Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Ion Acceleration at the Earth’s Bow Shock

Abstract

The Earth’s bow shock is the most studied example of a collisionless shock in the solar system. It is also widely used to model or predict the behaviour at other astrophysical shock systems. Spacecraft observations, theoretical modelling and numerical simulations have led to a detailed understanding of the bow shock structure, the spatial organization of the components making up the shock interaction system, as well as fundamental shock processes such as particle heating and acceleration. In this paper we review the observations of accelerated ions at and upstream of the terrestrial bow shock and discuss the models and theories used to explain them. We describe the global morphology of the quasi-perpendicular and quasi-parallel shock regions and the foreshock. The acceleration processes for field-aligned beams and diffuse ion distribution types are discussed with connection to foreshock morphology and shock structure. The different possible mechanisms for extracting solar wind ions into the acceleration processes are also described. Despite several decades of study, there still remain some unsolved problems concerning ion acceleration at the bow shock, and we summarize these challenges.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

References

  1. G.C. Anagnostopoulos, E.T. Sarris, S.M. Krimigis, Magnetospheric origin of energetic (at least 50 keV) ions upstream of the bow shock—The October 31, 1977, event. J. Geophys. Res. 91, 3020–3028 (1986). doi:10.1029/JA091iA03p03020

  2. K.A. Anderson, R.P. Lin, F. Martel, C.S. Lin, G.K. Parks, H. Rème, Thin sheets of energetic electrons upstream from the Earth’s bow shock. Geophys. Res. Lett. 6, 401–404 (1979)

  3. W.I. Axford, Acceleration of cosmic rays by shock waves, in International Cosmic Ray Conference, vol. 12, (1981a), pp. 155–203

  4. W.I. Axford, Late paper: acceleration of cosmic rays by shock waves, in ESA Special Publication, ed. by S.A. Colgate ESA Special Publication, vol. 161 (1981b), p. 425

  5. S.D. Bale, M.A. Balikhin, T.S. Horbury, V.V. Krasnoselskikh, H. Kucharek, E. Möbius, S.N. Walker, A. Balogh, D. Burgess, B. Lembège, E.A. Lucek, M. Scholer, S.J. Schwartz, M.F. Thomsen, Quasi-perpendicular shock structure and processes. Space Sci. Rev. 118, 161–203 (2005). doi:10.1007/s11214-005-3827-0

  6. S.J. Bame, J.R. Asbridge, W.C. Feldman, J.T. Gosling, G. Paschmann, N. Skopke, Deceleration of the solar wind upstream from the earth’s bow shock and the origin of diffuse upstream ions. J. Geophys. Res. 85, 2981–2990 (1980). doi:10.1029/JA085iA06p02981

  7. A.R. Bell, The acceleration of cosmic rays in shock fronts. II. Mon. Not. R. Astron. Soc. 182, 443–455 (1978)

  8. D. Biskamp, H. Welter, Numerical studies of magnetosonic collisionless shock-waves. Nuclear Fusion 12(6), 663–666 (1972). doi:10.1088/0029-5515/12/6/006

  9. X. Blanco-Cano, N. Omidi, C.T. Russell, Macrostructure of collisionless bow shocks: 2. ULF waves in the foreshock and magnetosheath. J. Geophys. Res. (Space Phys.) 111, 10205 (2006). doi:10.1029/2005JA011421

  10. C. Bonifazi, G. Moreno, Reflected and diffuse ions backstreaming from the earth’s bow shock 2. Origin. J. Geophys. Res. 86, 4405–4414 (1981a). doi:10.1029/JA086iA06p04405

  11. C. Bonifazi, G. Moreno, Reflected and diffuse ions backstreaming from the earth’s bow shock. I Basic properties. J. Geophys. Res. 86, 4397–4413 (1981b). doi:10.1029/JA086iA06p04397

  12. D. Burgess, Shock drift acceleration at low energies. J. Geophys. Res. 92, 1119–1130 (1987a)

  13. D. Burgess, Simulations of backstreaming ion beams formed at oblique shocks by direct reflection. Ann. Geophys. 5, 133–145 (1987b)

  14. D. Burgess, Alpha particles in field-aligned beams upstream of the bow shock: Simulations. Geophys. Res. Lett. 16, 163 (1989a)

  15. D. Burgess, Cyclical behavior at quasi-parallel collisionless shocks. Geophys. Res. Lett. 16, 345–349 (1989b)

  16. D. Burgess, What do we really know about upstream waves? Adv. Space Res. 20, 673–682 (1997). doi:10.1016/S0273-1177(97)00455-9

  17. D. Burgess, J.G. Luhmann, Scatter-free propagation of low-energy protons in the magnetosheath—Implications for the production of field-aligned ion beams by nonthermal leakage. J. Geophys. Res. 91, 1439–1449 (1986). doi:10.1029/JA091iA02p01439

  18. D. Burgess, M. Scholer, Shock front instability associated with reflected ions at the perpendicular shock. Phys. Plasmas 14(1), 012108 (2007). doi:10.1063/1.2435317

  19. D. Burgess, E.A. Lucek, M. Scholer, S.D. Bale, M.A. Balikhin, A. Balogh, T.S. Horbury, V.V. Krasnoselskikh, H. Kucharek, B. Lembège, E. Möbius, S.J. Schwartz, M.F. Thomsen, S.N. Walker, Quasi-parallel shock structure and processes. Space Sci. Rev. 118, 205–222 (2005). doi:10.1007/s11214-005-3832-3

  20. D.D. Childers, C.T. Russell, Power spectra of the interplanetary magnetic field near the earth. NASA Spec. Publ. 308, 375 (1972)

  21. M.I. Desai, D. Burgess, Particle acceleration at coronal mass ejection-driven interplanetary shocks and the Earth’s bow shock. J. Geophys. Res. (Space Phys.) 113, A00B06 (2008)

  22. M.I. Desai, G.M. Mason, J.R. Dwyer, J.E. Mazur, T.T. von Rosenvinge, R.P. Lepping, Characteristics of energetic (≳30 keV/nucleon) ions observed by the Wind/STEP instrument upstream of the Earth’s bow shock. J. Geophys. Res. 105, 61–78 (2000). doi:10.1029/1999JA900406

  23. M.I. Desai, G.M. Mason, J.E. Mazur, J.R. Dwyer, Solar cycle variations in the composition of the suprathermal heavy-ion population near 1 AU. Astrophys. J. Lett. 645, 81–84 (2006). doi:10.1086/505935

  24. J.P. Eastwood, E.A. Lucek, C. Mazelle, K. Meziane, Y. Narita, J. Pickett, R.A. Treumann, The foreshock. Space Sci. Rev. 118, 41–94 (2005). doi:10.1007/s11214-005-3824-3

  25. J.P. Edmiston, C.F. Kennel, D. Eichler, Escape of heated ions upstream of quasi-parallel shocks. Geophys. Res. Lett. 9, 531–534 (1982). doi:10.1029/GL009i005p00531

  26. D. Eichler, Energetic particle spectra in finite shocks—The earth’s bow shock. Astrophys. J. 244, 711–716 (1981). doi:10.1086/158748

  27. D.C. Ellison, Monte Carlo simulation of charged particles upstream of the earth’s bow shock. Geophys. Res. Lett. 8, 991–994 (1981). doi:10.1029/GL008i009p00991

  28. D.C. Ellison, E. Moebius, Diffusive shock acceleration—Comparison of a unified shock model to bow shock observations. Astrophys. J. 318, 474–484 (1987). doi:10.1086/165384

  29. D.C. Ellison, E. Moebius, G. Paschmann, Particle injection and acceleration at earth’s bow shock—Comparison of upstream and downstream events. Astrophys. J. 352, 376–394 (1990). doi:10.1086/168544

  30. D.C. Ellison, J. Giacalone, D. Burgess, S.J. Schwartz, Simulations of particle acceleration in parallel shocks: Direct comparison between Monte Carlo and one-dimensional hybrid codes. J. Geophys. Res. 982, 21085 (1993). doi:10.1029/93JA01753

  31. M.A. Forman, G.E. Morfill, Time-dependent acceleration of solar wind plasma to MeV energies at corotating interplanetary shocks, in International Cosmic Ray Conference, vol. 5 (1979), p. 328

  32. S.A. Fuselier, Ion distributions in the Earth’s foreshock upstream from the bow shock. Adv. Space Res. 15, 43–52 (1995). doi:10.1016/0273-1177(94)00083-D

  33. S.A. Fuselier, W.K.H. Schmidt, H+ and He2+ heating at the Earth’s bow shock. J. Geophys. Res. 991, 11539–11546 (1994). doi:10.1029/94JA00350

  34. S.A. Fuselier, M.F. Thomsen, He(2+) in field-aligned beams—ISEE results. Geophys. Res. Lett. 19, 437–440 (1992). doi:10.1029/92GL00375

  35. S.A. Fuselier, M.F. Thomsen, J.T. Gosling, S.J. Bame, C.T. Russell, Gyrating and intermediate ion distributions upstream from the earth’s bow shock. J. Geophys. Res. 91, 91–99 (1986). doi:10.1029/JA091iA01p00091

  36. J. Giacalone, Large-scale hybrid simulations of particle acceleration at a parallel shock. Astrophys. J. 609, 452–458 (2004). doi:10.1086/421043

  37. J. Giacalone, S.J. Schwartz, D. Burgess, Observations of suprathermal ions in association with SLAMS. Geophys. Res. Lett. 20, 149–152 (1993). doi:10.1029/93GL00067

  38. J. Giacalone, D. Burgess, S.J. Schwartz, D.C. Ellison, Hybrid simulations of protons strongly accelerated by a parallel collisionless shock. Geophys. Res. Lett. 19, 433–436 (1992). doi:10.1029/92GL00379

  39. J. Giacalone, D. Burgess, S.J. Schwartz, D.C. Ellison, Ion injection and acceleration at parallel shocks—Comparisons of self-consistent plasma simulations with existing theories. Astrophys. J. 402, 550–559 (1993). doi:10.1086/172157

  40. J. Giacalone, D. Burgess, S.J. Schwartz, D.C. Ellison, L. Bennett, Injection and acceleration of thermal protons at quasi-parallel shocks: A hybrid simulation parameter survey. J. Geophys. Res. 102, 19789–19804 (1997). doi:10.1029/97JA01529

  41. B.E. Gordon, M.A. Lee, E. Möbius, K.J. Trattner, Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks and Earth’s bow shock revisited. J. Geophys. Res. 104, 28263–28278 (1999). doi:10.1029/1999JA900356

  42. J.T. Gosling, M.F. Thomsen, S.J. Bame, C.T. Russell, On the source of diffuse, suprathermal ions observed in the vicinity of the earth’s bow shock. J. Geophys. Res. 94, 3555–3563 (1989). doi:10.1029/JA094iA04p03555

  43. T. Hada, M. Oonishi, B. Lembège, P. Savoini, Shock front nonstationarity of supercritical perpendicular shocks. J. Geophys. Res. (Space Phys.) 108, 1233 (2003). doi:10.1029/2002JA009339

  44. P. Hellinger, P. Trávníček, B. Lembège, P. Savoini, Emission of nonlinear whistler waves at the front of perpendicular supercritical shocks: Hybrid versus full particle simulations. Geophys. Res. Lett. 34, 14109 (2007). doi:10.1029/2007GL030239

  45. M.M. Hoppe, C.T. Russell, Plasma rest frame frequencies and polarizations of the low-frequency upstream waves—ISEE 1 and 2 observations. J. Geophys. Res. 88, 2021–2027 (1983). doi:10.1029/JA088iA03p02021

  46. M.M. Hoppe, C.T. Russell, L.A. Frank, T.E. Eastman, E.W. Greenstadt, Upstream hydromagnetic waves and their association with backstreaming ion populations—ISEE 1 and 2 observations. J. Geophys. Res. 86, 4471–4492 (1981). doi:10.1029/JA086iA06p04471

  47. T.S. Horbury, P.J. Cargill, E.A. Lucek, A. Balogh, M.W. Dunlop, T.M. Oddy, C. Carr, P. Brown, A. Szabo, K.-H. Fornaçon, Cluster magnetic field observations of the bowshock: Orientation, motion and structure. Ann. Geophys. 19, 1399–1409 (2001). doi:10.5194/angeo-19-1399-2001

  48. F.M. Ipavich, G. Gloeckler, M. Scholer, Temporal development of composition, spectra, and anisotropies during upstream particle events. J. Geophys. Res. 86, 11153–11160 (1981). doi:10.1029/JA086iA13p11153

  49. F.M. Ipavich, J.T. Gosling, M. Scholer, Correlation between the He/H ratios in upstream particle events and in the solar wind. J. Geophys. Res. 89, 1501–1507 (1984). doi:10.1029/JA089iA03p01501

  50. F.M. Ipavich, G. Gloeckler, C.Y. Fan, L.A. Fisk, D. Hovestadt, B. Klecker, M. Scholer, J.J. Ogallagher, Initial observations of low energy charged particles near the earth’s bow shock on ISEE-1. Space Sci. Rev. 23, 93 (1979). doi:10.1007/BF00174113

  51. F.M. Ipavich, A.B. Galvin, G. Gloeckler, M. Scholer, D. Hovestadt, A statistical survey of ions observed upstream of the earth’s bow shock—Energy spectra, composition, and spatial variation. J. Geophys. Res. 86, 4337–4342 (1981). doi:10.1029/JA086iA06p04337

  52. F.M. Ipavich, G. Gloeckler, D.C. Hamilton, L.M. Kistler, J.T. Gosling, Protons and alpha particles in field-aligned beams upstream of the bow shock. Geophys. Res. Lett. 15, 1153–1156 (1988). doi:10.1029/GL015i010p01153

  53. C.F. Kennel, J.P. Edmiston, T. Hada, A Quarter Century of Collisionless Shock Research. Washington DC American Geophysical Union Geophysical Monograph Series, vol. 34, (1985), pp. 1–36

  54. A. Kis, M. Scholer, B. Klecker, E. Möbius, E.A. Lucek, H. Rème, J.M. Bosqued, L.M. Kistler, H. Kucharek, Multi-spacecraft observations of diffuse ions upstream of Earth’s bow shock. Geophys. Res. Lett. 312, 20801 (2004). doi:10.1029/2004GL020759

  55. A. Kis, M. Scholer, B. Klecker, H. Kucharek, E.A. Lucek, H. Rème, Scattering of field-aligned beam ions upstream of Earth’s bow shock. Ann. Geophys. 25, 785–799 (2007). doi:10.5194/angeo-25-785-2007

  56. V.V. Krasnoselskikh, B. Lembège, P. Savoini, V.V. Lobzin, Nonstationarity of strong collisionless quasiperpendicular shocks: Theory and full particle numerical simulations. Phys. Plasmas 9, 1192–1209 (2002). doi:10.1063/1.1457465

  57. D. Krauss-Varban, N. Omidi, Structure of medium Mach number quasi-parallel shocks—Upstream and downstream waves. J. Geophys. Res. 96, 17715 (1991). doi:10.1029/91JA01545

  58. S.M. Krimigis, D. Venkatesan, J.C. Barichello, E.T. Sarris, Simultaneous measurements of energetic protons and electrons in the distant magnetosheath, magnetotail, and upstream in the solar wind. Geophys. Res. Lett. 5, 961–964 (1978). doi:10.1029/GL005i011p00961

  59. E.A. Kronberg, A. Kis, B. Klecker, P.W. Daly, E.A. Lucek, Multipoint observations of ions in the 30–160 keV energy range upstream of the Earth’s bow shock. J. Geophys. Res. (Space Phys.) 114, 3211 (2009). doi:10.1029/2008JA013754

  60. H. Kucharek, M. Scholer, Origin of diffuse superthermal ions at quasi-parallel supercritical collisionless shocks. J. Geophys. Res. 962, 21195 (1991). doi:10.1029/91JA02321

  61. H. Kucharek, E. Möbius, M. Scholer, C. Mouikis, L. Kistler, T. Horbury, A. Balogh, H. Réme, J. Bosqued, On the origin of field-aligned beams at the quasi-perpendicular bow shock: multi-spacecraft observations by Cluster. Ann. Geophys. 22, 2301–2308 (2004). doi:10.5194/angeo-22-2301-2004

  62. Y. Kuramitsu, V. Krasnoselskikh, Gyroresonant surfing acceleration. Phys. Rev. Lett. 94(3), 031102 (2005a). doi:10.1103/PhysRevLett.94.031102

  63. Y. Kuramitsu, V. Krasnoselskikh, Particle acceleration by elliptically and linearly polarized waves in the vicinity of quasi-parallel shocks. J. Geophys. Res. (Space Phys.) 110, 10108 (2005b). doi:10.1029/2005JA011048

  64. G. Le, C.T. Russell, A study of ULF wave foreshock morphology. I—ULF foreshock boundary. II—Spatial variation of ULF waves. Planet. Space Sci. 40, 1203–1213 (1992). doi:10.1016/0032-0633(92)90077-2

  65. M.A. Lee, Coupled hydromagnetic wave excitation and ion acceleration upstream of the earth’s bow shock. J. Geophys. Res. 87, 5063–5080 (1982). doi:10.1029/JA087iA07p05063

  66. M.A. Lee, Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks. J. Geophys. Res. 88, 6109–6119 (1983). doi:10.1029/JA088iA08p06109

  67. B. Lembege, J.M. Dawson, Self-consistent study of a perpendicular collisionless and nonresistive shock. Phys. Fluids 30, 1767–1788 (1987). doi:10.1063/1.866191

  68. B. Lembège, P. Savoini, P. Hellinger, P.M. Trávníček, Nonstationarity of a two-dimensional perpendicular shock: Competing mechanisms. J. Geophys. Res. (Space Phys.) 114, 3217 (2009). doi:10.1029/2008JA013618

  69. V.V. Lobzin, V.V. Krasnoselskikh, J.-M. Bosqued, J.-L. Pinçon, S.J. Schwartz, M. Dunlop, Nonstationarity and reformation of high-Mach-number quasiperpendicular shocks: Cluster observations. Geophys. Res. Lett. 340, 05107 (2007). doi:10.1029/2006GL029095

  70. M.A. Malkov, Ion leakage from quasiparallel collisionless shocks: Implications for injection and shock dissipation. Phys. Rev. E 58, 4911–4928 (1998). doi:10.1103/PhysRevE.58.4911

  71. M.A. Malkov, H.J. Voelk, Theory of ion injection at shocks. Astron. Astrophys. 300, 605 (1995)

  72. S. Matsukiyo, M. Scholer, Modified two-stream instability in the foot of high Mach number quasi-perpendicular shocks. J. Geophys. Res. (Space Phys.) 108, 1459 (2003). doi:10.1029/2003JA010080

  73. C. Mazelle, B. Lembège, A. Morgenthaler, K. Meziane, T.S. Horbury, V. Génot, E.A. Lucek, I. Dandouras, Self-reformation of the quasi-perpendicular shock: CLUSTER observations. in Twelfth International Solar Wind Conference, vol. 1216 (2010), pp. 471–474. doi:10.1063/1.3395905

  74. M.E. McKean, N. Omidi, D. Krauss-Varban, Wave and ion evolution downstream of quasi-perpendicular bow shocks. J. Geophys. Res. 100, 3427–3437 (1995). doi:10.1029/94JA02529

  75. K. Meziane, A.M. Hamza, M. Wilber, C. Mazelle, M.A. Lee, Anomalous foreshock field-aligned beams observed by Cluster. Ann. Geophys. 29, 1967–1975 (2011). doi:10.5194/angeo-29-1967-2011

  76. B. Miao, H. Kucharek, E. Möbius, C. Mouikis, H. Matsui, Y.C.-M. Liu, E.A. Lucek, Remote sensing of local structure of the quasi-perpendicular Earth’s bow shock by using field-aligned beams. Ann. Geophys. 27, 913–921 (2009). doi:10.5194/angeo-27-913-2009

  77. E. Möbius, H. Kucharek, C. Mouikis, E. Georgescu, L.M. Kistler, M.A. Popecki, M. Scholer, J.M. Bosqued, H. Rème, C.W. Carlson, B. Klecker, A. Korth, G.K. Parks, J.C. Sauvaud, H. Balsiger, M.-B. Bavassano-Cattaneo, I. Dandouras, A.M. Dilellis, L. Eliasson, V. Formisano, T. Horbury, W. Lennartsson, R. Lundin, M. McCarthy, J.P. McFadden, G. Paschmann, Observations of the spatial and temporal structure of field-aligned beam and gyrating ring distributions at the quasi-perpendicular bow shock with Cluster CIS. Ann. Geophys. 19, 1411–1420 (2001). doi:10.5194/angeo-19-1411-2001

  78. E. Moebius, D. Hovestadt, B. Klecker, M. Scholer, F.M. Ipavich, A burst of energetic O(+) ions during an upstream particle event. Geophys. Res. Lett. 13, 1372–1375 (1986). doi:10.1029/GL013i013p01372

  79. E. Moebius, M. Scholer, N. Sckopke, G. Paschmann, H. Luehr, The distribution function of diffuse ions and the magnetic field power spectrum upstream of earth’s bow shock. Geophys. Res. Lett. 14, 681–684 (1987). doi:10.1029/GL014i007p00681

  80. O. Moullard, D. Burgess, T.S. Horbury, E.A. Lucek, Ripples observed on the surface of the Earth’s quasi-perpendicular bow shock. J. Geophys. Res. (Space Phys.) 111, 9113 (2006). doi:10.1029/2005JA011594

  81. M. Oka, T. Terasawa, Y. Saito, T. Mukai, Field-aligned beam observations at the quasi-perpendicular bow shock: Generation and shock angle dependence. J. Geophys. Res. (Space Phys.) 110, 05101 (2005). doi:10.1029/2004JA010688

  82. N. Omidi, X. Blanco-Cano, C.T. Russell, Macrostructure of collisionless bow shocks: 1. Scale lengths. J. Geophys. Res. (Space Phys.) 110, 12212 (2005). doi:10.1029/2005JA011169

  83. G. Paschmann, N. Sckopke, S.J. Bame, J.R. Asbridge, J.T. Gosling, C.T. Russell, E.W. Greenstadt, Association of low-frequency waves with suprathermal ions in the upstream solar wind. Geophys. Res. Lett. 6, 209–212 (1979). doi:10.1029/GL006i003p00209

  84. G. Paschmann, N. Sckopke, J.R. Asbridge, S.J. Bame, J.T. Gosling, Energization of solar wind ions by reflection from the earth’s bow shock. J. Geophys. Res. 85, 4689–4693 (1980). doi:10.1029/JA085iA09p04689

  85. G. Paschmann, N. Sckopke, I. Papamastorakis, J.R. Asbridge, S.J. Bame, J.T. Gosling, Characteristics of reflected and diffuse ions upstream from the earth’s bow shock. J. Geophys. Res. 86, 4355–4364 (1981). doi:10.1029/JA086iA06p04355

  86. T.R. Sanderson, R. Reinhard, K.-P. Wenzel, The propagation of upstream protons between the earth’s bow shock and ISEE 3. J. Geophys. Res. 86, 4425–4434 (1981). doi:10.1029/JA086iA06p04425

  87. E.T. Sarris, G.C. Anagnostopoulos, S.M. Krimigis, Simultaneous measurements of energetic ion (50 keV and above) and electron (220 keV and above) activity upstream of earth’s bow shock and inside the plasma sheet—Magnetospheric source for the November 3 and December 3, 1977 upstream events. J. Geophys. Res. 92, 12083–12096 (1987). doi:10.1029/JA092iA11p12083

  88. E.T. Sarris, S.M. Krimigis, T.P. Armstrong, Observations of magnetospheric bursts of high-energy protons and electrons at approximately 35 earth radii with Imp 7. J. Geophys. Res. 81, 2341–2355 (1976). doi:10.1029/JA081i013p02341

  89. E.T. Sarris, S.M. Krimigis, C.O. Bostrom, T.P. Armstrong, Simultaneous multispacecraft observations of energetic proton bursts inside and outside the magnetosphere. J. Geophys. Res. 83, 4289–4305 (1978). doi:10.1029/JA083iA09p04289

  90. M. Scholer, Diffuse ions at a quasi-parallel collisionless shock—Simulations. Geophys. Res. Lett. 17, 1821–1824 (1990). doi:10.1029/GL017i011p01821

  91. M. Scholer, D. Burgess, The role of upstream waves in supercritical quasi-parallel shock re-formation. J. Geophys. Res. 97, 8319–8326 (1992). doi:10.1029/92JA00312

  92. M. Scholer, D. Burgess, Whistler waves, core ion heating, and nonstationarity in oblique collisionless shocks. Phys. Plasmas 14(7), 072103 (2007). doi:10.1063/1.2748391

  93. M. Scholer, S. Matsukiyo, Nonstationarity of quasi-perpendicular shocks: a comparison of full particle simulations with different ion to electron mass ratio. Ann. Geophys. 22, 2345–2353 (2004). doi:10.5194/angeo-22-2345-2004

  94. M. Scholer, T. Terasawa, Ion reflection and dissipation at quasi-parallel collisionless shocks. Geophys. Res. Lett. 17, 119–122 (1990). doi:10.1029/GL017i002p00119

  95. M. Scholer, H. Kucharek, K.-H. Trattner, Injection and acceleration of H+ and He2+ at Earth’s bow shock. Ann. Geophys. 17, 583–594 (1999). doi:10.1007/s00585-999-0583-6

  96. M. Scholer, I. Shinohara, S. Matsukiyo, Quasi-perpendicular shocks: Length scale of the cross-shock potential, shock reformation, and implication for shock surfing. J. Geophys. Res. (Space Phys.) 108, 1014 (2003). doi:10.1029/2002JA009515

  97. M. Scholer, G. Gloeckler, F.M. Ipavich, D. Hovestadt, B. Klecker, Pitch angle distributions of energetic protons near the earth’s bow shock. Geophys. Res. Lett. 6, 707–710 (1979). doi:10.1029/GL006i009p00707

  98. M. Scholer, D. Hovestadt, B. Klecker, F.M. Ipavich, G. Gloeckler, Upstream particle events close to the bow shock and 200 earth radii upstream—ISEE-1 and ISEE-3 observations. Geophys. Res. Lett. 7, 73–76 (1980). doi:10.1029/GL007i001p00073

  99. M. Scholer, D. Hovestadt, F.M. Ipavich, G. Gloeckler, Upstream energetic ions and electrons—Bow shock-associated or magnetospheric origin. J. Geophys. Res. 86, 9040–9046 (1981). doi:10.1029/JA086iA11p09040

  100. M. Scholer, E. Moebius, L.M. Kistler, B. Klecker, F.M. Ipavich, Multispacecraft observations of energetic ions upstream and downstream of the bow shock. Geophys. Res. Lett. 16, 571–574 (1989). doi:10.1029/GL016i006p00571

  101. M. Scholer, H. Kucharek, V.V. Krasnosselskikh, K.-H. Trattner, Injection and acceleration of ions at collisionless shocks: kinetic simulations, in Acceleration and Transport of Energetic Particles Observed in the Heliosphere, ed. by R.A. Mewaldt, J.R. Jokipii, M.A. Lee, E. Möbius, T.H. Zurbuchen. American Institute of Physics Conference Series, vol. 528, (2000), pp. 250–257. doi:10.1063/1.1324320

  102. S.J. Schwartz, Shock and discontinuity normals, Mach numbers, and related parameters. ISSI Scientific Reports Series 1, 249–270 (1998)

  103. S.J. Schwartz, D. Burgess, On the theoretical/observational comparison of field-aligned ion beams in the earth’s foreshock. J. Geophys. Res. 89, 2381–2384 (1984). doi:10.1029/JA089iA04p02381

  104. S.J. Schwartz, M.F. Thomsen, J.T. Gosling, Ions upstream of the earth’s bow shock—A theoretical comparison of alternative source populations. J. Geophys. Res. 88, 2039–2047 (1983). doi:10.1029/JA088iA03p02039

  105. S.J. Schwartz, D. Burgess, W.P. Wilkinson, R.L. Kessel, M. Dunlop, H. Luehr, Observations of short large-amplitude magnetic structures at a quasi-parallel shock. J. Geophys. Res. 97, 4209–4227 (1992). doi:10.1029/91JA02581

  106. N. Sckopke, G. Paschmann, S.J. Bame, J.T. Gosling, C.T. Russell, Evolution of ion distributions across the nearly perpendicular bow shock—Specularly and non-specularly reflected-gyrating ions. J. Geophys. Res. 88, 6121–6136 (1983). doi:10.1029/JA088iA08p06121

  107. N. Sckopke, G. Paschmann, A.L. Brinca, C.W. Carlson, H. Luehr, Ion thermalization in quasi-perpendicular shocks involving reflected ions. J. Geophys. Res. 95, 6337–6352 (1990). doi:10.1029/JA095iA05p06337

  108. B.U.Ö. Sonnerup, Acceleration of particles reflected at a shock front. J. Geophys. Res. 74, 1301–1304 (1969). doi:10.1029/JA074i005p01301

  109. T. Sugiyama, Time sequence of energetic particle spectra in quasiparallel shocks in large simulation systems. Phys. Plasmas 18(2), 022302 (2011). doi:10.1063/1.3552026

  110. T. Sugiyama, T. Terasawa, A scatter-free ion acceleration process in the parallel shock. Adv. Space Res. 24, 73–76 (1999). doi:10.1016/S0273-1177(99)00427-5

  111. T. Sugiyama, M. Fujimoto, T. Mukai, Quick ion injection and acceleration at quasi-parallel shocks. J. Geophys. Res. 106, 21657–21674 (2001). doi:10.1029/2001JA900063

  112. M. Tanaka, C.C. Goodrich, D. Winske, K. Papadopoulos, A source of the backstreaming ion beams in the foreshock region. J. Geophys. Res. 88, 3046–3054 (1983). doi:10.1029/JA088iA04p03046

  113. T. Terasawa, Energy spectrum of ions accelerated through Fermi process at the terrestrial bow shock. J. Geophys. Res. 86, 7595–7606 (1981). doi:10.1029/JA086iA09p07595

  114. T. Terasawa, Ion acceleration. Adv. Space Res. 15, 53–62 (1995). doi:10.1016/0273-1177(94)00084-E

  115. K.J. Trattner, M. Scholer, Diffuse alpha particles upstream of simulated quasi-parallel supercritical collisionless shocks. Geophys. Res. Lett. 18, 1817–1820 (1991). doi:10.1029/91GL02084

  116. K.J. Trattner, E. Möbius, M. Scholer, B. Klecker, M. Hilchenbach, H. Luehr, Statistical analysis of diffuse ion events upstream of the Earth’s bow shock. J. Geophys. Res. 991, 13389 (1994). doi:10.1029/94JA00576

  117. T. Umeda, Y. Kidani, M. Yamao, S. Matsukiyo, R. Yamazaki, On the reformation at quasi- and exactly perpendicular shocks: Full particle-in-cell simulations. J. Geophys. Res. (Space Phys.) 115, 10250 (2010). doi:10.1029/2010JA015458

  118. G. Wibberenz, H.M. Fischer, F. Zoellich, E. Keppler, Dynamics of intense upstream ion events. J. Geophys. Res. 90, 283–301 (1985). doi:10.1029/JA090iA01p00283

  119. C.S. Wu, A fast Fermi process—Energetic electrons accelerated by a nearly perpendicular bow shock. J. Geophys. Res. 89, 8857–8862 (1984). doi:10.1029/JA089iA10p08857

Download references

Acknowledgements

The authors thank ISSI for support to attend the workshop “Particle Acceleration in Cosmic Plasmas.” D. Burgess acknowledges support of STFC grant ST/H002731/1. E. Möbius acknowledges support of NASA grant NNX11AB65G, and gratefully acknowledges the support of the U.S. Department of Energy through LANL’s Laboratory Directed Research and Development (LDRD) Program and Institute Geophysics and Planetary Physics.

Author information

Correspondence to D. Burgess.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Burgess, D., Möbius, E. & Scholer, M. Ion Acceleration at the Earth’s Bow Shock. Space Sci Rev 173, 5–47 (2012). https://doi.org/10.1007/s11214-012-9901-5

Download citation

Keywords

  • Ion acceleration
  • Bow shock
  • Space plasma
  • Collisionless shock
  • Particle acceleration