Space Science Reviews

, Volume 169, Issue 1–4, pp 73–121 | Cite as

Discharges in the Stratosphere and Mesosphere

  • Devendraa Siingh
  • R. P. Singh
  • Ashok K. Singh
  • Sanjay Kumar
  • M. N. Kulkarni
  • Abhay K. Singh
Article

Abstract

In the present paper salient features of discharges in the stratosphere and mesosphere (namely sprites, halos, blue starters, blue jets, gigantic jets and elves), are discussed. The electrostatic field due to charge imbalance during lightning processes may lead to stratospheric/mesospheric discharges either through the conventional breakdown based on streamers and leaders or relativistic runaway mechanism. Most (not all) of the observed features of sprites, halos and jets are explained by this processes. Development and evolution of streamers are based on the local transient electrostatic field and available ambient electron density which dictate better probability in favor of positive cloud-to-ground discharges, and thus explains the polarity asymmetry in triggering sprites and streamers. Elves are generated by electromagnetic pulse radiated by return stroke currents of cloud-to-ground/inter-cloud discharges. Generation of the both donut and pancake shape elves are explained. Electrodynamic features of thunderstorms associated with stratospheric/mesospheric discharges are summarized including current and charge moment associated with relevant cloud-to-ground discharges. The hypothesis relating tropospheric generated gravity waves and mesospheric discharges are also discussed. Finally some interesting problems are listed.

Keywords

Transient luminous events Charge moment change Lightning discharge Gravity wave and sprite Lightning current and electric field Mesoscale convective systems VLF perturbation Electron density Thermal runaway electrons ELF/VLF radio waves 

References

  1. T. Adachi, H. Fukunishi, Y. Takahashi, M. Sato, Roles of the EMP and QE field in the generation of columniform sprites. Geophys. Res. Lett. 31, L04107 (2004). doi:10.1029/2003GL019081 Google Scholar
  2. T. Adachi, H. Fukunishi, Y. Takahashi, M. Sato, A. Ohkubo, K. Yamamoto, Characteristics of thunderstorm systems producing winter sprites in Japan. J. Geophys. Res. 110, D11203 (2005). doi:10.1029/2004JD005012 ADSGoogle Scholar
  3. T. Adachi et al., Electric fields and electron energies in sprites and temporal evolutions of lightning charge moment measurements. J. Phys. D, Appl. Phys. 41(23), 234010 (2008) MathSciNetADSGoogle Scholar
  4. N.L. Allen, A. Ghaffar, The conditions required for the propagation of a cathode-directed positive streamer in air. J. Phys. D, Appl. Phys. 28, 331–337 (1995) ADSGoogle Scholar
  5. M.J. Alexander, A simulated spectrum of convectively generated gravity waves: propagation from the tropopause to the mesopause and the effects on the middle atmosphere. J. Geophys. Res. 101, 1571–1588 (1996) ADSGoogle Scholar
  6. M.J. Alexander, R.A. Vincent, Gravity waves in the tropical lower stratosphere: a model study of seasonal and interannual variability. J. Geophys. Res. 105, 22299–22310 (2000) ADSGoogle Scholar
  7. M.J. Alexander, J.R. Holton, D.R. Durran, The gravity wave response above deep convection in a squall line simulation. J. Atmos. Sci. 52, 2212–2226 (1995) ADSGoogle Scholar
  8. R.A. Armstrong, J.A. Shorter, M.J. Taylor, D.M. Suszcynsky, W.A. Lyons, L.S. Jeong, Photometric measurements in the SPRITES 95 and 96 campaigns: nitrogen second positive (399.8 nm) and the first negative (427.8 nm) emission. J. Atmos. Terr. Phys. 60, 787–799 (1998) ADSGoogle Scholar
  9. R.A. Armstrong, D.M. Suszcynsky, W.A. Lyons, T.E. Nelson, Multi-color photometric measurements of ionization and energies in sprites. Geophys. Res. Lett. 27, 653–657 (2000). doi:10.1029/1999GL003672 ADSGoogle Scholar
  10. T. Asano, M. Hayakawa, M.G. Cho, T. Suzuki, Computer simulations on the initiation and morphological difference of Japan winter and summer sprites. J. Geophys. Res. 113, A02308 (2008). doi:10.1029/2007JA012528 ADSGoogle Scholar
  11. T. Asano, T. Suzuki, Y. Hiraki, E. Mareev, M.G. Cho, M. Hayakawa, Computer simulations on sprite initiation for realistic lightning models with higher-frequency surges. J. Geophys. Res. 114, A02310 (2009a). doi:10.1029/2008JA013651 ADSGoogle Scholar
  12. T. Asano, T. Suzuki, M. Hayakawa, M.G. Cho, Three dimensional em computer simulation on sprite initiation above a horizontal lightning discharge. J. Atmos. Sol.-Terr. Phys. 71, 983–990 (2009b) ADSGoogle Scholar
  13. L.P. Babich, A.Y. Kudryavtsev, M.L. Kudryavtseva, I.M. Kutsyk, Atmospheric gamma-ray and neutron flashes. J. Exp. Theor. Phys. 106(1), 65–76 (2008) ADSGoogle Scholar
  14. C.P. Barrington-Leigh, U.S. Inan, Elves triggered by positive and negative lightning discharges. Geophys. Res. Lett. 26, 683–686 (1999) ADSGoogle Scholar
  15. C.P. Barrington-Leigh, U.S. Inan, M. Stanley, S.A. Cummer, Sprites triggered by negative lightning discharges. Geophys. Res. Lett. 26, 3605–3608 (1999) ADSGoogle Scholar
  16. C.P. Barrington-Leigh, U.S. Inan, M. Stanley, Identification of sprites and elves with intensified video and broadband array photometry. J. Geophys. Res. 106, 1741–1750 (2001). doi:10.1029/2000JA000073 ADSGoogle Scholar
  17. E.M. Bazelyan, Y.P. Raizer, Lightning Physics and Lightning Protection (IOP Publishing, Bristol, 2000), 325 pp. Google Scholar
  18. E.A. Bering, J.R. Benbrook, L. Bhusal, J.A. Garret, A.M. Paredes, E.M. Wescott, Observations of transient luminous events (TLEs) associated with negative cloud to ground (−CG) strokes. Geophys. Res. Lett. 31, L05104 (2004a). doi:10.1029/2003GL018659 Google Scholar
  19. E.A. Bering et al., The results from the 1999 sprite balloon campaign. Adv. Space Res. 34, 1782–1791 (2004b) ADSGoogle Scholar
  20. P. Berdeklis, R. List, The ice crystal–graupel collision charging mechanism of thunderstorm electrification. J. Atmos. Sci. 58, 2751–2770 (2001). doi:10.1175/1520-0469(2001)058<2751:TICGCC>2.0.CO;2 ADSGoogle Scholar
  21. K. Berger, R.B. Anderson, H. Kroeninger, Parameters of lightning flashes. Electra 41, 23–37 (1975) Google Scholar
  22. F.J. Bertin, L. Testud Kersley, P.R. Rees, The meteorological jet stream as a source of medium-scale gravity waves in the thermosphere: an experimental study. J. Atmos. Terr. Phys. 49, 1161–1183 (1978) ADSGoogle Scholar
  23. L. Bhusal et al., Statistics and properties of transient luminous event found in the 1999 sprites balloon campaign. Adv. Space Res. 34, 1811–1814 (2004) ADSGoogle Scholar
  24. D.J. Boccippio, E.R. William, S.J. Heckman, W.A. Lyons, I.T. Baker, R. Boldi, Sprites ELF transients, and positive ground strokes. Science 269, 1088–1091 (1995) ADSGoogle Scholar
  25. W.L. Boeck et al., Lightning induced brightening in the airglow layer. Geophys. Res. Lett. 19, 99–102 (1992). doi:10.1029/91GL03168 ADSGoogle Scholar
  26. W.L. Boeck Jr., O.H. Vaughan, R.J. Blakeslee, B. Vonnegut, M. Brook, Observations of lightning in the stratosphere. J. Geophys. Res. 100, 1465–1475 (1995) ADSGoogle Scholar
  27. W.L. Boeck, O.H. Vaughan, R.J. Blakeslee, B. Vonnegut, M. Brook, The role of the space shuttle videotapes in the discovery of sprites, jets and elves. J. Atmos. Sol.-Terr. Phys. 60, 669–677 (1998) ADSGoogle Scholar
  28. M. Brook, M. Nakano, P. Krehbiel, T. Takeuti, The electrical structure of the Hokuriku winter thunderstorms. J. Geophys. Res. 87, 1207–1215 (1982) ADSGoogle Scholar
  29. S.-C. Chang, C.L. Kuo, L.-J. Lee, A.B. Chen, H.-T. Su, R.-R. Hsu, H.U. Frey, S. Mende, Y. Takahashi, L.-C. Lee, ISUAL far-ultraviolet events, elves, and lightning current. J. Geophys. Res. 115, A00E46 (2010). doi:10.1029/2009JA014861 ADSGoogle Scholar
  30. O. Chanrion, T. Neubert, A pic-mcc code for simulation of streamer propagation in air. J. Comput. Phys. 227(15), 7222–7245 (2008). doi:10.1016/j.jcp.2008.04.016 ADSMATHGoogle Scholar
  31. O. Chanrion, T. Neubert, Production of runaway electrons by negative streamer discharges. J. Geophys. Res. 115, A00E32 (2010). doi:10.1029/2009JA014774 ADSGoogle Scholar
  32. S. Chapman, R.S. Lindzen, Atmospheric Tides (Reidel, Hingham, 1970) Google Scholar
  33. A.B. Chen et al., Global distributions and occurrence rates of transient luminous events. J. Geophys. Res. 113, A08306 (2008). doi:10.1029/2008JA013101 ADSGoogle Scholar
  34. Z. Cheng, S.A. Cummer, H.-T. Su, R.R. Hsu, Broadband very low frequency measurement of D region ionospheric perturbations caused by lightning electromagnetic pulses. J. Geophys. Res. 112, A06318 (2007). doi:10.1029/2006JA011840 ADSGoogle Scholar
  35. M. Cho, M.J. Rycroft, Computer simulation of the electric field structure and optical emission from cloud-top to the ionosphere. J. Atmos. Sol.-Terr. Phys. 60, 871–888 (1998) ADSGoogle Scholar
  36. M. Cho, M.J. Rycroft, Non-uniform ionisation of the upper atmosphere due to the electromagnetic pulse from a horizontal lightning discharge. J. Atmos. Sol.-Terr. Phys. 63, 559–580 (2001) ADSGoogle Scholar
  37. J.K. Chou et al., Gigantic jets with negative and positive polarity streamers. J. Geophys. Res. 115, A00E45 (2010). doi:10.1029/2009JA014831 ADSGoogle Scholar
  38. J.K. Chou et al., Optical emissions and behaviors of the blue starters, blue jets, and gigantic jets observed in the Taiwan transient luminous event ground campaign. J. Geophys. Res. 116, A07301 (2011). doi:10.1029/2010JA016162 ADSGoogle Scholar
  39. S.A. Cummer, Current moment in sprite-producing lightning. J. Atmos. Sol.-Terr. Phys. 65, 499–508 (2003) ADSGoogle Scholar
  40. S.A. Cummer, U.S. Inan, Measurement of charge transfer in sprite producing lightning using ELF radio atmospheric. Geophys. Res. Lett. 24, 1731–1734 (1997) ADSGoogle Scholar
  41. S.A. Cummer, M. Fullekrug, Unusually intense continuing current in lightning produces delayed mesospheric breakdown. Geophys. Res. Lett. 28, 495–498 (2001) ADSGoogle Scholar
  42. S.A. Cummer, W.A. Lyons, Lightning charge moment changes in U. S. High Plains thunderstorms. Geophys. Res. Lett. 31, L05114 (2004). doi:10.1029/2003GL019043 Google Scholar
  43. S.A. Cummer, W.A. Lyons, Implication of lightning charge moment changes for sprite initiation. J. Geophys. Res. 110, A04304 (2005). doi:10.1029/2004JA010812 ADSGoogle Scholar
  44. S.A. Cummer, N.C. Jaugey, J.B. Li, W.A. Lyons, T.E. Nelson, E.A. Gerken, Submillisecond imaging of sprite development and structure. Geophys. Res. Lett. 33, L04104 (2006). doi:10.1029/2005GL024969 Google Scholar
  45. S.A. Cummer, J. Li, F. Han, G. Lu, N. Jaugey, W.A. Lyons, T.E. Nelson, Quantification of the troposphere-to-ionosphere charge transfer in a gigantic jet. Nat. Geosci. 2, 617–620 (2009). doi:10.1038/NGEO607 ADSGoogle Scholar
  46. J.E. Davidson, Thunderstorm and auroral phenomena. Nature 47, 582 (1893) ADSGoogle Scholar
  47. J.T. Desroschers, M.J. Heavner, D.L. Hampton, D.D. Sentman, E.M. Wescott, A preliminary morphology of optical transients above thunderstorms. EOS Suppl., 76(46), F105 (1995) Google Scholar
  48. E.M. Dewan, R.H. Picard, R.R. O’Neil, H.A. Gardiner, J. Gibson, J.D. Mill, E. Richards, M. Kendra, W.O. Gallery, MSX satellite observations of thunderstorm-generated gravity waves in midwives infrared images of the upper stratosphere. Geophys. Res. Lett. 25, 939–942 (1998) ADSGoogle Scholar
  49. J.R. Dwyer, Source mechanisms of terrestrial gamma-ray flashes. J. Geophys. Res. 113, D10103 (2008). doi:10.1029/2007JD009248 ADSGoogle Scholar
  50. J.R. Dwyer et al., X-ray bursts associated with leader steps in cloud-to-ground lightning. Geophys. Res. Lett. 32, L01803 (2005). doi:10.1029/2004GL021782 Google Scholar
  51. U. Ebert, D.D. Sentman, Streamers, sprites, leaders, lightning: from micro-to macroscales. J. Phys. D, Appl. Phys. 41, 230301 (2008). doi:10.1088/0022-3727/41/23/230301 ADSGoogle Scholar
  52. H.E. Edens, Photographic and lightning mapping observations of a blue starter over a New Mexico thunderstorm. Geophys. Res. Lett. 38, L17804 (2011). doi:10.1029/2011GL048543 ADSGoogle Scholar
  53. S. Fadnavis, D. Siingh, G. Beig, R.P. Singh, Seasonal variation of the mesospheric inversion layer, thunderstorms, and mesospheric ozone over India. J. Geophys. Res. 112, D15305 (2007). doi:10.1029/2006JD008379 ADSGoogle Scholar
  54. S. Fadnavis, D. Siingh R.P. Singh, Mesospheric inversion layer and sprites. J. Geophys. Res. 114, D23307 (2009). doi:10.1029/2009JD011913 ADSGoogle Scholar
  55. R. Ford, M.E. McIntyre, W.A. Norton, Balance and the slow quasi-manifold: some explicit results. J. Atmos. Sci. 57, 1236–1254 (2000) MathSciNetADSGoogle Scholar
  56. R.C. Franz, R.J. Nemzek, J.R. Winckler, Television image of a large upward electrical discharge above a thunderstorm. Science 249, 48–51 (1990) ADSGoogle Scholar
  57. H.U. Frey et al., Halos generated by negative cloud-to-ground lightning. Geophys. Res. Lett. 34, L18801 (2007). doi:10.1029/2007GL030908 ADSGoogle Scholar
  58. D.C. Fritts, G.D. Nastrom, Sources of mesoscale variability of gravity waves II: frontal convective, and jet stream excitation. J. Atmos. Sci. 49, 111–127 (1992) ADSGoogle Scholar
  59. D.C. Fritts, M.J. Alexander, Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 41, 1003 (2003). doi:10.1029/2001RG000106 ADSGoogle Scholar
  60. D.C. Fritts, J.R. Isler, J.H. Hecht, R.L. Walterscheid, O. Andreassen, Wave breaking signatures in sodium densities and OH nightglow, part II, Simulation of wave and instability structures. J. Geophys. Res. 102, 6669–6684 (1997) ADSGoogle Scholar
  61. D.C. Fritts, S.L. Wadas, Y. Yamada, An estimate of strong local body forcing and gravity wave radiation based on OH airglow and meteor radar observations. Geophys. Res. Lett. 29, 429–1432 (2002). doi:10.1029/2001GL013753.29 Google Scholar
  62. H. Fukunishi, Y. Takahashi, M. Kubota, K. Sakanoi, U.S. Inan, W.A. Lyons, Elves: lightning-induced trancient luminous events in the lower ionosphere. Geophys. Res. Lett. 23, 2157–2160 (1996) ADSGoogle Scholar
  63. H. Fukunishi, Y. Takahashi, M. Sato, A. Shono, M. Fujito, Y. Watanabe, Ground-based observations of ULF transients excited by strong lightning discharges producing elves and sprites. Geophys. Res. Lett. 24, 2973–2976 (1997) ADSGoogle Scholar
  64. H. Fukunishi, Y. Takahashi, A. Uchida, M. Sera, K. Adachi, R. Miyasato, Occurrences of sprites and elves above the Sea of Japan near Hokuriku in winter. Eos 80(46), F217 (1999) ADSGoogle Scholar
  65. H. Fukunishi, Y. Hiraki, T. Adachi, L. Tong, K. Nanbu, Occurrence conditions for gigantic jets connecting the thundercloud and the ionosphere. Eos 86(52), Abstract AE11A-02 (2005). Fall Meet. Suppl. Google Scholar
  66. M. Fullekrug, E.A. Mareev, M.J. Rycroft, Sprites, Elves and Intense Lightning Discharges (Springer, Dordrecht, 2006), 398 pp. Google Scholar
  67. M. Fullekrug, R.A. Roussel-Dupre, E.M.D. Symbalisty, O. Chanrion, A. Odzimek, O.V. der Velde, T. Neubert, Relativistic runaway breakdown in low-frequency radio. J. Geophys. Res. 115, A00E09 (2010). doi:10.1029/2009JA014468 ADSGoogle Scholar
  68. I. Gallimberti, G. Bacchiega, A. Bondiou-Clergerie, Fundamental processes in long air gap discharges. C. R. Phys. 3, 1335–1359 (2002) ADSGoogle Scholar
  69. W.R. Gamerota, S.A. Cummer, J. Li, H.C. Stenbaek-Nielsen, R.K. Haaland, M.G. McHarg, Comparison of sprite initiation altitudes between observations and models. J. Geophys. Res. 116, A02317 (2011). doi:10.1029/2010JA016095 ADSGoogle Scholar
  70. E.A. Gerken, U.S. Inan, A survey of streamer and diffuse glow dynamics observed in sprites using telescopic imagery. J. Geophys. Res. 107, 1344 (2002). doi:10.1029/2002JA009248 Google Scholar
  71. E.A. Gerken, U.S. Inan, Comparison of photometric measurements and charge moment estimations in two sprite-producing storms. Geophys. Res. Lett. 31, L03107 (2004). doi:10.1029/2003GL018751 Google Scholar
  72. E.A. Gerken, U.S. Inan, C.P. Barrington-Leigh, Telescopic imaging of sprites. Geophys. Res. Lett. 27(17), 2637–2640 (2000). doi:2000GL000035 ADSGoogle Scholar
  73. R.N. Ghodpage, D. Siingh, R.P. Singh, G.K. Mukherjee, P. Vohat, A.K. Singh, Tidal and gravity waves study from the airglow measurements at Kolhapur (India). J. Earth Syst. Sci. (2012, in press) Google Scholar
  74. B.D. Green, M.E. Fraser, W.T. Rawlins, L. Jeong, W.A.M. Blumberg, S.B. Mende, G.R. Swenson, D.L. Hampton, E.M. Wescott, D.D. Sentman, Molecular excitation in sprites. Geophys. Res. Lett. 23, 2161–2164 (1996) ADSGoogle Scholar
  75. A.V. Gurevich, G.M. Milikh, R.A. Roussell-Dupre, Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm. Phys. Lett. A 165, 463–468 (1992) ADSGoogle Scholar
  76. A. Gurevich, K. Zybin, Y. Medvedev, Runaway breakdown in strong electric field as a source of terrestrial gamma flashes and gamma bursts in lightning leader steps. Phys. Lett. A 361, 119–125 (2007) ADSGoogle Scholar
  77. L.C. Hale, The coupling of ELF/VLF energy from lightning and MeV particle to the middle atmosphere, ionosphere and global circuit. J. Geophys. Res. 99, 21089–21096 (1994) ADSGoogle Scholar
  78. C. Haldoupis, T. Neubert, U.S. Inan, A. Mika, T.H. Allin, R.A. Marshall, Subionospheric early VLF signal perturbations observed in one-to-one association with sprites. J. Geophys. Res. 109, A10303 (2004). doi:10.1029/2004JA010651 ADSGoogle Scholar
  79. C. Haldoupis, N. Amvrosiadi, B.R.T. Cotts, O.A. van der Velde, O. Chanrion, T. Neubert, More evidence for a one-to-one correlation between sprites and early VLF perturbations. J. Geophys. Res. 115, A07304 (2010). doi:10.1029/2009JA015165 ADSGoogle Scholar
  80. S.F. Hardman, R.L. Dowden, J.B. Brundell, J.L. Bahr, Z. Kawasaki, C.J. Rodger, Sprite observations in the northern territory of Australia. J. Geophys. Res. 105, 4689–4697 (2000). doi:10.1029/1999JD900325 ADSGoogle Scholar
  81. M. Hayakawa, T. Nakamura, Y. Hobara, E.R. Williams, Observation of sprites over the Sea of Japan and conditions for lightning induced sprites in winter. J. Geophys. Res. 109, A01312 (2004). doi:10.1029/2003JA0099905 ADSGoogle Scholar
  82. M.J. Heavner, Optical spectroscopic observations of sprites, blue jets, and elves: inferred microphysical processes and their microphysical implications, Ph.D. thesis, University of Alaska Fairbanks, Fairbanks, Alaska, 2000 Google Scholar
  83. S.J. Heckman, E.R. Williams, Corona envelopes and lightning currents. J. Geophys. Res. 94, 13287–13294 (1989) ADSGoogle Scholar
  84. J.R. Herman, R.A. Goldberg, Sun, weather and climate. NASA Spec. Publ. SP-426, 360 (1978) Google Scholar
  85. C.O. Hines, Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys. 58, 1441–1481 (1960) ADSGoogle Scholar
  86. Y. Hiraki, H. Fukunishi, Theoretical criterion of charge moment change by lightning for initiation of sprites. J. Geophys. Res. 111, A11305 (2006). doi:10.1029/2006JA011729 ADSGoogle Scholar
  87. R.R. Hodges, Generation of turbulence in the upper atmosphere by internal gravity waves. J. Geophys. Res. 72, 3455–3458 (1967) Google Scholar
  88. J.R. Holton, J.H. Beres, X. Zhou, On the vertical scale of gravity waves excited by localized thermal forcing. J. Atmos. Sci. 59, 2019–2023 (2002) MathSciNetADSGoogle Scholar
  89. R.R. Hsu et al., Gigantic jet observation by the ISUAL payload of FORMOSAT-2 satellite. Eos 86(52), Abstract AE23A-0992 (2005). Fall Meet. Suppl. Google Scholar
  90. H. Hu, Q. Li, R.H. Holzworth, Thunderstorm related variations in stratospheric conductivity measurements. J. Geophys. Res. 94, 16429–16435 (1989) ADSGoogle Scholar
  91. W. Hu, S.A. Cummar, W.A. Lyons, T.E. Nelson, Lightning charge moment changes for the initiation of sprites. Geophys. Res. Lett. 29, 1279–1283 (2002). doi:10.1029/2001GL014593 ADSGoogle Scholar
  92. W. Hu, S.A. Cummer, W.A. Lyons, Testing sprite initiation theory using lightning measurements and modeled electromagnetic fields. J. Geophys. Res. 112, D13115 (2007). doi:10.1029/2006JD007939 ADSGoogle Scholar
  93. E. Huang, E. Williams, R. Boldi, S. Heckman, W. Lyons, M. Taylor, T. Nelson, C. Wong, Criteria for sprites and elves based on Schumann resonance observations. J. Geophys. Res. 104, 16943–16964 (1999) ADSGoogle Scholar
  94. T.-Y. Huang, C.L. Kuo, C.Y. Chiang, A.B. Chen, H.T. Su, R.R. Hsu, Further investigations of lightning-induced transient emissions in the OH airglow layer. J. Geophys. Res. 115, A10326 (2010). doi:10.1029/2010JA015558 ADSGoogle Scholar
  95. P. Hubert, P. Laroche, A. Eybert-Berard, L. Barret, Triggered lightning in New Mexico. J. Geophys. Res. 86, 2511–2521 (1984) ADSGoogle Scholar
  96. U.S. Inan, T.F. Bell, J.V. Rodriguez, Heating and ionization of the lower ionosphere by lightning. Geophys. Res. Lett. 18, 705–708 (1991) ADSGoogle Scholar
  97. U.S. Inan, T.F. Bell, V.P. Pasko, D.D. Sentman, E.M. Wescott, W.A. Lyons, VLF signatures of ionospheric disturbances associated with sprites. Geophys. Res. Lett. 22, 3461–3464 (1995) ADSGoogle Scholar
  98. U.S. Inan, W.A. Sampson, Y.N. Taranenko, Space-time structure of optical flashes and ionization changes produced by lightning EMP. Geophys. Res. Lett. 23, 133–136 (1996) ADSGoogle Scholar
  99. U.S. Inan, C. Barrington-Leigh, S. Hansen, V.S. Glukhov, T.F. Bell, R. Rairden, Rapid lateral expansion of optical luminosity in lightning-induced inospheric flashes referred to as ‘elves’. Geophys. Res. Lett. 24, 5–9 (1997) Google Scholar
  100. U.S. Inan, S.A. Cummer, R.A. Marshall, A survey of ELF and VLF research on lightning-ionosphere interactions and causative discharges. J. Geophys. Res. 115, A00E36 (2010). doi:10.1029/2009JA014775 Google Scholar
  101. J.H. Jiang, S.D. Eckermann, D.L. Wu, J. Ma, A search for mountain waves in MLS stratospheric limb radiances from the winter northern hemisphere: data analysis and global mountain wave modeling. J. Geophys. Res. 109, D03107 (2004). doi:10.1029/2003JD003974 Google Scholar
  102. M.P. Johnson, U.S. Inan, Sferic clusters associated with early/fast VLF events. Geophys. Res. Lett. 27, 1391–1394 (2000). doi:10.1029/1999GL010757 ADSGoogle Scholar
  103. F. Kobayashi, T. Shimura, A. Wada, T. Sakai, Lightning activities of winter thundercloud system around the Hokuriku coast of Japan, in Proc 10th International Conference of Atmospheric Electricity (1996), pp. 560–563 Google Scholar
  104. V.I. Krassovsky, Infrasonic variations of OH emission in the upper atmosphere. Ann. Geophys. 28, 739 (1972) Google Scholar
  105. P.R. Krehbiel, M. Brook, R.A. McCrory, Analysis of the charge structure of lightning discharges to ground. J. Geophys. Res. 84, 2432–2456 (1979) ADSGoogle Scholar
  106. P.R. Krehbiel, J.A. Riousset, V.P. Pasko, R.J. Thomas, W. Rison, M.A. Stanley, H.E. Edens, Upward electrical discharges from thunderstorms. Nat. Geosci. 1, 233–237 (2008). doi:10.1038/ngeo162 ADSGoogle Scholar
  107. E.P. Krider, Physics of lightning today. Rev. Gén. Électr. (France) 6, 2–7 (1994) Google Scholar
  108. S. Kumar, A. Kumar, C.J. Rodger, Subionospheric early VLF perturbations observed at Suva: VLF detection of red sprites in the day? J. Geophys. Res. 113, A03311 (2008). doi:10.1029/2007JA012734 ADSGoogle Scholar
  109. C.-L. Kuo et al., Modeling elves observed by FORMOSAT-2 satellite. J. Geophys. Res. 112, A11312 (2007). doi:10.1029/2007JA012407 ADSGoogle Scholar
  110. C.-L. Kuo, A.B. Chen, J.K. Chou, L.Y. Tsai, R.R. Hsu, H.T. Su, H.U. Frey, S.B. Mende, Y. Takahashi, L.C. Lee, Radiative emission and energy deposition in transient luminous events. J. Phys. D, Appl. Phys. 41, 234014 (2008) ADSGoogle Scholar
  111. C.-L. Kuo et al., Discharge processes, electric field, and electron energy in ISUAL-recorded gigantic jets. J. Geophys. Res. 114, A04314 (2009). doi:10.1029/2008JA013791 Google Scholar
  112. I.M. Kutsyk, L. Babich, Spatial structure of optical emissions in the model of gigantic upward atmospheric discharges with participation of runaway electrons. Phys. Lett. A 253, 75–82 (1999) ADSGoogle Scholar
  113. L.-J. Lee et al., Controlling synoptic-scale factors for the distribution of transient luminous events. J. Geophys. Res. 115, A00E54 (2010). doi:10.1029/2009JA014823 ADSGoogle Scholar
  114. J. Li, S.A. Cummer, Measurement of sprite streamer acceleration and deceleration. Geophys. Res. Lett. 36, L10812 (2009). doi:10.1029/2009GL037581 ADSGoogle Scholar
  115. J. Li, S.A. Cummer, Estimation of electric charge in sprites from optical and radio observations. J. Geophys. Res. 116, A01301 (2011). doi:10.1029/2010JA015391 ADSGoogle Scholar
  116. J. Li, S.A. Cummer, W.A. Lyons, T.E. Nelson, Coordinated analysis of delayed sprites with high-speed images and remote electromagnetic fields. J. Geophys. Res. 113, D20206 (2008a). doi:10.1029/2008JD010008 ADSGoogle Scholar
  117. C. Li, U. Ebert, W.J.M. Brok, W. Hundsdorfer, Spatial coupling of particle and fluid models for streamer: where nonlocality matters. J. Phys. D, Appl. Phys. 41, 032055 (2008b). doi:10.1088/0022-3727/41/3/032005 Google Scholar
  118. C. Li, U. Ebert, W. Hundsdorfer, 3D hybrid computations for streamer discharges and production of run-away electrons. J. Phys. D, Appl. Phys. 42, 202003 (2009) ADSGoogle Scholar
  119. N. Liu, V.P. Pasko, Effects of photoionization on propagation and branching of positive and negative streamers in sprites. J. Geophys. Res. 109, A04301 (2004). doi:10.1029/2003JA010064 ADSGoogle Scholar
  120. N. Liu et al., Comparison of results from sprite streamer modeling with spectrophotometric measurements by ISUAL instrument on FORMOSAT-2 satellite. Geophys. Res. Lett. 33, L01101 (2006). doi:10.1029/2005GL024243 Google Scholar
  121. N.Y. Liu, V.P. Pasko, K. Adams, H.C. Stenbaek-Nielsen, M.G. McHarg, Comparison of acceleration, expansion, and brightness of sprite streamers obtained from modeling and high-speed video observations. J. Geophys. Res. 114, A00E03 (2009). doi:10.1029/2008JA013720 Google Scholar
  122. F. Lott, The transient emission of propagating gravity waves by stably stratified shear layer. Q. J. R. Meteorol. Soc. 123, 1603–1619 (1997) ADSGoogle Scholar
  123. G. Lu, Transient electric field at high altitudes due to lightning: possible role of induction field in the formation of elves. J. Geophys. Res. 111, D02103 (2006). doi:10.1029/2005JD005781 ADSGoogle Scholar
  124. G. Lu, S.A. Cummer, W.A. Lyons, P.R. Krehbiel, J. Li, W. Rison, R.J. Thomas, H.E. Edens, M.A. Stanley, W. Beasley, D.R. MacGoman, O.A. van der Velde, M.B. Cohen, T.J. Lang, S.A. Rutledge, Lightning development associated with two negative gigantic jets. Geophys. Res. Lett. 38, L12801 (2011). doi:10.1029/2011GL047662 ADSGoogle Scholar
  125. A. Luque, F.J. Gordillo-Vázquez, Mesospheric electric breakdown and delayed sprite ignition caused by electron detachment. Nat. Geosci. 5, 22–25 (2011). doi:10.1038/NGEO1314 ADSGoogle Scholar
  126. A. Luque, U. Ebert, Sprites in varying air density: charge conservation, glowing negative trails and changing velocity. Geophys. Res. Lett. 37, L06806 (2010). doi:10.1029/2009GL041982 Google Scholar
  127. W.A. Lyons, Characteristics of luminous structures in the stratosphere above thunderstorms as imaged by low-light video. Geophys. Res. Lett. 21, 875 (1994) ADSGoogle Scholar
  128. W.A. Lyons, Sprite observations above the U.S. high plains in relation to their parent thunderstorm systems. J. Geophys. Res. 101, 29641–29652 (1996) ADSGoogle Scholar
  129. W.A. Lyons, The meteorology of transient luminous events—an introduction and overview, in Sprites, Elves and Intense Lightning Discharge, ed. by M. Fullekrug et al. NATO Science Series to Mathematics, Physics and Chemistry, vol. 225 (Springer, Berlin, 2006), pp. 19–56 Google Scholar
  130. W.A. Lyons, E.R. Williams, Preliminary investigations of the phenomenology of cloud-to-stratosphere lightning discharges preprints, in Conference on Atmospheric Electricity (Am. Meteorol. Soc., St. Louis, 1993) Google Scholar
  131. W.A. Lyons, R.A. Armstrong, E.R. Williams, E.A. Bering, The hundred year hunt for the sprite. Eos 81, 373–377 (2000) ADSGoogle Scholar
  132. W.A. Lyons, T.E. Nelson, R.A. Armstrong, V.P. Pasko, M.A. Stanley, Upward electrical discharges from thunderstorm tops. Bull. Am. Meteorol. Soc. 84, 445–454 (2003a). doi:10.1175/BAMS-84-4-445 ADSGoogle Scholar
  133. W.A. Lyons, T.E. Nelson, E.R. Williams, S.A. Cummer, M.A. Stanley, Characteristics of sprite-producing positive cloud-to-ground lightning during the 19 July 2000 STEPS mesoscale convective systems. Mon. Weather Rev. 131, 2417–2427 (2003b). doi:10.1175/1520-0493(2003)131<2417:COSPCL>2.0.CO;2 ADSGoogle Scholar
  134. W.A. Lyons, S.A. Cummer, M.A. Stanley, G.R. Huffiness, K.C. Wiens, T.E. Nelson, Supercells and sprites. Am. Meteorol. Soc. BAMS 1165–1174 (2008) Google Scholar
  135. W.A. Lyons, M.A. Stanley, J.D. Meyer, T.E. Nelson, S.A. Rutledge, T. Lang, S.A. Cummer, The meteorological and electrical structure of TLE-producing convective storms, in Lightning: Principles, Instruments and Applications, ed. by H. Betz, U. Schumann, P. Laroche (Springer, Berlin, 2009), pp. 387–415 Google Scholar
  136. T. MacKenzie, H. Toynbee, Meteorological phenomena. Nature 33, 26 (1886) Google Scholar
  137. R.A. Maddox, Mesoscale convective complexes. Bull. Am. Meteorol. Soc. 61, 1374–1387 (1980) ADSGoogle Scholar
  138. U.B. Makhlouf, R.H. Picard, J.R. Winick, Photochemical dynamical modeling of the measured response of airglow to gravity waves. J. Geophys. Res. 100, 11289–11311 (1995) ADSGoogle Scholar
  139. D. Malan, Sur les decharges orageuses dans la haute atmosphere. Academie des Sciences, 3 November session (1937) Google Scholar
  140. T.C. Marshall, W.D. Rust, Two types of vertical electrical structures in stratiform precipitation regions of mesoscale convective systems. Bull. Am. Meteorol. Soc. 74, 2159–2170 (1993) ADSGoogle Scholar
  141. R.A. Marshall, U.S. Inan, High-speed measurements of small-scale features in sprites: sizes and lifetimes. Radio Sci. 41, RS6S43 (2006). doi:10.1029/2005RS003353 Google Scholar
  142. R.A. Marshall, U.S. Inan, Possible direct cloud-to-ionosphere current evidenced by sprite-initiated secondary TLEs. Geophys. Res. Lett. 34, L05806 (2007). doi:10.1029/2006GL028511 Google Scholar
  143. T.C. Marshall, M. Stolzenburg, W.D. Rust, Electric field measurements above mesoscale convective systems. J. Geophys. Res. 101, 6979 (1996) ADSGoogle Scholar
  144. R.A. Marshall, U.S. Inan, W.A. Lyons, On the association of early/fast very low frequency perturbations with sprites and rare examples of VLF backscatter. J. Geophys. Res. 111, D19108 (2006). doi:10.1029/2006JD007219 ADSGoogle Scholar
  145. R.A. Marshall, U.S. Inan, T.W. Chevalier, Early VLF perturbations caused by lightning EMP-driven dissociative attachment. Geophys. Res. Lett. 35, L21807 (2008). doi:10.1029/2008GL035358 ADSGoogle Scholar
  146. R.A. Marshall, U.S. Inan, V.S. Glukhov, Elves and associated electron density changes due to cloud-to-ground and in-cloud lightning discharges. J. Geophys. Res. 115, A00E17 (2010). doi:10.1029/2009JA014469 ADSGoogle Scholar
  147. V. Mazur, P.R. Krehbiel, X.-M. Shao, Correlated high-speed video and radio interferometric observations of a cloud-to-ground lightning flash. J. Geophys. Res. 100, 25731–25753 (1995) ADSGoogle Scholar
  148. M. McCarthy, G. Parks, Further observations of X-rays inside thunderstorms. Geophys. Res. Lett. 12, 393–396 (1985) ADSGoogle Scholar
  149. M.G. McHarg, R.K. Haaland, D.R. Moudry, H.C. Stenbaek-Nielsen, Altitude-time development of sprites. J. Geophys. Res. 107(A11), 1364 (2002). doi:10.1029/2001JA000283 Google Scholar
  150. M.G. McHarg, H.C. Stenbaek-Nielsen, T. Kammae, Observation of streamer formation in sprites. Geophys. Res. Lett. 34, L06804 (2007). doi:10.1029/2006GL027854 Google Scholar
  151. S.B. Mende, H.U. Frey, R.R. Hsu, H.T. Su, A. Chen, L.C. Lee, H. Fukunishi, Y. Takahashi, Sprite imaging results from the ROCSAT-2 ISUAL instrument. Eos 85(47), Abstract AE51A-02 (2004). Fall Meet. Suppl. Google Scholar
  152. S.B. Mende, H.U. Frey, R.R. Hsu, H.T. Su, A.B. Chen, L.C. Lee, D.D. Sentman, Y. Takahashi, H. Fukunishi, D region ionization by lightning-induced electromagnetic pulses. J. Geophys. Res. 110, A11312 (2005). doi:10.1029/2005JA011064 ADSGoogle Scholar
  153. J.W. Meriwether, A review of the photochemistry of selected nightglow emission from mesopause. J. Geophys. Res. 94, 14629–14646 (1989) ADSGoogle Scholar
  154. Á. Mika, C. Haldoupis, R.A. Marshall, T. Neubert, U.S. Inan, Subionospheric VLF signature and their association with sprites observed during EuroSprite-2003. J. Atmos. Sol.-Terr. Phys. 67, 1580–1597 (2005). doi:10.1016/j.jastp.2005.08.011 ADSGoogle Scholar
  155. A. Mika, C. Haldoupis, T. Neubert, R.R. Su, H.T. Hsu, R.J. Steiner, R.A. Marshall, Early VLF perturbations observed in association with elves. Ann. Geophys. 24, 2179–2189 (2006) ADSGoogle Scholar
  156. E.V. Mishin, G.M. Milikh, Blue jets: upward propagating lightning. Space Sci. Rev. 137, 473–488 (2008). doi:10.1007/s11214-008-9346-z ADSGoogle Scholar
  157. R. Miyasato, H. Fukunishi, Y. Takahashi, M.J. Taylor, Energy estimation of electrons producing sprite halos using array photometer data. J. Atmos. Sol.-Terr. Phys. 65, 573–581 (2003) ADSGoogle Scholar
  158. C.B. Moore, K.B. Eack, G.D. Aulich, W. Rison, Energetic radiation associated with lightning stepped-leaders. Geophys. Res. Lett. 28, 2141–2144 (2001) ADSGoogle Scholar
  159. J.S. Morrill, E.J. Bucsela, V.P. Pasko, S.L. Berg, W.M. Benesch, E.M. Wescott, M.J. Heavner, Time resolved N2 triplet state vibrational populations and emissions associated with red sprites. J. Atmos. Sol.-Terr. Phys. 60, 811–829 (1998). doi:10.1016/S1364-6826(98)00031-5 ADSGoogle Scholar
  160. G. Moss, V.P. Pasko, N. Liu, G. Veronis, Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leader. J. Geophys. Res. 111, A02307 (2006). doi:10.1029/2005JA011350 ADSGoogle Scholar
  161. D.R. Moudry, The dynamics and morphology of sprites, Ph.D. thesis, University of Alaska Fairbanks, Fairbanks, Alaska, 2003 Google Scholar
  162. I. Nagano, S. Yagitani, K. Miyamura, S. Makino, Full-wave analysis of elves created by lightning-generated electromagnetic pulses. J. Atmos. Terr. Phys. 65, 615–625 (2003) ADSGoogle Scholar
  163. T. Nakamura, T. Aono, T. Tsuda, A.G. Admiranto, E.S. Achmad, Mesospheric gravity waves over a tropical convective region observed by OH airglow imaging in Indonesia. Geophys. Res. Lett. 30, 1882–1885 (2003) ADSGoogle Scholar
  164. G.D. Nastrom, D.C. Fritts, Sources of mesoscale variability of gravity waves I: topographic excitation. J. Atmos. Sci. 49, 101–110 (1992) ADSGoogle Scholar
  165. T. Neubert, T.H. Allin, H. Stenbaek-Nielsen, E. Blanc, Sprites over Europe. Geophys. Res. Lett. 28, 3585–3588 (2001) ADSGoogle Scholar
  166. T. Neubert, T.H. Allin, E. Blanc, T. Farges, C. Haldoupis, A. Mika et al., Co-ordinated observations of transient luminous events during the Eurosprite 2003 campaign. J. Atmos. Sol.-Terr. Phys. 67, 807–820 (2005) ADSGoogle Scholar
  167. T. Neubert et al., Recent results from studies of electric discharges in the mesosphere. Surv. Geophys. 29, 71–137 (2008) Google Scholar
  168. R.T. Newsome, U.S. Inan, High-frame-rate reconstruction of a dynamic 2-D scene from continuous orthogonal projections. IEEE Trans. Geosci. Remote Sens. 47, 2646–2657 (2009). doi:10.1109/TGRS.2009.2015289 ADSGoogle Scholar
  169. R.T. Newsome, U.S. Inan, Free-running ground-based photometric array imaging of transient luminous events. J. Geophys. Res. 115, A00E41 (2010). doi:10.1029/2009JA014834 ADSGoogle Scholar
  170. L. Niemeyer, L. Ullrich, N. Wiegart, The mechanism of leader breakdown in electronegative gases. IEEE Trans. Electr. Insul. 24, 309–324 (1989). doi:10.1109/14.90289 Google Scholar
  171. J. Oberheide, Q. Wu, T.L. Killeen, M.E. Hagan, R.G. Roble, Diurnal non-migrating tides from TIMED Doppler interferometer wind data: monthly climatologies and seasonal variations. J. Geophys. Res. 111, A10S03 (2006). doi:10.1029/2005JA011491 ADSGoogle Scholar
  172. A. Ohkubo, H. Fukunishi, Y. Takahashi, T. Adachi, VLF/ELF sferic evidence for in-cloud discharge activity producing sprites. Geophys. Res. Lett. 32, L04812 (2005). doi:10.1029/2004GL021943 Google Scholar
  173. V.P. Pasko, Electric jets. Nature 423, 927–929 (2003) ADSGoogle Scholar
  174. V.P. Pasko, Theoretical modeling of sprites and jets, in Sprites, Elves and Intense Lightning Discharges, ed. by M. Füllekrug, E.A. Mareev, M.J. Rycroft. NATO Science Series II: Mathematics, Physics and Chemistry, vol. 225, pp. 253–311 (Springer, Heidelberg, 2006) Google Scholar
  175. V.P. Pasko, Red sprite discharges in the atmosphere at high altitude: the molecular physics and the similarity with laboratory discharges. Plasma Sources Sci. Technol. 16, S13–S29 (2007) ADSGoogle Scholar
  176. V.P. Pasko, Blue jets and gigantic jets: transient luminous events between thunderstorm tops and the lower ionosphere. Plasma Phys. Control. Fusion 50, 124050 (2008) ADSGoogle Scholar
  177. V.P. Pasko, Recent advances in theory of transient luminous events. J. Geophys. Res. 115, A00E35 (2010). doi:10.1029/2009JA014860 ADSGoogle Scholar
  178. V.P. Pasko, J.J. George, Three-dimensional modeling of blue jets and blue starters. J. Geophys. Res. 107, 1458 (2002). doi:10.1029/2002JA009473 Google Scholar
  179. V.P. Pasko, H.C. Stenbaek-Nielsen, Diffuse and streamer regions of sprites. Geophys. Res. Lett. 29, 1440 (2002). doi:10.1029/2001GL014241 ADSGoogle Scholar
  180. V.P. Pasko, U.S. Inan, Y.N. Taranenko, T.F. Bell, Heating ionization and upward discharges in the mesosphere due to intense quasi-electrostatic thundercloud field. Geophys. Res. Lett. 22, 365–368 (1995) ADSGoogle Scholar
  181. V.P. Pasko, U.S. Inan, T.F. Bell, Sprites as luminous columns of ionization produced by quasi-electrostatic thundercloud field. Geophys. Res. Lett. 23, 649 (1996a). doi:10.1029/96GL00473 ADSGoogle Scholar
  182. V.P. Pasko, U.S. Inan, T.F. Bell, Blue jets produced by quasielectrostatic pre-discharge thundercloud fields. Geophys. Res. Lett. 23, 301–304 (1996b) ADSGoogle Scholar
  183. V.P. Pasko, U.S. Inan, T.F. Bell, Sprites as evidence of vertical gravity wave structures above mesoscale thunderstorms. Geophys. Res. Lett. 24, 1735–1738 (1997a) ADSGoogle Scholar
  184. V.P. Pasko, U.S. Inan, T.F. Bell, Y.N. Taranenko, Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere. J. Geophys. Res. 102, 4529 (1997b). doi:10.1029/96JA03528 ADSGoogle Scholar
  185. V.P. Pasko, U.S. Inan, T.F. Bell, Spatial structures of sprites. Geophys. Res. Lett. 25, 2123–2126 (1998) ADSGoogle Scholar
  186. V.P. Pasko, U. Inan, T. Bell, Large scale modeling of sprites and blue jets. Eos 80(46), Abstract A42E-11 (1999). Fall Meet. Suppl. Google Scholar
  187. V.P. Pasko, U.S. Inan, T.F. Bell, Fractal structure of sprites. Geophys. Res. Lett. 27, 497–500 (2000) ADSGoogle Scholar
  188. V.P. Pasko, M.A. Stanley, J.D. Mathews, U.S. Inan, T.G. Wood, Electrical discharge from a thundercloud top to the ionosphere. Nature 416, 152–154 (2002) ADSGoogle Scholar
  189. V.P. Pasko, Y. Yair, C.-L. Kuo, Lightning related transient luminous events at high altitude in the Earth’s atmosphere: phenomenology, mechanisms and effects. Space Sci. Rev. (2011). doi:10.1007/s11214-011-9813-9 Google Scholar
  190. N.I. Petrov, G.N. Petrova, Physical mechanisms for the development of lightning discharges between a thundercloud and the ionosphere. Tech. Phys. 44, 472–475 (1999) Google Scholar
  191. R.H. Picard, R.R. O’Neil, H.A. Gardiner, J. Gibson, J.R. Winick, W.O. Gallery Jr., A.T. Stair, P.P. Wintersteiner, E.R. Hegblom, E. Richards, Remote sensing of discrete stratospheric gravity-wave structure at 4:3-μm from the MSX satellite. Geophys. Res. Lett. 25, 2809–2812 (1998) ADSGoogle Scholar
  192. O. Pinto Jr., M.M.F. Saba, I.R.C.A. Pinto, F.S.S. Tavares, K.P. Naccarato, N.N. Solorzano, M.J. Taylor, P.D. Paulet, R.H. Holzworth, Thunderstorm and lightning characteristic associated with sprites in Brazil. Geophys. Res. Lett. 31, L13103 (2004). doi:10.1029/2004GL020264 ADSGoogle Scholar
  193. C. Price, Global thunderstorm activity, in Sprites, Elves and Intense Lightning Discharges, ed. by M. Fullekrug et al. (2006), pp. 85–99 Google Scholar
  194. J. Qin, S. Celestin, V.P. Pasko, On the inception of streamers from sprite halo events produced by lightning discharges with positive and negative polarity. J. Geophys. Res. 116, A06305 (2011). doi:10.1029/2010JA016366 ADSGoogle Scholar
  195. Y.P. Raizer, G.M. Milikh, M.N. Shneider, On the mechanism of blue jet formation and propagation. Geophys. Res. Lett. 33, L23801 (2006). doi:10.1029/2006GL027697 ADSGoogle Scholar
  196. Y.P. Raizer, G.M. Milikh, M.N. Shneider, Leader–streamers nature of blue jets. J. Atmos. Sol.-Terr. Phys. 69, 925–938 (2007). doi:10.1016/j.jastp.2007.02.007 ADSGoogle Scholar
  197. Y.P. Raizer, G.M. Milikh, M.N. Shneider, Streamer and leader-like processes in the upper atmosphere: models of red sprites and blue jets. J. Geophys. Res. 115, A00E42 (2010). doi:10.1029/2009JA014645 ADSGoogle Scholar
  198. V.A. Rakov, W.G. Tuni, Lightning electric field intensity at high altitudes: inferences for production of elves. J. Geophys. Res. 108, 4639 (2003). doi:10.1029/2003JD003618 Google Scholar
  199. V.A. Rakov, M.A. Uman, Lightning: Physics and Effects (Cambridge Univ. Press, New York, 2003) Google Scholar
  200. V.A. Rakov, D.E. Crawford, K.J. Rambo, G.H. Schnetzer, M.T.A. Uman, R. Thottappillil, M-component mode of charge transfer to ground in lightning discharge. J. Geophys. Res. 106, 22817–22831 (2001) ADSGoogle Scholar
  201. J.A. Riousset, V.P. Pasko, P.R. Krehbiel, R.J. Thomas, W. Rison, Three-dimensional fractal modeling of intracloud lightning discharge in a New Mexico thunderstorm and comparison with lightning mapping observations. J. Geophys. Res. 112, D15203 (2007). doi:10.1029/2006JD007621 ADSGoogle Scholar
  202. J.A. Riousset, V.P. Pasko, P.R. Krehbiel, W. Rison, M.A. Stanley, Modeling of thundercloud screening charges: implications for blue and gigantic jets. J. Geophys. Res. 115, A00E10 (2010). doi:10.102029/09JA014286 ADSGoogle Scholar
  203. C.J. Rodger, Red sprites, upward lightning, and VLF perturbations. Rev. Geophys. 37, 317–336 (1999). doi:10.1029/1999RG900006 ADSGoogle Scholar
  204. C.J. Rodger, Subionospheric VLF perturbations associated with lightning discharges. J. Atmos. Sol.-Terr. Phys. 65, 591–606 (2003) ADSGoogle Scholar
  205. C.J. Rodger, M. Cho, M.A. Clilverd, M.J. Rycroft, Lower ionospheric modification by lightening-EMP: simulation of the night ionosphere over the United States. Geophys. Res. Lett. 28, 199–202 (2001) ADSGoogle Scholar
  206. R.A. Roussel-Dupre, A.V. Gurevich, On runaway break-down and upward propagating discharges. J. Geophys. Res. 101, 2297 (1996). doi:10.1029/95JA03278 ADSGoogle Scholar
  207. R.A. Roussel-Dupre, A.V. Gurevich, T. Tunnel, G.M. Milikh, Kinetic theory of runaway breakdown. Phys. Rev. 49, 2257 (1994) ADSGoogle Scholar
  208. R. Roussel-Dupre, J.J. Colman, E. Symbalisty, D. Sentman, V.P. Pasko, Physical processes related to discharges in planetary atmospheres. Space Sci. Rev. 137, 51–82 (2008). doi:10.1007/s11214-008-9385-5 ADSGoogle Scholar
  209. H.L. Rowland, Theories and simulations of elves, sprites and blue jets. J. Atmos. Sol.-Terr. Phys. 60, 831–844 (1998) ADSGoogle Scholar
  210. H.L. Rowland, R.F. Fernsler, P.A. Bernhardt, Breakdown of the neutral atmosphere in the D-region due to lightning driven electromagnetic pulses. J. Geophys. Res. 101, 7935 (1996) ADSGoogle Scholar
  211. S.A. Rutledge, C. Lu, D.R. MacGorman, Positive cloud-to-ground lightning in mesoscale convective systems. J. Atmos. Sci. 47, 2085 (1990) ADSGoogle Scholar
  212. S.A. Rutledge, E.R. Williams, W.A. Petersen, Lightning and electrical structure of mesoscale convective systems. Atmos. Res. 29, 27 (1993) Google Scholar
  213. M.J. Rycroft, Electrical processes coupling the atmosphere and ionosphere: an overview. J. Atmos. Sol.-Terr. Phys. 68, 445–456 (2006) ADSGoogle Scholar
  214. M.J. Rycroft, A. Odzimek, Effects of lightning and sprites on the ionospheric potential, and threshold effects on sprite initiation, obtained using an analog model of the global atmospheric electric circuit. J. Geophys. Res. 115, A00E37 (2010). doi:10.1029/2009JA014758 Google Scholar
  215. M.J. Rycroft, S. Israelsson, C. Price, The global atmospheric electric circuit, solar activity and climate change. J. Atmos. Sol.-Terr. Phys. 62, 1563–1576 (2000). doi:10.1016/S1364-6826(00)00112-7 ADSGoogle Scholar
  216. F.T. São Sabbas, Role of conductivity spatial structure in determining the locations of sprite initiation, Ph.D. dissertation, Univ. of Alaska Fairbanks, Fairbanks, Alaska, 2003 Google Scholar
  217. F.T. São Sabbas, D.D. Sentman, Dynamical relationship of infrared cloud top temperatures with occurrence rates of cloud-to-ground lightning and sprites. Geophys. Res. Lett. 30(5), 1236 (2003). doi:10.1029/2002GL015382 ADSGoogle Scholar
  218. F.T.T. São Sabbas, D.D. Sentman, E.M. Wescott, O. Pinto Jr., O. Mendes Jr., M.J. Taylor, Statistical analysis of space–time relationships between sprites and lightning. J. Atmos. Sol.-Terr. Phys. 65, 525–535 (2003) ADSGoogle Scholar
  219. F.T. Sao Sabbas et al., Characteristics of sprite and gravity wave convective sources present in satellite IR images during the SpreadFEx 2005 in Brazil. Ann. Geophys. 27, 1279–1293 (2009) ADSGoogle Scholar
  220. F.T. São Sabbas et al., Observations of prolific transient luminous event production above a mesoscale convective system in Argentina during the Sprite2006 campaign in Brazil. J. Geophys. Res. 115, A00E58 (2010). doi:10.1029/2009JA014857 ADSGoogle Scholar
  221. T.J. Schuur, S.A. Rutledge, Electrification of stratiform regions in mesoscale convective systems, Part I: An observational comparison of symmetric and asymmetric MCSs. J. Atmos. Sci. 57, 1961–1982 (2000a) ADSGoogle Scholar
  222. T.J. Schuur, S.A. Rutledge, Electrification of stratiform regions in mesoscale convective systems. Part II: Two-dimensional numerical model simulations of a symmetric MCS. J. Atmos. Sci. 57, 1983–2006 (2000b) ADSGoogle Scholar
  223. D.D. Sentman, E.M. Wescott, Observations of upper atmospheric optical flashes recorded from an aircraft. Geophys. Res. Lett. 20, 2857–2860 (1993) ADSGoogle Scholar
  224. D.D. Sentman, E.M. Wescott, D.L. Osborne, D.L. Hampton, M.J. Heavner, Preliminary results from the Sprites94 campaign: red sprites. Geophys. Res. Lett. 22, 1205–1208 (1995) ADSGoogle Scholar
  225. D.D. Sentman, E.M. Wescott, M.J. Heavner, D.R. Moudry, Observations of sprite beads and balls. Eos 77, F61 (1996) ADSGoogle Scholar
  226. D.D. Sentman, E.M. Wescott, R.H. Picard, J.R. Winick, H.C. Stenbaek-Nielsen, E.M. Dewan, D.R. Moudry, F.T. São Sabbas, M.J. Heavner, J. Morrill, Simultaneous observations of mesospheric gravity waves and sprites generated by a midwestern thunderstorm. J. Atmos. Sol.-Terr. Phys. 65, 537–550 (2003) ADSGoogle Scholar
  227. D. Siingh, R.P. Singh, A.K. Kamra, P.N. Gupta, R. Singh, V. Gopalakrishnan, A.K. Singh, Review of electromagnetic coupling between the Earth’s atmosphere and the space environment. J. Atmos. Sol.-Terr. Phys. 67, 637–658 (2005). doi:10.1016/j.jastp.2004.09 ADSGoogle Scholar
  228. D. Siingh, V. Gopalakrishnan, R.P. Singh, A.K. Kamra, S. Singh, V. Pant, R. Singh, A.K. Singh, The atmospheric global electric circuit: an overview. Atmos. Res. 84, 91–110 (2007). doi:10.1016/j.atmosres.2006.05.005 Google Scholar
  229. D. Siingh, A.K. Singh, R.P. Patel, R. Singh, R.P. Singh, B. Venadhar, M. Mukherjee, Thunderstorm, lightning, sprites and magnetospheric whistler mode radio wave. Surv. Geophys. 29, 499–551 (2008). doi:10.1007/s10712-008-9053-z ADSGoogle Scholar
  230. D. Siingh, S. Kumar, A.K. Singh, Thunderstorms/lightning generated sprite and associated phenomena. Earth Sci. India 3(II), 124–145 (2010). http://www.earthscienceindia.info/. Open access e-Journal Google Scholar
  231. D. Siingh, A.K. Singh, R.P. Singh, Characteristic of cloud-to-ground lightning discharge associated with sprites. I. J. Radio Space Phys. (2012) (revised) Google Scholar
  232. A.K. Singh, D. Siingh, R.P. Singh, S. Mishra, Electrodynamical coupling of Earth’s atmosphere and ionosphere: an overview. Int. J. Geophys. 2011, 971302 (2011). doi:10.1155/2011/971302, 13 pp. Google Scholar
  233. D.K. Singh, R.P. Singh, A.K. Kamra, The electrical environment of the Earth’s atmosphere: a review. Space Sci. Rev. 113, 375–408 (2004) ADSGoogle Scholar
  234. J.B. Snively, V.P. Pasko, Breaking of thunderstorm-generated gravity waves as a source of short-period ducted waves at mesopause altitudes. Geophys. Res. Lett. 30, 2254 (2003). doi:10.1029/2003GL018436 Google Scholar
  235. D.M. Smith, L.I. Lopez, R.P. Lin, C.P. Barrington-Leigh, Terrestrial gamma-ray flashes observed up to 20 MeV. Science 307, 1085–1088 (2005). doi:10.1126/science.1107466 ADSGoogle Scholar
  236. S. Soula, O. van der Velde, J. Montanya, T. Neubert, O. Chanrion, M. Ganot, Analysis of thunderstorm and lightning activity associated with sprites observed during the EuroSprite campaigns: two case studies. Atmos. Res. 91, 514–528 (2009) Google Scholar
  237. S. Soula, O. van der Velde, J. Montanya, P. Huet, C. Barthe, J. Bór, Gigantic jets produced by an isolated tropical thunderstorm near Réunion Island. J. Geophys. Res. 116, D19103 (2011). doi:10.1029/2010JD015581 ADSGoogle Scholar
  238. M. Stanley, P. Krehbiel, M.C. Max Brook, W. Rison, B. Abrahams, High speed video of initial sprite development. Geophys. Res. Lett. 26, 3201–3204 (1999) ADSGoogle Scholar
  239. H.C. Stenbaek-Nielsen, D.R. Moudry, E.M. Wescott, D.D. Sentman, F.T.S. Sabbas, Sprites and possible mesospheric effects. Geophys. Res. Lett. 27, 3829–3832 (2000) ADSGoogle Scholar
  240. M.G. Stenbaek-Nielsen, T. McHarg Kammae, D.D. Sentmann, Observed emission rates in sprite streamer heads. Geophys. Res. Lett. 34, L11105 (2007). doi:10.1029/2007GL029881 ADSGoogle Scholar
  241. H.C. Stenbaek-Nielsen, R. Haaland, M.G. McHarg, B.A. Hensley, T. Kanmae, Sprite initiation altitude measured by triangulation. J. Geophys. Res. 115, A00E12 (2010). doi:10.1029/2009JA014543 ADSGoogle Scholar
  242. M. Stolzenburg, T.C. Marshall, Charge structure and dynamics in thunderstorms. Space Sci. Rev. 137 (2008). doi:10.1007/s11214-008-9338-z
  243. M. Stolzenburg, T.C. Marshall, W.D. Rust, B.F. Smull, Horizontal distribution of electrical and meteorological conditions across the stratiform region of a mesoscale convective system. Mon. Weather Rev. 122, 1777–1797 (1994) ADSGoogle Scholar
  244. H.T. Su, R.R. Hsu, B. Chen Alfred, Y.J. Lee, L.C. Lee, Observation of sprites over the Asian Continent and over Oceans around Taiwan. Geophys. Res. Lett. 29, 10 (2002). doi:10.1029/2001GL013737 Google Scholar
  245. H.T. Su, R.R. Hsu, A.B. Chen, Y.C. Wang, W.S. Hsiao, W.C. Lai, M. Sato, H. Fukunishi, Gigantic jet between a thundercloud and the ionosphere. Nature 423, 974–976 (2003) ADSGoogle Scholar
  246. A.I. Sukhorukov, P. Stubbe, Problems of blue jet theories. J. Atmos. Sol.-Terr. Phys. 60, 725–732 (1998) ADSGoogle Scholar
  247. A.I. Sukhorukov, E.V. Mishin, P. Stubbe, M.J. Rycroft, On blue jet dynamics. Geophys. Res. Lett. 23, 1625–1628 (1996) ADSGoogle Scholar
  248. G.R. Swenson, R. Rairden, What is the source of sprite seed electrons, in AGU fall meeting, A41C-14, San Francisco (1998) Google Scholar
  249. T. Takahashi, Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci. 35, 1536–1548 (1978) ADSGoogle Scholar
  250. T. Takahashi, T. Tajiri, Y. Sonoi, Charges on graupel and snow crystals and the electrical structure of winter thunderstorms. J. Atmos. Sci. 56, 1561–1578 (1999) ADSGoogle Scholar
  251. Y. Takahashi, R. Miyasato, T. Adachi, K. Adachi, M. Sera, M. Uchida, H. Fukunishi, Activities of sprites and elves in the winter season, Japan. J. Atmos. Sol.-Terr. Phys. 65, 551–560 (2003) ADSGoogle Scholar
  252. Y.N. Taranenko, U.S. Inan, T.F. Bell, Interaction with the lower ionosphere of electromagnetic pulses from lightning: heating, attachment, and ionization. Geophys. Res. Lett. 20, 1539–1542 (1993) ADSGoogle Scholar
  253. M.J. Taylor, M.A. Hapgood, Identification of a thunderstorm as a source of short period gravity waves in the upper atmospheric nightglow emission. Planet. Space Sci. 36, 975–985 (1988) ADSGoogle Scholar
  254. M.J. Taylor, M.J. Hill, Near infrared imaging of hydroxyl wave structure over an ocean site at low latitudes. Geophys. Res. Lett. 18, 1333–1336 (1991) ADSGoogle Scholar
  255. M.J. Taylor, Y.Y. Gu, X. Tao, C.S. Gardner, M.B. Bishop, An investigation of intrinsic gravity wave signatures using coordinated lidar and nightglow image measurements. Geophys. Res. Lett. 22, 2853–2856 (1995) ADSGoogle Scholar
  256. M.J. Taylor, W.R. Pendleton, S. Clark, H. Takahashi, D. Gobbi, R.A. Goldberg, Image measurements of short-period gravity waves at equatorial latitudes. J. Geophys. Res. 102, 26283–26299 (1997) ADSGoogle Scholar
  257. M.J. Taylor et al., Rare measurements of a sprite with halo event driven by a negative lightning discharge over Argentina. Geophys. Res. Lett. 35, L14812 (2008). doi:10.1029/2008GL033984 ADSGoogle Scholar
  258. M.J. Taylor, P.-D. Pautet, A.F. Medeiros, R. Buriti, J. Fechine, D.C. Fritts, S.L. Vadas, H. Takahashi, F.T. Sao Sabbas, Characteristics of mesospheric gravity waves near the magnetic equator, Brazil, during the SpreadFEx campaign. Ann. Geophys. 27, 461–472 (2009) ADSGoogle Scholar
  259. J.N. Thomas, B.H. Barnum, E. Lay, R.H. Holzworth, M. Cho, M.C. Kelley, Lightning driven electric fields measured in the lower ionosphere: implications for transient luminous events. J. Geophys. Res. 113, A12306 (2008). doi:10.1029/2008JA013567 ADSGoogle Scholar
  260. L.Z. Tong, K. Nanbu, H. Fukunishi, Simulation of gigantic jets propagating from the top of thunderclouds to the ionosphere. Earth Planets Space 57, 613–617 (2005) ADSGoogle Scholar
  261. S.L. Vadas, D.C. Fritts, Thermospheric responses to gravity waves arising from mesoscale convective complexes. J. Atmos. Sol.-Terr. Phys. 66, 781–804 (2004) ADSGoogle Scholar
  262. S.L. Vadas, M.J. Taylor, P.-D. Pautet, P.A. Stamus, D.C. Fritts, H.-L. Liu, F.T. Sao Sabbas, V.T. Rampinelli, P. Batista, H. Takahashi, Convection: the likely source of the medium-scale gravity waves observed in the OH airglow layer near Brasilia, Brazil, during the SpreadFEx campaign. Ann. Geophys. 27, 231–259 (2009). http://www.ann-geophys.net/27/231/2009 ADSGoogle Scholar
  263. O.A. van der Velde, A. Mika, S. Soula, C. Haldoupis, T. Neubert, U.S. Inan, Observations of the relationship between sprite morphology and in-cloud lightning processes. J. Geophys. Res. 111, D15203 (2006). doi:10.1029/2005JD006879 ADSGoogle Scholar
  264. O.A. van der Velde, W.A. Lyons, T.E. Nelson, S.A. Cummer, J. Li, J. Bunnell, Analysis of the first gigantic jet recorded over continental North America. J. Geophys. Res. 112, D20104 (2007). doi:10.1029/2007JD008575 ADSGoogle Scholar
  265. O.A. van der Velde, J. Bór, J. Li, S.A. Cummer, E. Arnone, F. Zanotti, M. Füllekrug, C. Haldoupis, S. NaitAmor, T. Farges, Multi-instrumental observations of a positive gigantic jet produced by a winter thunderstorm in Europe. J. Geophys. Res. 115, D24301 (2010). doi:10.1029/2010JD014442 ADSGoogle Scholar
  266. O.H. Vaughan Jr., B. Vonnegut, Recent observations of lightning discharges from the top of a thundercloud into the air above. J. Geophys. Res. 95, 13179–13182 (1989) ADSGoogle Scholar
  267. G. Veronis, V.P. Pasko, U.S. Inan, Characteristics of mesospheric optical emissions produced by lighting discharges. J. Geophys. Res. 104, 12645–12656 (1999) ADSGoogle Scholar
  268. P.A. Vitello, B.M. Penetrante, J.N. Bardsley, Simulation of negative-streamer dynamics in nitrogen. Phys. Rev. E 49, 5574–5598 (1994) ADSGoogle Scholar
  269. E.M. Wescott, D. Sentman, D. Osborne, D. Hampton, M. Heavner, Preliminary results from the sprites 94 aircraft campaign: 2, blue jets. Geophys. Res. Lett. 22, 1209–1212 (1995) ADSGoogle Scholar
  270. E.M. Wescott, D.D. Sentman, M.J. Heavner, D.L. Hampton, D. Osborne, O.H. Vaughan Jr., Blue starters: brief upward discharges from an intense Arkansas thunderstorm. Geophys. Res. Lett. 23, 2153–2156 (1996). doi:10.1029/96GL01969 ADSGoogle Scholar
  271. E.M. Wescott, D.D. Sentman, M.J. Heavner, D.L. Hampton, O.H. Vaughan Jr., Blue jets: their relationship to lightning and very large hailfall, and their physical mechanisms for their production. J. Atmos. Sol.-Terr. Phys. 60, 713–724 (1998a) ADSGoogle Scholar
  272. E.M. Wescott, D. Sentman, M. Heavner, D. Hampton, W.A. Lyons, T. Nelson, Observations of columniform sprites. J. Atmos. Sol.-Terr. Phys. 60, 733–740 (1998b) ADSGoogle Scholar
  273. E.N. Wescott, H.C. Stenback-Mielsen, D.D. Sentman, M.J. Heavmer, D.R. Moudry, F.T.S. Sabbas, Triangulation of sprites, associated halos and their possible relation to causative lightning and micrometeors. J. Geophys. Res. 106, 10467–10478 (2001) ADSGoogle Scholar
  274. E.R. Williams, Meteorological aspects of thunderstorms, in Handbook of Atmospheric Electrodynamics, vol. I, ed. by H. Volland (CRC, Boca Raton, 1995), Chap. 2 Google Scholar
  275. E.R. Williams, The positive charge reservoir for sprite-producing lightning. J. Atmos. Sol.-Terr. Phys. 60, 689–692 (1998) ADSGoogle Scholar
  276. E.R. Williams, Sprites, elves and glow discharge tubes. Phys. Today (September issue), 1–7 (2001) Google Scholar
  277. E.R. Williams, D.J. Boccippio, Dependence of cloud microphysics and electrification on mescoscale air motions in stratiform precipitation, in 17th Conf. on Severe Local Storms (AMS, St. Louis 1993), pp. 825–831 Google Scholar
  278. E.R. Williams, N. Renno, An analysis of the conditional instability of the tropical atmosphere. Mon. Weather Rev. 121, 21–36 (1993) ADSGoogle Scholar
  279. E.R. Williams, Y. Yair, The microphysical and electrical properties of sprite-producing thunderstorms, in Sprites, Elves and Intense Lightning Discharges, ed. by M. Fullekrug, E.A. Mareev, M.J. Rycroft. NATO Science Series, II. Mathematics, Physics and Chemistry, vol. II (Springer, Dordrecht, 2006), pp. 57–84 Google Scholar
  280. E.R. Williams, R. Zhang, D.J. Boccippio, Microphysical growth rate of ice particle and large-scale electrical structure of cloud. J. Geophys. Res. 99, 10787–10792 (1994) ADSGoogle Scholar
  281. E.R. Williams, E. Downes, R. Boldi, W.A. Lyons, S. Heckman, Polarity asymmetry of sprite-producing lightning: a paradox? Radio Sci. 42, RS2S17 (2007a). doi:10.1029/2006RS003488 Google Scholar
  282. E.R. Williams, V.C. Mushtak, R. Boldi, R.L. Dowden, Z.I. Kawasaki, Sprite lightning heard round the world by Schumann resonance methods. Radio Sci. 42, RS2S20 (2007b). doi:10.1029/2006RS003498 Google Scholar
  283. E.R. Williams et al., Ground-based detection of sprites and their parent lightning flashes over Africa during the 2006 AMMA campaign. Q. J. R. Meteorol. Soc. 136(s1), 257–271 (2010) ADSGoogle Scholar
  284. E.R. Williams et al., Resolution of the sprite polarity paradox: the role of halos. Radio Sci. 47, RS2002 (2012). doi:10.1029/2011RS004794 ADSGoogle Scholar
  285. C.T.R. Wilson, Investigations on lightning discharges and on the electric field of thunderstorms. Philos. Trans. R. Soc. Lond. Ser. A 221, 73–115 (1921) ADSGoogle Scholar
  286. C.T.R. Wilson, The electric field of a thunderstorm and some of its effects. Proc. R. Soc. Lond. 37, 32D (1925) Google Scholar
  287. C.T.R. Wilson, A theory of thundercloud electricity. Proc. R. Met. Soc. Lond. 236, 297–317 (1956) ADSGoogle Scholar
  288. C.M. Wrasse, T. Nakamura, H. Takahashi, A.F. Medeiros, M.J. Taylor, D. Gobbi, C.M. Denardini, J. Fechine, R.A. Buriti, A. Salatun, Suratno, E. Achmad, A.G. Admiranto, Mesospheric gravity waves observed near equatorial and low-middle latitude stations: wave characteristics and reverse ray tracing results. Ann. Geophys. 24, 3229–3240 (2006a) ADSGoogle Scholar
  289. C.M. Wrasse, T. Nakamura, T. Tsuda, H. Takahashi, A.F. Medeiros, M.J. Taylor, D. Gobbi, A. Salatun, Suratno, E. Achmad, A.G. Admiranto, Reverse ray tracing of the mesospheric gravity waves 345 observed at 23S (Brazil) and 7S (Indonesia) in airglow imagers. J. Atmos. Sol.-Terr. Phys. 68, 163–181 (2006b) ADSGoogle Scholar
  290. Y. Yair, P. Israelevich, A.D. Devir, M. Moalem, C. Price, J.H. Joseph, Z. Levin, B. Ziv, A. Sternlieb, A. Teller, New observations of sprites from the space shuttle. J. Geophys. Res. 109, D15201 (2004). doi:10.1029/2003JD004497 ADSGoogle Scholar
  291. Y. Yamada, H. Fukunishi, T. Nakamura, T. Tsuda, Breakdown of small-scale quasi-stationary gravity wave and transition to turbulence observed in OH airglow. Geophys. Res. Lett. 28, 2153–2156 (2001) ADSGoogle Scholar
  292. S.A. Yashunin, E.A. Mareev, V.A. Rakov, Are lightning M components capable of initiating sprites and sprite halos? J. Geophys. Res. 112, D10109 (2007). doi:10.1029/2006JD007631 ADSGoogle Scholar
  293. V. Yukhimuk, R. Roussel-Dupré, E. Symbalisty, Optical characteristics of blue jets produced by runaway air breakdown, simulation results. Geophys. Res. Lett. 25, 3289–3292 (1998) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Devendraa Siingh
    • 1
  • R. P. Singh
    • 2
  • Ashok K. Singh
    • 3
  • Sanjay Kumar
    • 2
  • M. N. Kulkarni
    • 1
  • Abhay K. Singh
    • 2
  1. 1.Indian Institute of Tropical MeteorologyPuneIndia
  2. 2.Department of PhysicsBanaras Hindu UniversityVaranasiIndia
  3. 3.Department of PhysicsLucknow UniversityLucknowIndia

Personalised recommendations