Space Science Reviews

, Volume 172, Issue 1–4, pp 69–87 | Cite as

Recent Observations of Plasma and Alfvénic Wave Energy Injection at the Base of the Fast Solar Wind

  • Scott W. McIntosh


We take stock of recent observations that identify the episodic plasma heating and injection of Alfvénic energy at the base of fast solar wind (in coronal holes). The plasma heating is associated with the occurrence of chromospheric spicules that leave the lower solar atmosphere at speeds of order 100 km/s, the hotter coronal counterpart of the spicule emits radiation characteristic of root heating that rapidly reaches temperatures of the order of 1 MK. Furthermore, the same spicules and their coronal counterparts (“Propagating Coronal Disturbances”; PCD) exhibit large amplitude, high speed, Alfvénic (transverse) motion of sufficient energy content to accelerate the material to high speeds. We propose that these (disjointed) heating and accelerating components form a one-two punch to supply, and then accelerate, the fast solar wind. We consider some compositional constraints on this concept, extend the premise to the slow solar wind, and identify future avenues of exploration.


Corona Chromosphere Coronal hole Solar wind 



I would like to thank THZ for encouraging me to write this paper reviewing our recent observational investigations, Bob Leamon, Hui Tian, and Bart De Pontieu for frequently (and vigorously) discussing these issues. Thanks also to Laurel Rachmeler for helping me parse some of the text. I apologize for not throughly reviewing the vast coronal hole spectroscopy literature—hopefully the references included provide an adequate cross-section of the excellent work done in this area. The material presented was supported by the National Aeronautics and Space Administration under grant NNX08AU30G issued by the Living with a Star Targeted Research & Technology Program. In addition, part of the work is supported by NASA grants NNX08AL22G, NNX08BA99G and NNX08AH45G and ATM-0925177 from the National Science Foundation. We are grateful that the SWEPAM team make their data available through the ACE Science Center. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Supplementary material

Supplementary Photographs for: Experimental and theoretical thermodynamic studies of the adsorption of polyhalogenated organic compounds from aqueous solution by chemically modified multi-walled carbon nanotubes. (MOV 23.9 MB)

(MOV 26.4 MB)

(MOV 20.8 MB)

(MOV 22.4 MB)

(MOV 30.7 MB) (9.3 mb)
(MOV 9.3 MB)

(MPG 28.9 MB)


  1. P.M. Bellan, D. Kumar, E.V. Stenson, S.K.P. Tripathi, G.S. Yun, A.L. Moser, Laboratory simulations of astrophysical jets and solar coronal loops: New results, in American Institute of Physics Conference Series, vol. 1242, ed. by G. Bertin, F. de Luca, G. Lodato, R. Pozzoli, M. Romé (2010), pp. 156–163. doi: 10.1063/1.3460119 Google Scholar
  2. W.M. Burton, Extreme ultraviolet observations of active regions in the solar corona, in Structure and Development of Solar Active Regions, ed. by K.O. Kiepenheuer, IAU Symposium, vol. 35 (1968), p. 395 CrossRefGoogle Scholar
  3. S.R. Cranmer, A.A. van Ballegooijen, On the generation, propagation, and reflection of Alfvén waves from the solar photosphere to the distant heliosphere. Astrophys. J. Suppl. 156, 265–293 (2005). doi: 10.1086/426507 CrossRefADSGoogle Scholar
  4. S.R. Cranmer, A.A. van Ballegooijen, R.J. Edgar, Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. Astrophys. J. Suppl. 171, 520–551 (2007). doi: 10.1086/518001 CrossRefADSGoogle Scholar
  5. J.L. Culhane, L.K. Harra, A.M. James, K. Al-Janabi, L.J. Bradley, R.A. Chaudry, K. Rees, J.A. Tandy, P. Thomas, M.C.R. Whillock, B. Winter, G.A. Doschek, C.M. Korendyke, C.M. Brown, S. Myers, J. Mariska, J. Seely, J. Lang, B.J. Kent, B.M. Shaughnessy, P.R. Young, G.M. Simnett, C.M. Castelli, S. Mahmoud, H. Mapson-Menard, B.J. Probyn, R.J. Thomas, J. Davila, K. Dere, D. Windt, J. Shea, R. Hagood, R. Moye, H. Hara, T. Watanabe, K. Matsuzaki, T. Kosugi, V. Hansteen, Ø. Wikstol, The EUV imaging spectrometer for Hinode. Sol. Phys. 243, 19–61 (2007). doi: 10.1007/s01007-007-0293-1 CrossRefADSGoogle Scholar
  6. I.E. Dammasch, K. Wilhelm, W. Curdt, D.M. Hassler, The NE BT VIII (lambda 770) resonance line: Solar wavelengths determined by SUMER on SOHO. Astron. Astrophys. 346, 285–294 (1999) ADSGoogle Scholar
  7. A.R. Davey, S.W. McIntosh, D.M. Hassler, Investigating SUMER coronal hole observations: a robust method of raster reduction. Astrophys. J. Suppl. 165, 386–399 (2006). doi: 10.1086/504376 CrossRefADSGoogle Scholar
  8. B. De Pontieu, S.W. McIntosh, Quasi-periodic propagating signals in the solar corona: the signature of magnetoacoustic waves or high-velocity upflows? Astrophys. J. 722, 1013–1029 (2010). doi: 10.1088/0004-637X/722/2/1013 CrossRefADSGoogle Scholar
  9. B. De Pontieu, S. McIntosh, V.H. Hansteen, M. Carlsson, C.J. Schrijver, T.D. Tarbell, A.M. Title, R.A. Shine, Y. Suematsu, S. Tsuneta, Y. Katsukawa, K. Ichimoto, T. Shimizu, S. Nagata, A tale of two spicules: The impact of spicules on the magnetic chromosphere. Proc. Astron. Soc. Jpn. 59, 655 (2007a) Google Scholar
  10. B. De Pontieu, S.W. McIntosh, M. Carlsson, V.H. Hansteen, T.D. Tarbell, C.J. Schrijver, A.M. Title, R.A. Shine, S. Tsuneta, Y. Katsukawa, K. Ichimoto, Y. Suematsu, T. Shimizu, S. Nagata, Chromospheric Alfvénic waves strong enough to power the solar wind. Science 318, 1574 (2007b). doi: 10.1126/science.1151747 CrossRefADSGoogle Scholar
  11. B. De Pontieu, S.W. McIntosh, V.H. Hansteen, C.J. Schrijver, Observing the roots of solar coronal heating—in the chromosphere. Astrophys. J. Lett. 701, 1–6 (2009). doi: 10.1088/0004-637X/701/1/L1 CrossRefADSGoogle Scholar
  12. B. De Pontieu, S.W. McIntosh, M. Carlsson, V.H. Hansteen, T.D. Tarbell, P. Boerner, J. Martinez-Sykora, C.J. Schrijver, A.M. Title, The origins of hot plasma in the solar corona. Science 331, 55 (2011). doi: 10.1126/science.1197738 CrossRefADSGoogle Scholar
  13. J.-P. Delaboudinière, G.E. Artzner, J. Brunaud, A.H. Gabriel, J.F. Hochedez, F. Millier, X.Y. Song, B. Au, K.P. Dere, R.A. Howard, R. Kreplin, D.J. Michels, J.D. Moses, J.M. Defise, C. Jamar, P. Rochus, J.P. Chauvineau, J.P. Marioge, R.C. Catura, J.R. Lemen, L. Shing, R.A. Stern, J.B. Gurman, W.M. Neupert, A. Maucherat, F. Clette, P. Cugnon, E.L. van Dessel, EIT: extreme-ultraviolet imaging telescope for the SOHO mission. Sol. Phys. 162, 291–312 (1995). doi: 10.1007/BF00733432 CrossRefADSGoogle Scholar
  14. B. Fleck, V. Domingo, A. Poland, The SOHO Mission (1995) CrossRefGoogle Scholar
  15. J. Geiss, Constraints on the FIP mechanisms from solar wind abundance data. Space Sci. Rev. 85, 241–252 (1998). doi: 10.1023/A:1005198416520 CrossRefADSGoogle Scholar
  16. J. Geiss, G. Gloeckler, R. von Steiger, H. Balsiger, L.A. Fisk, A.B. Galvin, F.M. Ipavich, S. Livi, J.F. McKenzie, K.W. Ogilvie, B. Wilken, The southern high-speed stream: results from the SWICS instrument on Ulysses. Science 268, 1033–1036 (1995). doi: 10.1126/science.7754380 CrossRefADSGoogle Scholar
  17. G. Gloeckler, J. Geiss, H. Balsiger, P. Bedini, J.C. Cain, J. Fisher, L.A. Fisk, A.B. Galvin, F. Gliem, D.C. Hamilton, The solar wind ion composition spectrometer. Astron. Astrophys. Suppl. 92, 267–289 (1992) ADSGoogle Scholar
  18. G. Gloeckler, J. Cain, F.M. Ipavich, E.O. Tums, P. Bedini, L.A. Fisk, T.H. Zurbuchen, P. Bochsler, J. Fischer, R.F. Wimmer-Schweingruber, J. Geiss, R. Kallenbach, Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft. Space Sci. Rev. 86, 497–539 (1998). doi: 10.1023/A:1005036131689 CrossRefADSGoogle Scholar
  19. L. Goldberg, R.W. Noyes, W.H. Parkinson, E.M. Reeves, G.L. Withbroe, Ultraviolet solar images from space. Science 162, 95–99 (1968). doi: 10.1126/science.162.3849.95 CrossRefADSGoogle Scholar
  20. V.H. Hansteen, E. Leer, Coronal heating, densities, and temperatures and solar wind acceleration. J. Geophys. Res. 1002, 21577–21594 (1995). doi: 10.1029/95JA02300 CrossRefADSGoogle Scholar
  21. H. Hara, T. Watanabe, L.K. Harra, J.L. Culhane, P.R. Young, J.T. Mariska, G.A. Doschek, Coronal plasma motions near footpoints of active region loops revealed from spectroscopic observations with Hinode EIS. Astrophys. J. Lett. 678, 67–71 (2008). doi: 10.1086/588252 CrossRefADSGoogle Scholar
  22. D.M. Hassler, I.E. Dammasch, P. Lemaire, P. Brekke, W. Curdt, H.E. Mason, J.-C. Vial, K. Wilhelm, Solar wind outflow and the chromospheric magnetic network. Science 283, 810 (1999). doi: 10.1126/science.283.5403.810 CrossRefADSGoogle Scholar
  23. M.C.E. Huber, P.V. Foukal, R.W. Noyes, E.M. Reeves, E.J. Schmahl, J.G. Timothy, J.E. Vernazza, G.L. Withbroe, Extreme-ultraviolet observations of coronal holes—initial results from SKYLAB. Astrophys. J. Lett. 194, 115–118 (1974). doi: 10.1086/181682 CrossRefADSGoogle Scholar
  24. T. Kosugi, K. Matsuzaki, T. Sakao, T. Shimizu, Y. Sone, S. Tachikawa, T. Hashimoto, K. Minesugi, A. Ohnishi, T. Yamada, S. Tsuneta, H. Hara, K. Ichimoto, Y. Suematsu, M. Shimojo, T. Watanabe, S. Shimada, J.M. Davis, L.D. Hill, J.K. Owens, A.M. Title, J.L. Culhane, L.K. Harra, G.A. Doschek, L. Golub, The Hinode (Solar-B) mission: an overview. Sol. Phys. 243, 3–17 (2007). doi: 10.1007/s11207-007-9014-6 CrossRefADSGoogle Scholar
  25. A.S. Krieger, A.F. Timothy, E.C. Roelof, A coronal hole and its identification as the source of a high velocity solar wind stream. Sol. Phys. 29, 505–525 (1973). doi: 10.1007/BF00150828 CrossRefADSGoogle Scholar
  26. D.W. Longcope, Topological methods for the analysis of solar magnetic fields. Living Rev. Sol. Phys. 2, 7 (2005) ADSGoogle Scholar
  27. J. Martínez-Sykora, V. Hansteen, F. Moreno-Insertis, On the origin of the type II spicules: dynamic three-dimensional MHD simulations. Astrophys. J. 736, 9 (2011a). doi: 10.1088/0004-637X/736/1/9 CrossRefADSGoogle Scholar
  28. J. Martínez-Sykora, B. De Pontieu, V. Hansteen, S.W. McIntosh, What do spectral line profile asymmetries tell us about the solar atmosphere? Astrophys. J. 732, 84 (2011b). doi: 10.1088/0004-637X/732/2/84 CrossRefADSGoogle Scholar
  29. S.W. McIntosh, B. De Pontieu, High-speed transition region and coronal upflows in the quiet sun. Astrophys. J. 707, 524–538 (2009a). doi: 10.1088/0004-637X/707/1/524 CrossRefADSGoogle Scholar
  30. S.W. McIntosh, B. De Pontieu, Observing episodic coronal heating events rooted in chromospheric activity. Astrophys. J. Lett. 706, 80–85 (2009b). doi: 10.1088/0004-637X/706/1/L80 CrossRefADSGoogle Scholar
  31. S.W. McIntosh, A.R. Davey, D.M. Hassler, Simple magnetic flux balance as an indicator of Ne VIII Doppler velocity partitioning in an equatorial coronal hole. Astrophys. J. Lett. 644, 87–91 (2006). doi: 10.1086/505488 CrossRefADSGoogle Scholar
  32. S.W. McIntosh, A.R. Davey, D.M. Hassler, J.D. Armstrong, W. Curdt, K. Wilhelm, G. Lin, Observations supporting the role of magnetoconvection in energy supply to the quiescent solar atmosphere. Astrophys. J. 654, 650–664 (2007). doi: 10.1086/509071 CrossRefADSGoogle Scholar
  33. S.W. McIntosh, B. de Pontieu, M. Carlsson, V. Hansteen, P. Boerner, M. Goossens, Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind. Nature 475, 477–480 (2011a). doi: 10.1038/nature10235 CrossRefADSGoogle Scholar
  34. S.W. McIntosh, K.K. Kiefer, R.J. Leamon, J.C. Kasper, M.L. Stevens, Solar cycle variations in the elemental abundance of helium and fractionation of iron in the fast solar wind: indicators of an evolving energetic release of mass from the lower solar atmosphere. Astrophys. J. Lett. 740, 23 (2011b). doi: 10.1088/2041-8205/740/1/L23 CrossRefADSGoogle Scholar
  35. S.W. McIntosh, R.J. Leamon, B. De Pontieu, The spectroscopic footprint of the fast solar wind. Astrophys. J. 727, 7 (2011c). doi: 10.1088/0004-637X/727/1/7 CrossRefADSGoogle Scholar
  36. S.W. McIntosh, H. Tian, M. Sechler, B. De Pontieu, On the Doppler velocity of emission line profiles formed in the “coronal contraflow” that in the chromosphere-corona mass cycle. Astrophys. J. 749, 60 (2012). doi: 10.1088/0004-637X/749/1/60 CrossRefADSGoogle Scholar
  37. R.H. Munro, G.L. Withbroe, Properties of a coronal “hole” derived from extreme-ultraviolet observations. Astrophys. J. 176, 511 (1972). doi: 10.1086/151653 CrossRefADSGoogle Scholar
  38. E.N. Parker, Nanoflares and the solar X-ray corona. Astrophys. J. 330, 474–479 (1988). doi: 10.1086/166485 CrossRefADSGoogle Scholar
  39. E.N. Parker, Heating solar coronal holes. Astrophys. J. 372, 719–727 (1991). doi: 10.1086/170015 CrossRefADSGoogle Scholar
  40. H. Peter, Asymmetries of solar coronal extreme ultraviolet emission lines. Astron. Astrophys. 521, 51 (2010). doi: 10.1051/0004-6361/201014433 CrossRefADSGoogle Scholar
  41. T. Sakao, R. Kano, N. Narukage, J. Kotoku, T. Bando, E.E. DeLuca, L.L. Lundquist, S. Tsuneta, L.K. Harra, Y. Katsukawa, M. Kubo, H. Hara, K. Matsuzaki, M. Shimojo, J.A. Bookbinder, L. Golub, K.E. Korreck, Y. Su, K. Shibasaki, T. Shimizu, I. Nakatani, Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind. Science 318, 1585 (2007). doi: 10.1126/science.1147292 CrossRefADSGoogle Scholar
  42. P.H. Scherrer, R.S. Bogart, R.I. Bush, J.T. Hoeksema, A.G. Kosovichev, J. Schou, W. Rosenberg, L. Springer, T.D. Tarbell, A. Title, C.J. Wolfson, I. Zayer, MDI Engineering Team, The solar oscillations investigation—Michelson Doppler imager. Sol. Phys. 162, 129–188 (1995). doi: 10.1007/BF00733429 CrossRefADSGoogle Scholar
  43. K. Shibata, Y. Uchida, Sweeping-magnetic-twist mechanism for the acceleration of jets in the solar atmosphere. Sol. Phys. 103, 299–310 (1986). doi: 10.1007/BF00147831 CrossRefADSGoogle Scholar
  44. T.K. Suzuki, Forecasting solar wind speeds. Astrophys. J. Lett. 640, 75–78 (2006). doi: 10.1086/503102 CrossRefADSGoogle Scholar
  45. T.K. Suzuki, S.-i. Inutsuka, Making the corona and the fast solar wind: a self-consistent simulation for the low-frequency Alfvén waves from the photosphere to 0.3 AU. Astrophys. J. Lett. 632, 49–52 (2005). doi: 10.1086/497536 CrossRefADSGoogle Scholar
  46. H. Tian, S.W. McIntosh, B. De Pontieu, The spectroscopic signature of quasi-periodic upflows in active region timeseries. Astrophys. J. Lett. 727, 37 (2011a). doi: 10.1088/2041-8205/727/2/L37 CrossRefADSGoogle Scholar
  47. H. Tian, S.W. McIntosh, S. Rifal Habbal, J. He, Observation of high-speed outflow on plume-like structures of the quiet Sun and coronal holes with solar dynamics observatory/atmospheric imaging assembly. Astrophys. J. 736, 130 (2011b). doi: 10.1088/0004-637X/736/2/130 CrossRefADSGoogle Scholar
  48. H. Tian, S.W. McIntosh, B. De Pontieu, J. Martínez-Sykora, M. Sechler, X. Wang, Two components of the solar coronal emission revealed by extreme-ultraviolet spectroscopic observations. Astrophys. J. 738, 18 (2011c). doi: 10.1088/0004-637X/738/1/18 CrossRefADSGoogle Scholar
  49. S. Tomczyk, S.W. McIntosh, S.L. Keil, P.G. Judge, T. Schad, D.H. Seeley, J. Edmondson, Alfvén waves in the solar corona. Science 317, 1192 (2007). doi: 10.1126/science.1143304 CrossRefADSGoogle Scholar
  50. C.-Y. Tu, C. Zhou, E. Marsch, L.-D. Xia, L. Zhao, J.-X. Wang, K. Wilhelm, Solar wind origin in coronal funnels. Science 308, 519–523 (2005). doi: 10.1126/science.1109447 CrossRefADSGoogle Scholar
  51. J.H. Underwood, W.S. Muney, A glancing incidence solar telescope for the soft X-ray region. Sol. Phys. 1, 129–144 (1967). doi: 10.1007/BF00150309 CrossRefADSGoogle Scholar
  52. A. Verdini, M. Velli, W.H. Matthaeus, S. Oughton, P. Dmitruk, A turbulence-driven model for heating and acceleration of the fast wind in coronal holes. Astrophys. J. Lett. 708, 116–120 (2010). doi: 10.1088/2041-8205/708/2/L116 CrossRefADSGoogle Scholar
  53. R. von Steiger, T.H. Zurbuchen, D.J. McComas, Oxygen flux in the solar wind: Ulysses observations. Geophys. Res. Lett. 372, 22101 (2010). doi: 10.1029/2010GL045389 Google Scholar
  54. K. Wilhelm, W. Curdt, E. Marsch, U. Schühle, P. Lemaire, A. Gabriel, J.-C. Vial, M. Grewing, M.C.E. Huber, S.D. Jordan, A.I. Poland, R.J. Thomas, M. Kühne, J.G. Timothy, D.M. Hassler, O.H.W. Siegmund, SUMER—solar ultraviolet measurements of emitted radiation. Sol. Phys. 162, 189–231 (1995). doi: 10.1007/BF00733430 CrossRefADSGoogle Scholar
  55. L.D. Xia, E. Marsch, W. Curdt, On the outflow in an equatorial coronal hole. Astron. Astrophys. 399, 5–9 (2003). doi: 10.1051/0004-6361:20030016 CrossRefADSGoogle Scholar
  56. T.H. Zurbuchen, L.A. Fisk, G. Gloeckler, R. von Steiger, The solar wind composition throughout the solar cycle: a continuum of dynamic states. Geophys. Res. Lett. 29(9), 1352 (2002). doi: 10.1029/2001GL013946 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.High Altitude ObservatoryNational Center for Atmospheric ResearchBoulderUSA

Personalised recommendations