Space Science Reviews

, Volume 173, Issue 1–4, pp 223–245 | Cite as

Current Fragmentation and Particle Acceleration in Solar Flares

  • P. J. Cargill
  • L. Vlahos
  • G. Baumann
  • J. F. Drake
  • Å. Nordlund


Particle acceleration in solar flares remains an outstanding problem in plasma physics and space science. While the observed particle energies and timescales can perhaps be understood in terms of acceleration at a simple current sheet or turbulence site, the vast number of accelerated particles, and the fraction of flare energy in them, defies any simple explanation. The nature of energy storage and dissipation in the global coronal magnetic field is essential for understanding flare acceleration. Scenarios where the coronal field is stressed by complex photospheric motions lead to the formation of multiple current sheets, rather than the single monolithic current sheet proposed by some. The currents sheets in turn can fragment into multiple, smaller dissipation sites. MHD, kinetic and cellular automata models are used to demonstrate this feature. Particle acceleration in this environment thus involves interaction with many distributed accelerators. A series of examples demonstrate how acceleration works in such an environment. As required, acceleration is fast, and relativistic energies are readily attained. It is also shown that accelerated particles do indeed interact with multiple acceleration sites. Test particle models also demonstrate that a large number of particles can be accelerated, with a significant fraction of the flare energy associated with them. However, in the absence of feedback, and with limited numerical resolution, these results need to be viewed with caution. Particle in cell models can incorporate feedback and in one scenario suggest that acceleration can be limited by the energetic particles reaching the condition for firehose marginal stability. Contemporary issues such as footpoint particle acceleration are also discussed. It is also noted that the idea of a “standard flare model” is ill-conceived when the entire distribution of flare energies is considered.


Solar flares 



We thank many collaborators who have contributed over the years to these ideas. JFD acknowledges support from NSF grant ATM-0903964. G.B. and Å.N. acknowledge support from the SOLAIRE Research Training Network of the European Commission (MRTN-CT-2006-035484). In addition, G.B. acknowledges support from the Niels Bohr International Academy and the John von Neumann Institute for Computing, and Å.N. acknowledges support from PRACE (Partnership for Advanced Computing in Europe) and the European Commission’s Seventh Framework Programme (FP7/2007-2013) under the grant agreement SWIFF (project No. 263340,


  1. K. Arzner, L. Vlahos, Astrophys. J. Lett. 605, L69 (2004) ADSCrossRefGoogle Scholar
  2. M.J. Aschwanden, B.R. Dennis, A.O. Benz, Astrophys. J. 497, 972 (1998) ADSCrossRefGoogle Scholar
  3. P. Bak, How Nature Works (Oxford University Press, Oxford, 1999) Google Scholar
  4. G. Baumann, K. Galsgaard, A. Nordlund, Solar Phys. (2012a, in press). arXiv:1203.1018v1
  5. G. Baumann, T. Haugbolle, A. Nordlund, Astrophys. J. (2012b, in press). arXiv:1204.4947v2
  6. A.O. Benz, Living Rev. Sol. Phys. 5, 1 (2008) ADSGoogle Scholar
  7. N.H. Bian, P.K. Browning, Astrophys. J. Lett. 687, L111 (2008) ADSCrossRefGoogle Scholar
  8. J. Birn et al., J. Geophys. Res. 106, 3715 (2001) ADSCrossRefGoogle Scholar
  9. J. Birn, L. Fletcher, M. Hesse, T. Neukirch, Astrophys. J. 695, 1151 (2009) ADSCrossRefGoogle Scholar
  10. J.C. Brown, Sol. Phys. 18, 489 (1971) ADSCrossRefGoogle Scholar
  11. J.C. Brown, R. Turkmani, E.P. Kontar, A.L. MacKinnon, L. Vlahos, Astron. Astrophys. 508, 993 (2009) ADSCrossRefGoogle Scholar
  12. P.K. Browning, C. Gerrard, A.W. Hood, R. Kevis, R.A.M. Van der Linden, Astron. Astrophys. 485, 837 (2008) ADSCrossRefzbMATHGoogle Scholar
  13. E. Buchlin, M. Velli, Astrophys. J. 662, 701 (2007) ADSCrossRefGoogle Scholar
  14. P.A. Cassak, M.A. Shay, J.F. Drake, Phys. Rev. Lett. 95, 235002 (2005) ADSCrossRefGoogle Scholar
  15. P.J. Cargill, E.R. Priest, Sol. Phys. 76, 357 (1982) ADSCrossRefGoogle Scholar
  16. P.J. Cargill, EOS 77, 353 (1996) ADSCrossRefGoogle Scholar
  17. P.J. Cargill, L. Vlahos, R. Turkmani, K. Galsgaard, H. Isliker, Space Sci. Rev. 124, 249 (2006) ADSCrossRefGoogle Scholar
  18. P. Charbonneau, S.W. McIntosh, H.-L. Liu, T.J. Bogdan, Sol. Phys. 203, 321 (2001) ADSCrossRefGoogle Scholar
  19. J. Chen, J. Geophys. Res. 97, 15011 (1992) ADSCrossRefGoogle Scholar
  20. N.B. Crosby, M.J. Aschwanden, B.R. Dennis, Sol. Phys. 143, 275 (1993) ADSCrossRefGoogle Scholar
  21. S. Dalla, P.K. Browning, Astrophys. J. Lett. 640, L99 (2006) ADSCrossRefGoogle Scholar
  22. W. Daughton, V. Roytershteyn, H. Karimabadi, L. Yin, B.J. Albright, B. Bergen, K.J. Bowers, Nat. Phys. 7, 539 (2011) CrossRefGoogle Scholar
  23. M. Dimitropoulou, M. Georgoulis, H. Isliker, L. Vlahos, A. Anastasiadis, D. Strintzi, X. Moussas, Astron. Astrophys. 505, 1245 (2009) ADSCrossRefGoogle Scholar
  24. M. Dimitropoulou, H. Isliker, L. Vlahos, M. Georgoulis, Astron. Astrophys. 529, 101 (2011) ADSCrossRefGoogle Scholar
  25. J.F. Drake, M. Swisdak, H. Che, M.A. Shay, Nature 443, 553 (2006a) ADSCrossRefGoogle Scholar
  26. J.F. Drake, M. Swisdak, K.M. Schoeffler, B.N. Rogers, S. Kobayashi, Geophys. Res. Lett. 33, L13105 (2006b) ADSCrossRefGoogle Scholar
  27. J.F. Drake, P.A. Cassak, M.A. Shay, M. Swisdak, E. Quataert, Astrophys. J. Lett. 700, L16 (2009) ADSCrossRefGoogle Scholar
  28. J.F. Drake, M. Opher, M. Swisdak, J.N. Chamoun, Astrophys. J. 709, 963 (2010) ADSCrossRefGoogle Scholar
  29. P. Dmitruk, W.H. Matthaeus, N. Seenu, M.R. Brown, Astrophys. J. 597, L81 (2003) ADSCrossRefGoogle Scholar
  30. G. Einaudi, M. Velli, Phys. Plasmas 6, 4146 (1999) ADSCrossRefGoogle Scholar
  31. A.G. Emslie, J.A. Miller, J.C. Brown, Astrophys. J. Lett. 602, L69 (2004) ADSCrossRefGoogle Scholar
  32. L. Fletcher, H.S. Hudson, Astrophys. J. 675, 1645 (2008) ADSCrossRefGoogle Scholar
  33. L. Fletcher, B.R. Dennis, H.S. Hudson, S. Krucker, K. Phillips, A. Veronig, M. Battaglia, L. Bone, A. Caspi, Q. Chen, P. Gallagher, P.T. Grigis, H. Ji, W. Liu, R.O. Milligan, M. Temmer, Space Sci. Rev., 159, 19 (2011) Google Scholar
  34. K. Galsgaard, A. Nordlund, J. Geophys. Res. 101, 13445 (1996) ADSCrossRefGoogle Scholar
  35. K. Galsgaard, in SOLMAG 2002, ESA SP-505 (2002) Google Scholar
  36. M. Gordovskyy, P.K. Browning, Astrophys. J. 729, 101 (2011) ADSCrossRefGoogle Scholar
  37. B.V. Gudiksen, A. Nordlund, Astrophys. J. 618, 1020 (2005) ADSCrossRefGoogle Scholar
  38. J. Heyvaerts, E.R. Priest, D.M. Rust, Astrophys. J. 216, 123 (1977) ADSCrossRefGoogle Scholar
  39. A.W. Hood, P.K. Browning, R.A.M. Van der Linden, Astron. Astrophys. 506, 913 (2009) ADSCrossRefGoogle Scholar
  40. A.W. Hood, V. Archontis, D. MacTaggart, Solar Phys. 278, 3 (2012) ADSCrossRefGoogle Scholar
  41. H.S. Hudson, Sol. Phys. 57, 237 (1978) ADSCrossRefGoogle Scholar
  42. P.A. Isenberg, J. Geophys. Res. 91, 1699 (1986) ADSCrossRefGoogle Scholar
  43. H. Isliker, A. Anastasiadis, L. Vlahos, Astron. Astrophys. 377, 1068 (2001) ADSCrossRefGoogle Scholar
  44. H. Karimabadi, W. Daughton, J. Scudder, Geophys. Res. Lett. 34, L13104 (2007) ADSCrossRefGoogle Scholar
  45. M. Kundu, M.N. Gopalswamy, S. White, P. Cargill, E.J. Schmahl, E. Hildner, Astrophys. J. 347, 505 (1989) ADSCrossRefGoogle Scholar
  46. K. Knizhnik, M. Swisdak, J.F. Drake, Astrophys. J. 743, L35 (2011) ADSCrossRefGoogle Scholar
  47. R.A. Kopp, G.W. Pneuman, Sol. Phys. 50, 85 (1976) ADSCrossRefGoogle Scholar
  48. S. Krucker, M. Battaglia, P.J. Cargill, L. Fletcher, H.S. Hudson, A.L. MacKinnon, S. Masuda, L. Sui, M. Tomczak, A.L. Veronig, L. Vlahos, S.M. White, Astron. Astrophys. Rev. 16, 155 (2008) ADSCrossRefGoogle Scholar
  49. S. Krucker, H.S. Hudson, L. Glesener, S.M. White, S. Masuda, J.-P. Wuelser, R.P. Lin, Astrophys. J. 714, 1108 (2010) ADSCrossRefGoogle Scholar
  50. A. Lazarian, this issue (2012) Google Scholar
  51. R.P. Lin, S. Krucker, G.J. Hurford, D.M. Smith, H.S. Hudson, G.D. Holman, R.A. Schwartz, B.R. Dennis, G.H. Share, R.J. Murphy, A.G. Emslie, C. Johns-Krull, N. Vilmer, Astrophys. J. Lett. 595, L69 (2003) ADSCrossRefGoogle Scholar
  52. D.W. Longcope, A.C. Des Jardins, T. Carranza-Fulmer, J. Qiu, J. Sol. Phys. 267, 107 (2010) ADSCrossRefGoogle Scholar
  53. E.T. Lu, R.J. Hamilton, Astrophys. J. Lett. 380, L89 (1991) ADSCrossRefGoogle Scholar
  54. P.C.H. Martens, A. Young, Astrophys. J. Suppl. Ser. 73, 333 (1988) ADSCrossRefGoogle Scholar
  55. S. McIntosh et al., Nature 475, 477 (2011) ADSCrossRefGoogle Scholar
  56. R.C. Maclean, C.E. Parnell, K. Galsgaard, Sol. Phys. 260, 299 (2009) ADSCrossRefGoogle Scholar
  57. J.A. Miller, D.A. Roberts, Astrophys. J. 452, 912 (1995) ADSCrossRefGoogle Scholar
  58. J.A. Miller, T.N. Larosa, R.L. Moore, Astrophys. J. 461, 445 (1996) ADSCrossRefGoogle Scholar
  59. J.A. Miller, P.J. Cargill, A.G. Emslie, G.D. Holman, B.R. Dennis, T.N. LaRosa, R.M. Winglee, S.G. Benka, S. Tsuneta, J. Geophys. Res. 102, 14631 (1997) ADSCrossRefGoogle Scholar
  60. L.I. Miroshnichenko, B. Mendoza, R. Perez-Enriquez, Sol. Phys. 202, 151 (2001) ADSCrossRefGoogle Scholar
  61. A. Nordlund, K. Galsgaard, Astrophys. J. (2012) Google Scholar
  62. M. Oka, T.-D. Phan, S. Krucker, M. Fujimoto, I. Shinohara, Astrophys. J. 714, 915 (2010) ADSCrossRefGoogle Scholar
  63. M. Onofri, H. Isliker, L. Vlahos, Phys. Rev. Lett. 96, 151102 (2006) ADSCrossRefGoogle Scholar
  64. A.V. Oreshina, B.V. Somov, Astron. Astrophys. Trans. 25(4) 261–273 (2006) ADSCrossRefGoogle Scholar
  65. V. Petrosian, this issue (2012). doi: 10.1007/s11214-012-9900-6
  66. H.E. Petschek, NASA Spec. Publ. 50, 425 (1964) ADSGoogle Scholar
  67. A.F. Rappazzo, M. Velli, G. Einaudi, Astrophys. J. 722, 65 (2010) ADSCrossRefGoogle Scholar
  68. J. Raymond, R.P. Lin, S. Krucker, V. Petrosian, this issue (2012). doi: 10.1007/s11214-012-9897-x
  69. K.M. Schoeffler, J.F. Drake, M. Swisdak, Astrophys. J. 743, 70 (2011) ADSCrossRefGoogle Scholar
  70. M.A. Shay, J.F. Drake, M. Swisdak, Phys. Rev. Lett. 99, 155002 (2007) ADSCrossRefGoogle Scholar
  71. K. Shibata, in Proc. Nobeyama Symp., vol. 381 (1998), NRO report 479 Google Scholar
  72. K. Shibata, T. Magara, Living Reviews. Sol. Phys. 8, 6 (2011) Google Scholar
  73. A.Y. Shih, R.P. Lin, D.M. Smith, Astrophys. J. 698, L152 (2009) ADSCrossRefGoogle Scholar
  74. T.V. Siversky, V.V. Zharkova, J. Plasma Phys. 75, 619 (2009) ADSCrossRefGoogle Scholar
  75. T.W. Speiser, J. Geophys. Res. 70, 4129 (1965) Google Scholar
  76. P.A. Sturrock, Nature 211, 695 (1966) ADSCrossRefGoogle Scholar
  77. R. Turkmani, L. Vlahos, K. Galsgaard, P.J. Cargill, H. Isliker, Astrophys. J. Lett. 620, L59 (2005) ADSCrossRefGoogle Scholar
  78. R. Turkmani, P.J. Cargill, K. Galsgaard, L. Vlahos, H. Isliker, Astron. Astrophys. 449, 749 (2006) ADSCrossRefGoogle Scholar
  79. D. Vassiliadis, A. Anastasiadis, M. Georgoulis, L. Vlahos, Astrophys. J. Lett. 509, L53 (1998) ADSCrossRefGoogle Scholar
  80. L. Vlahos, M. Georgoulis, R. Kluiving, P. Paschos, Astron. Astrophys. 299, 897 (1995) ADSGoogle Scholar
  81. L. Vlahos, M. Georgoulis, Astrophys. J. Lett. 603, L61 (2004a) ADSCrossRefGoogle Scholar
  82. L. Vlahos, H. Isliker, F. Lepreti, Astrophys. J. 608, 540 (2004b) ADSCrossRefGoogle Scholar
  83. L. Vlahos, S. Krucker, P.J. Cargill, in Turbulence in Space Plasmas, ed. by L. Vlahos, P.J. Cargill (Springer, Berlin, 2009) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • P. J. Cargill
    • 1
    • 2
  • L. Vlahos
    • 3
  • G. Baumann
    • 4
  • J. F. Drake
    • 5
  • Å. Nordlund
    • 4
  1. 1.Space and Atmospheric Physics, The Blackett LaboratoryImperial CollegeLondonUK
  2. 2.School of Mathematics and StatisticsUniversity of St AndrewsSt AndrewsUK
  3. 3.Department of PhysicsAristotle University of ThessalonikiThessalonikiGreece
  4. 4.Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark
  5. 5.Institute for Research in Electronics and Applied PhysicsUniversity of MarylandCollege ParkUSA

Personalised recommendations