neutron data: 1. Data processing and models of water-equivalent-hydrogen distribution. J. Geophys. Res. 116, E011008 (2011) CrossRefGoogle Scholar
  42. S. Maurice, A. Cousin, R.C. Wiens, O. Gasnault, L. Parès, O. Forni, P.-Y. Meslin, S. Clegg (The ChemCam Team), Laser Induced Breakdown Spectroscopy (LIBS) spot size at stand-off distances with ChemCam. Lunar Planet. Sci. XLIII, 1659 (2012) Google Scholar
  43. H.Y. McSween, S.W. Ruff, R.V. Morris, J.F. Bell, K. Herkenhoff, R. Gellert, K.R. Stockstill, L.L. Tornabene, S.W. Squyres, J.A. Crisp, P.R. Christensen, T. McCoy, D.W. Mittlefehldt, M. Schmidt, Alkaline volcanic rocks from the Columbia Hills, Gusev crater. Mars. J. Geophys. Res. 111, E09S91 (2006) ADSCrossRefGoogle Scholar
  44. H.Y. McSween, I.O. McGlynn, A.D. Rogers, Determining the modal mineralogy of Martian soils. J. Geophys. Res. 115, E00F12 (2010) ADSCrossRefGoogle Scholar
  45. Y. Michel, E. Condé, D. Kouach, M. Simpfenderfer, Y. Parot, G. Orttner, M. Saccoccio, S. Maurice, ChemCam screw/nut Autofocus Mechanism: Qualification Data and Guidelines for Space-Use of Ground Equipments (ESMATS, Vienna, 2009) Google Scholar
  46. R.E. Milliken, G.A. Swayze, R.E. Arvidson, J.L. Bishop, R.N. Clark, B.L. Ehlmann, R.O. Green, J.P. Grotzinger, R.V. Morris, S.L. Murchie, J.F. Mustard, C. Weitz, Opaline silica in young deposits on Mars. Geology 36(11), 847–850 (2008) ADSCrossRefGoogle Scholar
  47. D.W. Ming, D.W. Mittlefehldt, R.V. Morris, D.C. Golden, R. Gellert, A. Yen, B.C. Clark, S.W. Squyres, W.H. Farrand, S.W. Ruff, R.E. Arvidson, G. Klingelhofer, H.Y. McSween, D.S. Rodionov, C. Schroder, P.A. de Souza, A. Wang, Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater. Mars. J. Geophys. Res. 111, E02S12 (2006) ADSCrossRefGoogle Scholar
  48. S. Murchie, L. Roach, F. Seelos, R. Milliken, J. Mustard, R. Arvidson, S. Wiseman, K. Lichtenberg, J. Andrews-Hann, J. Bishop, J.-P. Bibring, M. Parente, R. Morris, Evidence for the origin of layered deposits in Candor Chasma, Mars, from mineral composition and hydrologic modeling. J. Geophys. Res. 114, E12 (2009) Google Scholar
  49. A.M. Ollila, J.G. Blank, R.C. Wiens, J. Lasue, H.E. Newsom, S.M. Clegg, A. Cousin, S. Maurice, Preliminary results on the capabilities of the ChemCam laser-induced breakdown spectroscopy (LIBS) instrument to detect carbon on Mars. Lunar Planet. Sci. XLII, 2395 (2011) ADSGoogle Scholar
  50. R. Pérez, B.L. Barraclough, S.C. Bender, A. Cousin, A. Cros, L. DeFlores, N. LeRoch, S. Maurice, A. Paillet, L. Pares, Y. Parot, M. Saccoccio, R.C. Wiens, The ChemCam instrument for the 2011 Mars science laboratory mission : system requirements and performances. IPPW (2011) Google Scholar
  51. F. Poulet, N. Mangold, B. Platevoet, J.-M. Bardintzeff, V. Sautter, J.F. Mustard, J.-P. Bibring, P. Pinet, Y. Langevin, B. Gondet, A. Aléon-Toppani, Quantitative compositional analysis of Martian mafic regions using the MEx/OMEGA reflectance data: 2. Petrological implications. Icarus 201, 84–101 (2009) ADSCrossRefGoogle Scholar
  52. H.G. Reading, Sedimentary Environments: Processes, Facies and Stratigraphy, 3rd edn. (Blackwell Science, Boston, 1996), 688 pages Google Scholar
  53. N.O. Rennó, B.J. Bos, D. Catling, B.C. Clark, L. Drube, D. Fisher, W. Goetz, S.F. Hviid, H.U. Keller, J.F. Kok, S.P. Kounaves, K. Leer, M. Lemmon, M.B. Madsen, W.J. Markiewicz, J. Marshall, C. McKay, M. Mehta, M. Smith, M.P. Zorzano, P.H. Smith, C. Stoker, S.M.M. Young, Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site. J. Geophys. Res. 114, E00E03 (2009) CrossRefGoogle Scholar
  54. L.H. Roach, J.F. Mustard, S.L. Murchie, J.-P. Bibring, F. Forget, K.W. Lewis, O. Aharonson, M. Vincendon, J.L. Bishop, Testing evidence of recent hydration state change in sulfates on Mars. J. Geophys. Res. 114, E00D02 (2009) ADSCrossRefGoogle Scholar
  55. S.W. Ruff, P.R. Christensen, Bright and dark regions on Mars: Particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. J. Geophys. Res. 107 (2002) Google Scholar
  56. M. Saccoccio, S. Maurice, R. Wiens, B. Barraclough, J. Bernardin, A. Cros, S. Bender, S. Clegg, L. Parès, K. Gasc, D. Kouach, B. Dubois, M. Bouye, J. Thocaven, H. Seran, Y. Parot, G. Orttner, B. Faure, Y. Michel, P. Cai’s, M. Berthe, R. Perez, R. Stiglich, D. Landis, T. Hale, D. Blaney, C. Hayes, C. Lindensmith, T. Elliott, ChemCam on MSL 2009: first laser-induced breakdown spectrometer for space science. ICSO (2008) Google Scholar
  57. B. Sallé, P. Mauchien, S. Maurice, Laser-induced breakdown spectroscopy in open-path configuration for the analysis of distant objects. Spectrochim. Acta B 62(8), 739–768 (2007) ADSCrossRefGoogle Scholar
  58. J.W. Schopf, Paleobiology of the Archean. in The Proterozoic Biosphere, a Multidisciplinary Study, ed. by J.W. Schopf, C. Klein (CUP, New-York, 1992), pp. 25–39 CrossRefGoogle Scholar
  59. C. Schröder, D.S. Rodionov, T. McCoy, B.L. Jolliff, R. Gellert, L.R. Nittler, W.H. Farrand, J.R. Johnson, S.W. Ruff, J.W. Ashley, D.W. Mittlefehldt, K.E. Herkenhoff, I. Fleischer, A.F.C. Haldemann, G. Klingelhöfer, D.W. Ming, R.V. Morris, P.A. de Souza, S.W. Squyres, C. Weitz, A.S. Yen, J. Zipfel, T. Economou, Meteorites on Mars observed with the Mars exploration rovers. J. Geophys. Res. 113, E06S22 (2008) ADSCrossRefGoogle Scholar
  60. A.E. Siegman, Defining, measuring, and optimizing laser beam quality. Proc. SPIE 1868, 2 (1993) ADSCrossRefGoogle Scholar
  61. S.W. Squyres, J.P. Grotzinger, R.E. Arvidson, J.F. Bell, W. Calvin, P.R. Christensen, B.C. Clark, J.A. Crisp, W.H. Farrand, K.E. Herkenhoff, J.R. Johnson, G. Klingelhofer, A.H. Knoll, S.M. McLennan, H.Y. McSween, R.V. Morris, J.W. Rice, R. Rieder, L.A. Soderblom, In-situ evidence for an ancient aqueous environment at Meridiani Planum Mars. Science 306, 1709–1714 (2004) ADSCrossRefGoogle Scholar
  62. S.W. Squyres, A.H. Knoll, R.E. Arvidson, B.C. Clark, J.P. Grotzinger, B.L. Jolliff, S.M. McLennan, N. Tosca, J.F. Bell, W.M. Calvin, W.H. Farrand, T.D. Glotch, M.P. Golombek, K.E. Herkenhoff, J.R. Johnson, G. Klingelhoefer, H.Y. McSween, A.S. Yen, Two years at Meridiani Planum: results from the opportunity rover. Science 313, 1403–1407 (2006a) ADSCrossRefGoogle Scholar
  63. S.W. Squyres, R.E. Arvidson, D. Bollen, J.F. Bell, J. Brückner, N.A. Cabrol, W.M. Calvin, M.H. Carr, P.R. Christensen, B.C. Clark, L. Crumpler, D.J. Des Marais, C. d’Uston, T. Economou, J. Farmer, W.H. Farrand, W. Folkner, R. Gellert, T.D. Glotch, M. Golombek, S. Gorevan, J.A. Grant, R. Greeley, J. Grotzinger, K.E. Herkenhoff, S. Hviid, J.R. Johnson, G. Klingelhöfer, A.H. Knoll, G. Landis, M. Lemmon, R. Li, M.B. Madsen, M.C. Malin, S.M. McLennan, H.Y. McSween, D.W. Ming, J. Moersch, R.V. Morris, T. Parker, J.W. Rice, L. Richter, R. Rieder, C. Schröder, M. Sims, M. Smith, P. Smith, L.A. Soderblom, R. Sullivan, N.J. Tosca, H. Wänke, T. Wdowiak, M. Wolff, A. Yen, Overview of the opportunity Mars exploration rover mission to Meridiani planum: eagle crater to Purgatory ripple. J. Geophys. Res. 111(12), E12S12 (2006b) ADSCrossRefGoogle Scholar
  64. S.W. Squyres, R.E. Arvidson, S. Ruff, R. Gellert, R.V. Morris, D.W. Ming, L. Crumpler, J.D. Farmer, D.J. Des Marais, A. Yen, S.M. McLennan, W. Calvin, J.F. Bell, B.C. Clark, A. Wang, T.J. McCoy, M.E. Schmidt, P.A. de Souza, Detection of silica-rich deposits on Mars. Science 320(5879), 1063 (2008) ADSCrossRefGoogle Scholar
  65. E. Tréguier, C. d’Uston, P. Pinet, G. Berger, M. Toplis, T. McCoy, R. Gellert, J. Brückner, Overview of Mars surface geochemical diversity through APXS data multidimensional analysis: first attempt at modelling rock alteration. J. Geophys. Res. 113, E12S34 (2008) ADSCrossRefGoogle Scholar
  66. D.T. Vaniman, D.L. Bish, S.J. Chipera, C.I. Fialips, J.W. Carey, W.C. Feldman, Magnesium sulfate salts and the history of water on Mars. Nature 431, 663–665 (2004) ADSCrossRefGoogle Scholar
  67. N. Valette, C. Grèzes-Besset, D. Torricini, S. Maurice, L. Parès, M. Saccoccio, K. Gasc, Study of Ageing of ion assisted deposited multilayer components for ChemCam instrument of spectroscopic analysis on Mars. ICSO (2008) Google Scholar
  68. H. Wänke, J. Brückner, G. Dreibus, R. Rieder, I. Ryabchikov, Chemical composition of rocks and soils at the Pathfinder site. Space Sci. Rev. 96, 317–330 (2001) ADSCrossRefGoogle Scholar
  69. G.E. Webb, B.S. Kamber, Trace element Geochemistry as a tool for interpreting microbialites, in Earliest Life on Earth: Habitats, Environments and Methods of Detection, ed. by D. Golding, M. Glikson (Springer, Berlin, 2010), pp. 127–170 Google Scholar
  70. R.C. Wiens, S. Maurice, (The ChemCam Team), The ChemCam Instrument Suite on the Mars Science Laboratory Rover Curiosity: remote sensing by laser-induced plasmas. Geochem. News 145 (2011). Special issue: Curiosity on Mars: Geochemical Instrumentation and Context Observations Google Scholar
  71. A.P. Zent, C.P. McKay, The chemical reactivity of the Martian soil and implications for future missions. Icarus 108, 146–157 (1994) ADSCrossRefGoogle Scholar
  72. J. Zipfel, R. Anderson, J. Brückner, B.C. Clark, G. Dreibus, T. Economou, R. Gellert, G. Klingelhöfer, G.W. Lugmair, D.W. Ming, R. Rieder, S.W. Squyres, C. d’Uston, H. Wänke, A. Yen, A.S. Team, APXS analyses of Bounce Rock—the first shergottite on Mars. Meteorit. Planet. Sci. 39, A118 (2004) Google Scholar
  73. J. Zipfel, C. Schräder, B.L. Jolliff, R. Gellert, K.E. Herkenhoff, R. Rieder, R. Anderson, J.F. Bell, J. Brückner, J.A. Crisp, P.R. Christensen, B.C. Clark, P.A. de Souza, G. Dreibus, C. d’Uston, T. Economou, S.P. Gorevan, B.C. Hahn, G. Klingelhäfer, T.J. McCoy, H.Y. McSween, D.W. Ming, R.V. Morris, D.S. Rodionov, S.W. Squyres, H. Wänke, S.P. Wright, M.B. Wyatt, A.S. Yen, Bounce Rock—a shergottite-like basalt encountered at Meridiani Planum, Mars. Meteorit. Planet. Sci. 46(1), 1–20 (2011) ADSGoogle Scholar
  74. P. Zivojinovic, M. Lescure, H. Tap-Beteille, Design and stability analysis of a CMOS feedback laser driver. IEEE Trans. Instrum. Meas. 53, 102–108 (2004) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • S. Maurice
    • 1
  • R. C. Wiens
    • 2
  • M. Saccoccio
    • 3
  • B. Barraclough
    • 2
  • O. Gasnault
    • 1
  • O. Forni
    • 1
  • N. Mangold
    • 4
  • D. Baratoux
    • 1
  • S. Bender
    • 2
  • G. Berger
    • 1
  • J. Bernardin
    • 2
  • M. Berthé
    • 5
  • N. Bridges
    • 6
  • D. Blaney
    • 7
  • M. Bouyé
    • 8
  • P. Caïs
    • 9
  • B. Clark
    • 10
  • S. Clegg
    • 2
  • A. Cousin
    • 1
  • D. Cremers
    • 11
  • A. Cros
    • 1
  • L. DeFlores
    • 7
  • C. Derycke
    • 12
  • B. Dingler
    • 2
  • G. Dromart
    • 13
  • B. Dubois
    • 8
  • M. Dupieux
    • 1
  • E. Durand
    • 12
  • L. d’Uston
    • 1
  • C. Fabre
    • 14
  • B. Faure
    • 3
  • A. Gaboriaud
    • 3
  • T. Gharsa
    • 1
  • K. Herkenhoff
    • 15
  • E. Kan
    • 7
  • L. Kirkland
    • 16
  • D. Kouach
    • 8
  • J.-L. Lacour
    • 17
  • Y. Langevin
    • 5
  • J. Lasue
    • 1
    • 2
  • S. Le Mouélic
    • 4
  • M. Lescure
    • 24
  • E. Lewin
    • 18
  • D. Limonadi
    • 7
  • G. Manhès
    • 19
  • P. Mauchien
    • 17
  • C. McKay
    • 20
  • P.-Y. Meslin
    • 1
  • Y. Michel
    • 3
  • E. Miller
    • 7
  • H. E. Newsom
    • 21
  • G. Orttner
    • 1
  • A. Paillet
    • 3
  • L. Parès
    • 1
  • Y. Parot
    • 1
  • R. Pérez
    • 3
  • P. Pinet
    • 1
  • F. Poitrasson
    • 22
  • B. Quertier
    • 9
  • B. Sallé
    • 1
    • 17
  • C. Sotin
    • 4
    • 7
  • V. Sautter
    • 23
  • H. Séran
    • 1
  • J. J. Simmonds
    • 7
  • J.-B. Sirven
    • 17
  • R. Stiglich
    • 2
  • N. Striebig
    • 8
  • J.-J. Thocaven
    • 1
  • M. J. Toplis
    • 1
  • D. Vaniman
    • 2
    • 25
  1. 1.Institut de Recherche en Astrophysique et PlanétologieUniv. Paul Sabatier-CNRS-Obs. Midi-PyrénéesToulouseFrance
  2. 2.Los Alamos National LaboratoryLos AlamosUSA
  3. 3.Centre National d’Etudes SpatialesToulouseFrance
  4. 4.Laboratoire de Planétologie et GéodynamiqueUniversité Nantes-CNRSNantesFrance
  5. 5.Institut d’Astrophysique SpatialeUniversité Paris Sud & CNRSOrsayFrance
  6. 6.Applied Physics LaboratoryJohns Hopkins UniversityLaurelUSA
  7. 7.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  8. 8.Groupe d’Instrumentation ScientifiqueObservatoire Midi-PyrénéesToulouseFrance
  9. 9.Laboratoire d’Astrophysique de BordeauxUniv. Bordeaux, CNRSFloiracFrance
  10. 10.Space Science InstituteBoulderUSA
  11. 11.Applied Research AssociatesAlbuquerqueUSA
  12. 12.Thalès Optronique SaElancourtFrance
  13. 13.Laboratoire de Géologie de LyonUniversité de Lyon-ENS de LyonLyonFrance
  14. 14.Géologie et Gestion des Ressources Minérales et énergétiquesUniv. Lorraine-CNRSVandœuvreFrance
  15. 15.U.S. Geological SurveyAstrogeology Science CenterFlagstaffUSA
  16. 16.Lunar and Planetary InstituteHoustonUSA
  17. 17.Department of Physical ChemistryCEA, DENGif-sur-YvetteFrance
  18. 18.Institut des Sciences de la TerreUniversité Grenoble 1-CNRSGrenobleFrance
  19. 19.Institut de Physique du GlobeParisFrance
  20. 20.NASA Ames Research CenterMountain ViewUSA
  21. 21.University of New MexicoAlbuquerqueUSA
  22. 22.Géosciences Environnement ToulouseCNRSToulouseFrance
  23. 23.Lab. de Minéralogie et Cosmochimie, CNRSMuseum National d’Histoire NaturelleParisFrance
  24. 24.Laboratoire d’Analyse et d’Architecture des SystèmesCNRSToulouseFrance
  25. 25.Planetary Science InstituteTucsonUSA

Personalised recommendations