Advertisement

Space Science Reviews

, Volume 170, Issue 1–4, pp 739–773 | Cite as

Surface Properties of the Mars Science Laboratory Candidate Landing Sites: Characterization from Orbit and Predictions

  • R. L. Fergason
  • P. R. Christensen
  • M. P. Golombek
  • T. J. Parker
Article

Abstract

This work describes the interpretation of THEMIS-derived thermal inertia data at the Eberswalde, Gale, Holden, and Mawrth Vallis Mars Science Laboratory (MSL) candidate landing sites and determines how thermophysical variations correspond to morphology and, when apparent, mineralogical diversity. At Eberswalde, the proportion of likely unconsolidated material relative to exposed bedrock or highly indurated surfaces controls the thermal inertia of a given region. At Gale, the majority of the landing site region has a moderate thermal inertia (250 to 410 J m−2 K−1 s−1/2), which is likely an indurated surface mixed with unconsolidated materials. The primary difference between higher and moderate thermal inertia surfaces may be due to the amount of mantling material present. Within the mound of stratified material in Gale, layers are distinguished in the thermal inertia data; the MSL rover could be traversing through materials that are both thermophysically and compositionally diverse. The majority of the Holden ellipse has a thermal inertia of 340 to 475 J m−2 K−1 s−1/2 and consists of bed forms with some consolidated material intermixed. Mawrth Vallis has a mean thermal inertia of 310 J m−2 K−1 s−1/2 and a wide variety of materials is present contributing to the moderate thermal inertia surfaces, including a mixture of bedrock, indurated surfaces, bed forms, and unconsolidated fines. Phyllosilicates have been identified at all four candidate landing sites, and these clay-bearing units typically have a similar thermal inertia value (400 to 500 J m−2 K−1 s−1/2), suggesting physical properties that are also similar.

Keywords

Mars Surface properties Thermal inertia MSL 

Notes

Acknowledgements

Attendance at the landing site workshops greatly enhanced our understanding of various components of each site. Specifically, discussions with Kenneth Edgett (MSSS), Justin Hagerty (USGS), Michael Kraft (ASU), and Ashwin Vasavada (JPL) on various aspects related to these sites greatly helped place our findings in a broader context. Kenneth Herkenhoff (USGS), Kenneth Tanaka (USGS), Kenneth Edgett (MSSS), and an anonymous reviewer provided comments that greatly improved the presentation of this work. Trent Hare (USGS) and Ryan Luk (then at ASU) helped produce products that have been released to the public (http://astrogeology.usgs.gov/MSL/; http://themis.asu.edu/landingsites). Ryan Luk was invaluable for helping develop mosaic scripts and generating early versions of the daytime IR, nighttime IR, and visible mosaics and the nighttime IR over daytime IR overlay images available online. Daytime IR, nighttime IR, qualitative (8-bit) thermal inertia, and visible image mosaic generation for the initial 36 proposed landing sites (as of June 2006) was funded by the Mars Odyssey Project Office. The thermal inertia analysis and generation and analysis of predicted temperature maps were funded by a JPL subcontract through the Critical Data Products program.

References

  1. R.B. Anderson, J.F. Bell III, Geologic mapping and characterization of Gale Crater and implications for its potential as a Mars Science Laboratory landing site. Mars 5, 76–128 (2010). doi: 10.1555/mars.2010.0004 ADSCrossRefGoogle Scholar
  2. R.E. Arvidson et al., Overview of the spirit Mars exploration rover mission to Gusev Crater: landing site to backstay rock in the Columbia Hills. J. Geophys. Res. 111, E02S01 (2006). doi: 10.1029/2005JE002499 ADSCrossRefGoogle Scholar
  3. J.L. Bandfield, D. Rogers, M.D. Smith, P.R. Christensen, Atmospheric correction and surface spectral unit mapping using thermal emission imaging system data. J. Geophys. Res. 109, E10008 (2004). doi: 10.1029/2004JE002289 ADSCrossRefGoogle Scholar
  4. J.L. Bandfield, A.D. Rogers, C.S. Edwards, The role of aqueous alteration in the formation of martian soils. Icarus 211, 157–171 (2011). doi: 10.1016/j.icarus.2010.08.028 ADSCrossRefGoogle Scholar
  5. J.-P. Bibring et al., Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science 312, 400–404 (2006). doi: 10.1126/science.1122659 ADSCrossRefGoogle Scholar
  6. N.A. Cabrol, E.A. Grin, Distribution, classification, and ages of martian impact crater lakes. Icarus 142, 160–172 (1999) ADSCrossRefGoogle Scholar
  7. N.A. Cabrol, E.A. Grin, H.E. Newsom, R. Landheim, C.P. McKay, Hydrogeologic evolution of Gale Crater and its relevance to the exobiological exploration of Mars. Icarus 139, 235–245 (1999) ADSCrossRefGoogle Scholar
  8. P.R. Christensen, D.L. Anderson, S.C. Chase, R.N. Clark, H.H. Kieffer, M.C. Malin, J.C. Pearl, J. Carpenter, N. Bandiera, F.G. Brown, S. Silverman, Thermal emission spectrometer experiment: Mars observer mission. J. Geophys. Res. 97(E5), 7719–7734 (1992) ADSCrossRefGoogle Scholar
  9. P.R. Christensen, J.L. Bandfield, V.E. Hamilton, S.W. Ruff, H.H. Kieffer, T.N. Titus, M.C. Malin, R.V. Morris, M.D. Lane, R.L. Clark, B.M. Jakosky, M.T. Mellon, J.C. Pearl, B.J. Conrath, M.D. Smith, R.T. Clancy, R.O. Kuzmin, T. Roush, G.L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, M. Greenfield, Mars global surveyor thermal emission spectrometer experiment: investigation description and surface science results. J. Geophys. Res. 106(E10), 23,823–23,871 (2001) ADSGoogle Scholar
  10. P.R. Christensen, J.L. Bandfield, J.F. Bell III, N. Gorelick, V.E. Hamilton, A. Ivanov, B.M. Jakosky, H.H. Kieffer, M.D. Lane, M.C. Malin, T. McConnochie, A.S. McEwen, H.Y. McSween Jr., G.L. Mehall, J.E. Moersch, K.H. Nealson, J.W. Rice Jr., M.I. Richardson, S.W. Ruff, M.D. Smith, T.N. Titus, M.B. Wyatt, Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results. Science 300(5628), 2056–2061 (2003) ADSCrossRefGoogle Scholar
  11. P.R. Christensen, B.M. Jakosky, H.H. Kieffer, M.C. Malin, H.Y. McSween Jr., K. Nealson, G.L. Mehall, S.H. Silverman, S. Ferry, M. Caplinger, M. Ravine, The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey mission. Space Sci. Rev. 110, 85–130 (2004) ADSCrossRefGoogle Scholar
  12. R.T. Clancy, B.J. Sandor, M.J. Wolff, P.R. Christensen, M.D. Smith, J.C. Pearl, B.J. Conrath, R.J. Wilson, An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere. J. Geophys. Res. 105(E4), 9553–9571 (2000) ADSCrossRefGoogle Scholar
  13. K.S. Edgett, P.R. Christensen, The particle size of Martian aeolian dunes. J. Geophys. Res. 96(E5), 22,765–22,776 (1991) ADSCrossRefGoogle Scholar
  14. C.S. Edwards, J.L. Bandfield, P.R. Christensen, R.L. Fergason, Global distribution of bedrock exposures on Mars using THEMIS high-resolution thermal inertia. J. Geophys. Res. 114, E11001 (2009). doi: 10.1029/2009JE003363 ADSCrossRefGoogle Scholar
  15. R.L. Fergason, P.R. Christensen, Formation and erosion of layered materials: geologic and dust cycle history of eastern Arabia Terra, Mars. J. Geophys. Res. 113, E12001 (2008). doi: 10.1029/2007JE002973 ADSCrossRefGoogle Scholar
  16. R.L. Fergason, P.R. Christensen, H.H. Kieffer, High-resolution thermal inertia derived from the Thermal Emission Imaging System (THEMIS): thermal model and applications. J. Geophys. Res. 111, E12004 (2006a). doi: 10.1029/2006JE002735 ADSCrossRefGoogle Scholar
  17. R.L. Fergason, P.R. Christensen, J.F. Bell III, M.P. Golombek, K.E. Herkenhoff, H.H. Kieffer, Physical properties of the Mars exploration rover landing sites as inferred from Mini-TES derived thermal inertia. J. Geophys. Res. 111(E2), E02S21 (2006b). doi: 10.1029/2005JE002583 CrossRefGoogle Scholar
  18. J.A. Fountain, E.A. West, Thermal conductivity of particulate basalt as a function of density in simulated lunar and martian environments. J. Geophys. Res. 75(20), 4063–4069 (1970) ADSCrossRefGoogle Scholar
  19. M.P. Golombek, J.A. Grant, T.J. Parker, D.M. Bass, J.A. Crisp, S.W. Squyres, A.F.C. Haldemann, M. Adler, W.J. Lee, N.T. Bridges, R.E. Arvidson, M.H. Carr, R.L. Kirk, P.C. Knocke, R.B. Roncoli, C.M. Weitz, J.T. Schofield, R.W. Zurek, P.R. Christensen, R.L. Fergason, F.S. Anderson, J.W. Rice, Selection of the Mars exploration rover landing sites. J. Geophys. Res. 108, 8072 (2003). doi: 10.1029/2003JE002074 CrossRefGoogle Scholar
  20. M.P. Golombek, R.E. Arvidson, J.F. Bell III, P.R. Christensen, J.A. Crisp, L.S. Crumpler, B.L. Ehlmann, R.L. Fergason, J.A. Grant, R. Greeley, A.F.C. Haldemann, D.M. Kass, T.J. Parker, J.T. Schofield, S.W. Squyres, R.W. Zurek, Assessment of Mars exploration rover landing site predictions. Nature 436, 44–48 (2005). doi: 10.1038/nature03600 ADSCrossRefGoogle Scholar
  21. M.P. Golombek et al., Selection of the Mars science laboratory landing site. Space Sci. Rev., this issue (2012) Google Scholar
  22. J.L. Gooding, Chemical weathering on Mars: thermodynamic stabilities of primary minerals (and their alteration products) from mafic igneous rocks. Icarus 33, 485–513 (1978) ADSCrossRefGoogle Scholar
  23. J.A. Grant, T.J. Parker, Drainage evolution in the Margaritifer Sinus region, Mars. J. Geophys. Res. 107, 5066 (2002). doi: 10.1029/2001JE001678 CrossRefGoogle Scholar
  24. J.A. Grant, R.P. Irwin III, J.P. Grotzinger, R.E. Milliken, L.L. Tornabene, A.S. McEwen, C.M. Weitz, S.W. Squyres, T.D. Glotch, B.J. Thomson, HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden Crater, Mars. Geology 36, 195–198 (2008). doi: 10.1130/G24340A.1 ADSCrossRefGoogle Scholar
  25. J.A. Grant et al., The science process for selecting the landing site for the 2011 Mars Science Laboratory. Planet. Space Sci. 59, 1114–1127 (2011). doi: 10.1016/j.pss.2010.06.016 ADSCrossRefGoogle Scholar
  26. R. Greeley, J.E. Guest, Geologic map of the eastern equatorial region of Mars, U.S. Geol. Surv. Misc. Invest. Map, I-1802-B (1987) Google Scholar
  27. J. Grotzinger et al., Mars science laboratory mission, science investigation. Space Sci. Rev. (2012). doi: 10.1007/s11214-012-9892-2 Google Scholar
  28. S.W. Hobbs, D.J. Paull, M.C. Bourke, Aeolian processes and dune morphology in Gale Crater. Icarus 210, 102–115 (2010). doi: 10.1016/j.icarus2010/06/006 ADSCrossRefGoogle Scholar
  29. B.M. Jakosky, The effects of nonideal surfaces on the derived thermal properties of Mars. J. Geophys. Res. 84(B14), 8252–8262 (1979) ADSCrossRefGoogle Scholar
  30. D.J. Jerolmack, D. Mohrig, M.T. Zuber, S. Byrne, A minimum time for the formation of Holden Northeast fan, Mars. Geophys. Res. Lett. 31, L21701 (2004). doi: 10.1029/2004GL021326 ADSCrossRefGoogle Scholar
  31. H.H. Kieffer, personal communciation (2011) Google Scholar
  32. H.H. Kieffer, S.C. Chase Jr., E. Miner, G. Münch, G. Neugebauer, Preliminary report on infrared radiometric measurements from the Mariner 9 spacecraft. J. Geophys. Res. 78(20), 4291–4312 (1973) ADSCrossRefGoogle Scholar
  33. H.H. Kieffer, T.Z. Martin, A.R. Peterfreund, B.M. Jakosky, E.D. Miner, F.D. Palluconi, Thermal and albedo mapping of Mars during the Viking primary mission. J. Geophys. Res. 82(28), 4249–4291 (1977) ADSCrossRefGoogle Scholar
  34. K.W. Lewis, O. Aharonson, Stratigraphic analysis of the distributary fan in Eberswalde crater using stereo imagery. J. Geophys. Res. 111, E06001 (2006). doi: 10.1029/2005JE002558 ADSCrossRefGoogle Scholar
  35. K. Lewis, O. Aharonson, J. Grotzinger, R. Kirk, A. McEwen, T. Suer, Quasi periodic bedding in the sedimentary rock record of Mars. Science 322, 1532–1535 (2008). doi: 10.1126/science.1161870 ADSCrossRefGoogle Scholar
  36. M.C. Malin, K.S. Edgett, Sedimentary rocks of early Mars. Science 290, 1927–1937 (2000) ADSCrossRefGoogle Scholar
  37. M.C. Malin, K.S. Edgett, Mars global surveyor Mars orbiter camera: interplanetary cruise through primary mission. J. Geophys. Res. 106, 23429–23570 (2001). doi: 10.1029/2006JE002808 ADSCrossRefGoogle Scholar
  38. M.C. Malin, K.S. Edgett, Evidence for persistent flow and aqueous sedimentation on early Mars. Science 302, 1931–1934 (2003) ADSCrossRefGoogle Scholar
  39. M.C. Malin, G.E. Danielson, A.P. Ingersoll, H. Masursky, J. Veverka, M.A. Ravine, T.A. Soulanille, Mars observer camera, J. Geophys. Res. 97(E5), 7699–7718 (1992) ADSCrossRefGoogle Scholar
  40. M.C. Malin, J.F. Bell III, B.A. Cantor, M.A. Caplinger, W.M. Calvin, R.T. Clancy, K.S. Edgett, L. Edwards, R.M. Haberle, P.B. James, S.W. Lee, M.A. Ravine, P.C. Thomas, M.J. Wolff, Context camera investigation on board the Mars reconnaissance orbiter. J. Geophys. Res. 112, E05S04 (2007). doi: 10.1029/2006JE002808 ADSCrossRefGoogle Scholar
  41. A.S. McEwen et al., Mars reconnaissance orbiter’s high resolution imaging science experiment (HiRISE). J. Geophys. Res. 112, E05S02 (2007). doi: 10.1029/2005JE002605 CrossRefGoogle Scholar
  42. M.T. Mellon, B.M. Jakosky, H.H. Kieffer, P.R. Christensen, High-resolution thermal inertia mapping from the Mars global surveyor thermal emission spectrometer. Icarus 148, 437–455 (2000) ADSCrossRefGoogle Scholar
  43. J.R. Michalski, E.Z. Noe Dobrea, Evidence for a sedimentary origin of clay minerals in the Mawrth Vallis region, Mars. Geology 35, 951–954 (2007). doi: 10.1130/G23854A.1 ADSCrossRefGoogle Scholar
  44. J.R. Michalski, R.L. Fergason, Composition and thermal inertia of the Mawrth Vallis region of Mars from TES and THEMIS data. Icarus 199, 25–48 (2009) ADSCrossRefGoogle Scholar
  45. J.R. Michalski, J.-P. Bibring, F. Poulet, D. Loizeau, N. Mangold, E. Noe Dobrea, J.L. Bishop, J.J. Wray, N.K. McKeown, M. Parente, E. Hauber, F. Altieri, F.G. Carrozzo, P.B. Niles, The Mawrth Vallis region of Mars: a potential landing site for the Mars science laboratory (MSL) mission. Astrobiology 10(7), 687–703 (2010). doi: 10.1089/ast.2010.0491 ADSCrossRefGoogle Scholar
  46. R.E. Milliken, D.L. Bish, Sources and sinks of clay minerals on Mars. Philos. Mag. 90, 2293–2308 (2010). doi: 10.1080/14786430903573132 ADSCrossRefGoogle Scholar
  47. R.E. Milliken, J.P. Grotzinger, B.J. Thomson, Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater. Geophys. Res. Lett. 37, L04201 (2010). doi: 10.1029/2009GL041870 CrossRefGoogle Scholar
  48. J.M. Moore, A.D. Howard, Large alluvial fans on Mars. J. Geophys. Res. 110, E04005 (2005). doi: 10.1029/2004JE002352 ADSCrossRefGoogle Scholar
  49. G. Neugebauer, G. Münch, H. Kieffer, S.C. Chase Jr., E. Miner, Mariner 1969 infrared radiometer results: temperature sand thermal properties of the martian surface. Astron. J. 76(8), 719–728 (1971) ADSCrossRefGoogle Scholar
  50. F.D. Palluconi, H.H. Kieffer, Thermal inertia mapping of Mars from 60° S to 60° N. Icarus 45, 415–426 (1981) ADSCrossRefGoogle Scholar
  51. S.M. Pelkey, B.M. Jakosky, Surficial geologic surveys of Gale Crater and Melas Chasma, Mars: integration of remote-sensing data. Icarus 160, 228–257 (2002) ADSCrossRefGoogle Scholar
  52. S.M. Pelkey, B.M. Jakosky, P.R. Christensen, Surficial properties in Gale Crater, Mars, from Mars Odyssey THEMIS data. Icarus 167, 244–270 (2004) ADSCrossRefGoogle Scholar
  53. J.B. Pollack, M.E. Ockert-Bell, M.E. Shepard, Viking Lander image analysis of martian atmospheric dust. J. Geophys. Res. 100(E3), 5235–5250 (1995) ADSCrossRefGoogle Scholar
  54. M. Pondrelli, A. Baliva, S. Di Lorenzo, L. Marinangeli, A.P. Rossi, Complex evolution of paleolacustrine systems on Mars: an example from the Holden crater. J. Geophys. Res. 110, E04016 (2005). doi: 10.1029/2004JE002335 ADSCrossRefGoogle Scholar
  55. M. Pondrelli, A.P. Rossi, L. Marinangeli, E. Huger, K. Gwinner, A. Baliva, S. Di Lorenzo, Evolution and depositional environments of the Eberswalde fan delta, Mars. Icarus 197, 429–451 (2008). doi: 10.1016/j.icarus.2008.05.018 ADSCrossRefGoogle Scholar
  56. F. Poulet, J.-P. Bibring, J.F. Mustard, A. Gendrin, N. Mangold, Y. Langevin, R.E. Arvidson, B. Gondet, C. Gomez, OMEGA Team, Phyllosilicates on Mars and implications for early martian climate. Nature 438, 623–627 (2005) ADSCrossRefGoogle Scholar
  57. F. Poulet, N. Mangold, D. Loizeau, J.-P. Bibring, Y. Langevin, J. Michalski, B. Gondet, Abundance of minerals in the phyllosilicate-rich units on Mars. Astron. Astrophys. 487, L41–L44 (2008) ADSCrossRefGoogle Scholar
  58. M.A. Presley, P.R. Christensen, Thermal conductivity measurements of particulate materials, 2: results. J. Geophys. Res. 102, 6551–6566 (1997) ADSCrossRefGoogle Scholar
  59. N.E. Putzig, M.T. Mellon, Thermal behavior of horizontally mixed surfaces on Mars. Icarus 191, 52–67 (2007a). doi: 10.1016/j.icarus.2007.03.022 ADSCrossRefGoogle Scholar
  60. N.E. Putzig, M.T. Mellon, Apparent thermal inertia and the surface heterogeneity of Mars. Icarus 191, 68–94 (2007b). doi: 10.1016/j.icarus.2007.05.013 ADSCrossRefGoogle Scholar
  61. M.S. Rice, S. Gupta, J.F. Bell III, N.H. Warner, Influence of fault-controlled topography on fluvio-deltaic sedimentary systems in Eberswalde crater, Mars. Geophys. Res. Lett. 38, L16203 (2011). doi: 10.1029/2011GL048149 ADSCrossRefGoogle Scholar
  62. A.P. Rossi, G. Neukum, M. Pondrelli, S. van Gasselt, T. Zegers, E. Hauber, A. Chicarro, B. Foing, Large-scale spring deposits on Mars? J. Geophys. Res. 113, E08016 (2008). doi: 10.1029/2007JE003062 ADSCrossRefGoogle Scholar
  63. S.W. Ruff, P.R. Christensen, Bright and dark regions on Mars: particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. J. Geophys. Res. 107, E12 (2002). doi: 10.1029/2001JE001580 CrossRefGoogle Scholar
  64. P.H. Schultz, A.B. Lutz, Polar wandering of Mars. Icarus 73, 91–141 (1988) ADSCrossRefGoogle Scholar
  65. D.H. Scott, K.L. Tanaka, Geologic map of the western equatorial region of Mars, US Geological Survey Miscellaneous Investigation Series, Map I-1802-A, scale 1:15,000,000 (1986) Google Scholar
  66. D.H. Scott, M.G. Chapman, Geologic and topographic maps of the Elysium paleolake basin, Mars, United States Geological Survey Series, Map I-2397, scale 1:5,000,000 (1995) Google Scholar
  67. M.D. Smith, Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 167, 148–165 (2004) ADSCrossRefGoogle Scholar
  68. D. Smith, M. Zuber, S. Solomon, R. Phillips, J. Head, J. Garvin, W. Banerdt, D. Muhlemann, G. Pettengill, G. Neumann, F. Lemoine, J. Abshire, O. Aharonson, C. Brown, S. Hauck, A. Ivanov, P. McGovern, H. Zwally, T. Duxbury, The global topography of Mars and implications for surface evolution. Science 284, 1495–1503 (1999) ADSCrossRefGoogle Scholar
  69. M.D. Smith, J.C. Pearl, B.J. Conrath, P.R. Christensen, Mars global surveyor thermal emission spectrometer (TES) observations of dust opacity during aerobreaking and science phasing. J. Geophys. Res. 105(E4), 9539–9552 (2000) ADSCrossRefGoogle Scholar
  70. D.E. Smith, M.T. Zuber, H.V. Frey, J.B. Garvin, J.W. Head, D.O. Muhleman, G.H. Pettengill, R.J. Phillips, S.C. Solomon, H.J. Zwally, W.B. Banerdt, T.C. Duxbury, M.P. Golombek, F.G. Lemoine, G.A. Neumann, D.D. Rowlands, O. Aharonson, P.G. Ford, A.B. Ivanov, C.L. Johnson, P.J. McGovern, J.B. Abshire, R.S. Afzal, X. Sun, Mars orbiter laser altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106(E10), 23,689–23,722 (2001a) ADSGoogle Scholar
  71. M.D. Smith, J.C. Pearl, B.J. Conrath, P.R. Christensen, One martian year of atmospheric observations by the thermal emission spectrometer. Geophys. Res. Lett. 28(22), 4263–4266 (2001b) ADSCrossRefGoogle Scholar
  72. S.W. Squyres et al., The Spirit Rover’s Athena science investigation at Gusev Crater, Mars. Science 305, 794–799 (2004) ADSCrossRefGoogle Scholar
  73. R. Sullivan, R. Arvidson, J.F. Bell III, R. Gellert, M. Golombek, R. Greeley, K. Herkenhoff, J. Johnson, S. Thompson, P. Whelley, J. Wray, Wind-driven particle mobility on Mars: insights from Mars exploration rover observations at “El Dorado” and surroundings at Gusev Crater. J. Geophys. Res. 113, E06S07 (2008). doi: 10.1029/2008JE003101 ADSCrossRefGoogle Scholar
  74. R.E. Summons, J.P. Amend, D. Bish, R. Buick, G.D. Cody, D.J. Des Marais, G. Dromart, J.L. Eigenbrode, A.H. Knoll, D.Y. Sumner, Preservation of martian organic and environmental records: final report of the Mars biosignature working group. Astrobiology 11(2), 157–181 (2011). doi: 10.1089/a/st.2010.0506 ADSCrossRefGoogle Scholar
  75. B.J. Thomson, N.T. Bridges, R. Milliken, A. Baldridge, S.J. Hook, J.K. Crowley, G.M. Marion, C.R. de Souza Filho, A.J. Brown, C.M. Weitz, Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars reconnaissance orbiter data. Icarus 214, 413–432 (2011). doi: 10.1016/j.icarus.2011.02.002 ADSCrossRefGoogle Scholar
  76. M.G. Tomasko, L.R. Doose, M. Lemmon, P.H. Smith, E. Wegryn, Properties of dust in the martian atmosphere from the imager on Mars pathfinder. J. Geophys. Res. 104, 8987–9007 (1999) ADSCrossRefGoogle Scholar
  77. A.F. Vaughan et al., Pancam and microscopic imager observations of dust on the Spirit rover: cleaning events, spectral properties, and aggregates. Mars 5, 129–145 (2010). doi: 10.1555/mars.2010.0005 ADSCrossRefGoogle Scholar
  78. A.E. Wechsler, P.E. Glaser, Pressure effects on postulated lunar materials. Icarus 4, 352–377 (1965) CrossRefGoogle Scholar
  79. C.K. Wentworth, A scale of grade and class terms for clastic sediments. J. Geol. 30, 377–392 (1922) ADSCrossRefGoogle Scholar
  80. S.A. Wilson, A.D. Howard, J.A. Grant, Geomorphic and stratigraphic analysis of Crater Terby and layered deposits north of Hellas basin, Mars. J. Geophys. Res. 112, E08009 (2007). doi: 10.1029/2006JE002830 ADSCrossRefGoogle Scholar
  81. M.J. Wolff, R.T. Clancy, Constraints on the size of martian aerosols from thermal emission spectrometer observations. J. Geophys. Res. 108, E9 (2003). doi: 10.1029/2003JE002057 CrossRefGoogle Scholar
  82. M.J. Wolff et al., Constraints on dust aerosols from the Mars exploration rovers using MGS overflights and Mini-TES. J. Geophys. Res. 111, E12S17 (2006). doi: 10.1029/2006JE002786 ADSCrossRefGoogle Scholar
  83. W. Woodside, J.H. Messmer, Thermal conductivity of porous media, I: unconsolidated sands. J. Appl. Phys. 32(9), 1688–1699 (1961) ADSCrossRefGoogle Scholar
  84. J.J. Wray, B.L. Ehlmann, S.W. Squyres, J.F. Mustard, R.L. Kirk, Compositional stratigraphy of clay-bearing layered deposits at Mawrth Vallis, Mars. Geophys. Res. Lett. 35, L12202 (2008). doi: 10.1029/2008GL034385 ADSCrossRefGoogle Scholar
  85. M.T. Zuber, D.E. Smith, S.C. Solomon, D.O. Muhleman, J.W. Head, J.B. Garvin, J.B. Abshire, J.L. Bufton, The Mars observer laser altimeter investigation. J. Geophys. Res. 97(E5), 7781–7797 (1992) ADSCrossRefGoogle Scholar

Copyright information

© US Government 2012

Authors and Affiliations

  • R. L. Fergason
    • 1
  • P. R. Christensen
    • 2
  • M. P. Golombek
    • 3
  • T. J. Parker
    • 3
  1. 1.Astrogeology Science CenterU.S. Geological SurveyFlagstaffUSA
  2. 2.Mars Space Flight FacilityArizona State UniversityTempeUSA
  3. 3.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations