Advertisement

Space Science Reviews

, Volume 172, Issue 1–4, pp 89–121 | Cite as

Solar Wind Models from the Chromosphere to 1 AU

  • Viggo H. Hansteen
  • Marco Velli
Article

Abstract

Recent models of the fast solar wind are characterized by low coronal electron temperatures while proton, α-particle, and minor ion temperatures are expected to be quite high and generally anisotropic, including large temperatures perpendicular to the magnetic field and parallel beams. This entails that the electric field should be relatively unimportant and that solar wind outflows with both high asymptotic flow speeds but maintaining a low mass flux should be a natural outcome of plasma expansion along open polar magnetic field lines. In this chapter we will explain why such changes with respect to the classical, electron thermally driven solar wind have come about and outline the most important remaining concerning the astrophysics of coronal winds.

The progress we have seen in the last decade is largely due observations made with instruments onboard Ulysses (McComas et al. in Space Sci. Rev. 72:93, 1995) and SOHO (Fleck et al. in The SOHO Mission, Kluwer, Dordrecht, 1995). These observations have spawned a new understanding of solar wind energetics, and the consideration of the chromosphere, corona, and solar wind as a unified system.

We will begin by giving our own, highly biased, “pocket history” of solar wind theory highlighting the problems that had to be resolved in order to make the original Parker formulation of thermally driven winds conform with observational results. Central to this discussion are questions of how the wind’s asymptotic flow speed and mass flux are set, but we will also touch upon higher order moments such as the ion and electron temperatures and heat fluxes as well as the possible role of Alfvén waves and particle effects in driving the solar wind outflow. Solar wind scaling laws will be discussed in the context of the origin of slow and fast wind streams.

Keywords

Solar wind acceleration Energy conservation Thermal force Scaling laws Solar wind origins 

Notes

Acknowledgements

This work was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

References

  1. H. Alfvén, On the solar corona. Ark. Mat. Astron. Fys. 27A(25), 1–23 (1941) Google Scholar
  2. H. Alfvén, Granulation, magneto-hydrodynamic waves, and the heating of the solar corona. Mon. Not. R. Astron. Soc. 107(2), 211–219 (1947) CrossRefADSGoogle Scholar
  3. S.K. Antiochos, Z. Mikić, V.S. Titov, R. Lionello, J.A. Linker A model for the sources of the slow solar wind. Astrophys. J. 731, 112 (2011) CrossRefADSGoogle Scholar
  4. I.W. Axford, The polar wind and the terrestrial helium budget. J. Geophys. Res. 73, 6855 (1968) CrossRefADSGoogle Scholar
  5. W.I. Axford, J.F. McKenzie, The origin of high speed solar wind streams, in Solar Wind Seven Colloquium, ed. by E. Marsch, R. Schwenn (1992), pp. 1–5 CrossRefGoogle Scholar
  6. J.W. Belcher, L. Davis Jr., Large-amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 76, 3534–3563 (1971) CrossRefADSGoogle Scholar
  7. L. Biermann, Zur Deutung der chromosphärischen Turbulenz und des Exzesses der UV-Strahlung der Sonne. Naturwissenshaften 33, 118–119 (1946) CrossRefADSGoogle Scholar
  8. L. Biermann, Über der Ursache der chromosphärischen Turbulenz und des UV-Exzesses der Sonnenstrahlung. Z. Astrophys. 25, 161–177 (1948) ADSzbMATHGoogle Scholar
  9. L. Biermann, Kometenschweife und solare Korpuskularstrahlung. Z. Astrophys. 29, 274 (1951) ADSGoogle Scholar
  10. L. Biermann, Solar corpuscular radiation and the interplanetary gas. Observatory 77, 109–110 (1957) ADSGoogle Scholar
  11. S.I. Braginskii, Transport processes in a plasma. Rev. Plasma Phys. 1, 205 (1965) ADSGoogle Scholar
  12. B.D.G. Chandran, B. Li, B.N. Rogers, E. Quataert, K. Germaschewski, Perpendicular ion heating by low-frequency Alfvén-wave turbulence in the solar wind. Astrophys. J. 720, 503–515 (2010). doi: 10.1088/0004-637X/720/1/503 CrossRefADSGoogle Scholar
  13. B.D.G. Chandran, T.J. Dennis, E. Quataert, S.D. Bale, Advances in fluid modeling of the solar wind. Part 1. Electron and anisotropic proton temperatures from the collisionless dissipation of Alfven wave turbulence (2011) Google Scholar
  14. S. Chapman, The viscosity and thermal conductivity of a completely ionized gas. Astrophys. J. 120, 151–155 (1954) CrossRefADSGoogle Scholar
  15. S. Chapman, Notes on the solar corona and the terrestrial ionosphere. Smithson. Contrib. Astrophys. 2, 1 (1957) CrossRefADSGoogle Scholar
  16. S. Chapman, V.C.A. Ferraro, The electrical state of solar streams of corpuscles. Mon. Not. R. Astron. Soc. 89, 470 (1929) CrossRefADSzbMATHGoogle Scholar
  17. S.R. Cranmer, Coronal holes. Living Rev. Sol. Phys. 6, 3 (2009). http://www.livingreviews.org/lrsp-2009-3 ADSGoogle Scholar
  18. S.R. Cranmer, A.A. van Ballegooijen, R.J. Edgar, Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. Astrophys. J., Suppl. Ser. 171, 520–551 (2007). doi: 10.1086/518001 CrossRefADSGoogle Scholar
  19. B. De Pontieu, S.W. McIntosh, M. Carlsson, V.H. Hansteen, T.D. Tarbell, C.J. Schrijver, A.M. Title, R.A. Shine, S. Tsuneta, Y. Katsukawa, K. Ichimoto, Y. Suematsu, T. Shimizu, S. Nagata, Chromospheric Alfvénic waves strong enough to power the solar wind. Science 318, 1574 (2007). doi: 10.1126/science.1151747 CrossRefADSGoogle Scholar
  20. H.G. Demars, R.W. Schunk, A multi-ion generalized transport model of the polar wind. J. Geophys. Res. 99, 2215–2226 (1994) CrossRefADSGoogle Scholar
  21. P. Dmitruk, L.J. Milano, W.H. Matthaeus, Wave-driven turbulent coronal heating in open field line regions: nonlinear phenomenological model. Astrophys. J. 548, 482–491 (2001). doi: 10.1086/318685 CrossRefADSGoogle Scholar
  22. B. Edlén, An attempt to identify the emission lines in the spectrum of the solar corona. Ark. Mat. Astron. Fys. 28B(1), 1–4 (1942) Google Scholar
  23. L.A. Fisk, Acceleration of the solar wind as a result of the reconnection of open magnetic flux with coronal loops. J. Geophys. Res. 108, 1157 (2003). doi: 10.1029/2002JA009284 CrossRefGoogle Scholar
  24. B. Fleck, V. Domingo, A. Poland (Eds.), The SOHO Mission (Kluwer, Dordrecht, 1995) Google Scholar
  25. S.E. Forbush, P.S. Gill, M.S. Vallarta, On the mechanism of sudden increases of cosmic radiation associated with solar flares. Rev. Mod. Phys. 21, 44–48 (1949) CrossRefADSGoogle Scholar
  26. J. Geiss, G. Gloeckler, R. von Steiger, Origin of the solar wind from composition data. Space Sci. Rev. 72, 49–60 (1995). doi: 10.1007/BF00768753 CrossRefADSGoogle Scholar
  27. G. Gloeckler, T.H. Zurbuchen, J. Geiss, Implications of the observed anticorrelation between solar wind speed and coronal electron temperature. J. Geophys. Res. 108, 1158 (2003). doi: 10.1029/2002JA009286 CrossRefGoogle Scholar
  28. W. Grotrian, Über den Intensitätsverhältnis der Koronalinien. Z. Astrophys. 7, 26–45 (1933) ADSGoogle Scholar
  29. W. Grotrian, Zur Frage der Deutung der Linien im Spektrum der Sonnenkorona. Naturwissenschaften 27, 214 (1939) CrossRefADSzbMATHGoogle Scholar
  30. V. Hansteen, E. Leer, Coronal heating, densities, and temperatures and solar wind acceleration. J. Geophys. Res. 100(A11), 21577–21593 (1995) CrossRefADSGoogle Scholar
  31. V.H. Hansteen, E. Leer, T.E. Holzer, The role of helium in the outer solar atmosphere. Astrophys. J. 482, 498 (1997). doi: 10.1086/304111 CrossRefADSGoogle Scholar
  32. J.V. Hollweg, Alfvén waves in a two-fluid model of the solar wind. Astrophys. J. 181, 547–566 (1973) CrossRefADSGoogle Scholar
  33. J.V. Hollweg, Some physical processes in the solar wind. Rev. Geophys. Space Phys. 16, 689–720 (1978) CrossRefADSGoogle Scholar
  34. T.E. Holzer, Heating and acceleration of the solar plasma (Tutorial talk), in Solar Wind 11/SOHO 16, Connecting Sun and Heliosphere. ESA Special Publication, vol. 592 (2005), p. 115 Google Scholar
  35. T.E. Holzer, W.I. Axford, The theory of stellar winds and related flows. Annu. Rev. Astron. Astrophys. 8, 31 (1970). doi: 10.1146/annurev.aa.08.090170.000335 CrossRefADSGoogle Scholar
  36. S.A. Jacques, Momentum and energy transport by waves in the solar atmosphere and solar wind. Astrophys. J. 215, 942–951 (1977). doi: 10.1086/155430 CrossRefADSGoogle Scholar
  37. Å.M. Janse, Ø. Lie-Svendsen, E. Leer, Solar wind originating in funnels: fast or slow (2007, submitted) Google Scholar
  38. S.A. Jaques, Solar wind models with Alfven waves. Astrophys. J. 226, 632–649 (1978). doi: 10.1086/156647 CrossRefADSGoogle Scholar
  39. M.A. Killie, Å.M. Janse, Ø. Lie-Svendsen, E. Leer, Improved transport equations for fully ionized gases. Astrophys. J. 604, 842–849 (2004). doi: 10.1086/382023 CrossRefADSGoogle Scholar
  40. J.L. Kohl, G. Noci, S.R. Cranmer, J.C. Raymond, Ultraviolet spectroscopy of the extended solar corona. Astron. Astrophys. Rev. 13, 31–157 (2006). doi: 10.1007/s00159-005-0026-7 CrossRefADSGoogle Scholar
  41. J.M. Laming, Non-Wkb models of the first ionization potential effect: implications for solar coronal heating and the coronal helium and neon abundances. Astrophys. J. Lett. 695, 954–969 (2009). doi: 10.1088/0004-637X/695/2/954 CrossRefADSGoogle Scholar
  42. E. Leer, T.E. Holzer, Energy addition in the solar wind. J. Geophys. Res. 85, 4681–4688 (1980) CrossRefADSGoogle Scholar
  43. E. Leer, T.E. Holzer, E.C. Shoub, Solar wind from a corona with a large helium abundance. J. Geophys. Res. 97, 8183–8201 (1992) CrossRefADSGoogle Scholar
  44. X. Li, S.R. Habbal, J. Kohl, G. Noci, The effect of temperature anisotropy on observations of Doppler dimming and pumping in the inner corona. Astrophys. J. Lett. 501, 133 (1998). doi: 10.1086/311428 CrossRefADSGoogle Scholar
  45. Ø. Lie-Svendsen, M.H. Rees, An improved kinetic model for the polar outflow of a minor ion. J. Geophys. Res. 101, 2415–2434 (1996). doi: 10.1029/95JA02690 CrossRefADSGoogle Scholar
  46. F. Malara, M. Velli, Wave-based heating mechanisms for the solar corona, in Solar Coronal Structures, ed. by V. Rusin, P. Heinzel, J.-C. Vial. IAU Colloq., vol. 144 (1994), pp. 443–451 Google Scholar
  47. E. Marsch, in Kinetic Physics of the Solar Corona and Solar Wind, ed. by R. Schwenn, E. Marsch (1991), pp. 45–133 Google Scholar
  48. E. Marsch, Kinetic physics of the solar wind plasma. Living Rev. Sol. Phys. 3, 1 (2006) ADSGoogle Scholar
  49. W.H. Matthaeus, M. Velli, Who needs turbulence? Space Sci. Rev. (2011). doi: 10.1007/s11214-011-9793-9 Google Scholar
  50. D.J. McComas, K.L. Phillips, S.J. Bame, J.T. Gosling, B.E. Goldstein, M. Neugebauer, ULYSSES solar wind observations to 56 deg South. Space Sci. Rev. 72, 93 (1995) CrossRefADSGoogle Scholar
  51. D.J. McComas, R.W. Ebert, H.A. Elliott, B.E. Goldstein, J.T. Gosling, N.A. Schwadron, R.M. Skoug, Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett. 351, 18103 (2008). doi: 10.1029/2008GL034896 CrossRefADSGoogle Scholar
  52. S.W. McIntosh, B. de Pontieu, M. Carlsson, V. Hansteen, P. Boerner, M. Goossens, Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind. Nature 475, 477–480 (2011). doi: 10.1038/nature10235 CrossRefADSGoogle Scholar
  53. M.P. Nakada, A study of the composition of the lower solar corona. Sol. Phys. 7, 303 (1969) CrossRefADSGoogle Scholar
  54. M. Neugebauer, C.W. Snyder, Solar plasma experiment. Science 138, 1095–1097 (1962) CrossRefADSGoogle Scholar
  55. L. Ofman, Wave modeling of the solar wind. Living Rev. Sol. Phys 7, 4 (2009). http://www.livingreviews.org/lrsp-2010-4 ADSGoogle Scholar
  56. E.L. Olsen, E. Leer, A study of solar wind acceleration based on gyrotropic transport equations. J. Geophys. Res. 104, 9963 (1999) CrossRefADSGoogle Scholar
  57. E.N. Parker, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664 (1958) CrossRefADSGoogle Scholar
  58. E.N. Parker, Dynamical theory of the solar wind. Space Sci. Rev. 4, 666 (1965) CrossRefADSGoogle Scholar
  59. E.N. Parker, Heating solar coronal holes. Astrophys. J. 372, 719–727 (1991). doi: 10.1086/170015 CrossRefADSGoogle Scholar
  60. N.E. Raouafi, S.K. Solanki, Sensitivity of solar off-limb line profiles to electron density stratification and the velocity distribution anisotropy. Astron. Astrophys. 445, 735–745 (2006). doi: 10.1051/0004-6361:20042568 CrossRefADSGoogle Scholar
  61. R. Rosner, W.H. Tucker, G.S. Vaiana, Dynamics of the quiescent solar corona. Astrophys. J. 220, 643–645 (1978). doi: 10.1086/155949 CrossRefADSGoogle Scholar
  62. R.W. Schunk, Mathematical structure of transport equations for multispecies flows. Rev. Geophys. Space Phys. 15, 429–445 (1977) CrossRefADSGoogle Scholar
  63. N.A. Schwadron, D.J. McComas, Solar wind scaling law. Astrophys. J. 599, 1395–1403 (2003). doi: 10.1086/379541 CrossRefADSGoogle Scholar
  64. J.V. Shebalin, W.H. Matthaeus, D. Montgomery, Anisotropy in MHD turbulence due to a mean magnetic field. J. Plasma Phys. 29, 525–547 (1983). doi: 10.1017/S0022377800000933 CrossRefADSGoogle Scholar
  65. L. Spitzer, R. Härm, Transport phenomena in a completely ionized gas. Phys. Rev. 89, 977–981 (1953). doi: 10.1103/PhysRev.89.977 CrossRefADSzbMATHGoogle Scholar
  66. J.P. St.-Maurice, R.W. Schunk, Diffusion and heat flow equations for the mid-latitude topside ionosphere. Planet. Space Sci. 25, 907–920 (1977). doi: 10.1016/0032-0633(77)90003-4 CrossRefADSGoogle Scholar
  67. T.K. Suzuki, S.i. Inutsuka, Making the corona and the fast solar wind: a self-consistent simulation for the low-frequency Alfvén waves from the photosphere to 0.3 AU. Astrophys. J. Lett. 632, 49–52 (2005). doi: 10.1086/497536 CrossRefADSGoogle Scholar
  68. S. Tomczyk, S.W. McIntosh, S.L. Keil, P.G. Judge, T. Schad, D.H. Seeley, J. Edmondson, Alfvén waves in the solar corona. Science 317, 1192 (2007). doi: 10.1126/science.1143304 CrossRefADSGoogle Scholar
  69. M. Velli, From supersonic winds to accretion: comments on the stability of stellar winds and related flows. Astrophys. J. Lett. 432, 55–58 (1994). doi: 10.1086/187510 CrossRefADSGoogle Scholar
  70. A. Verdini, M. Velli, Alfvén waves and turbulence in the solar atmosphere and solar wind. Astrophys. J. 662, 669–676 (2007). doi: 10.1086/510710 CrossRefADSGoogle Scholar
  71. A. Verdini, M. Velli, W.H. Matthaeus, S. Oughton, P. Dmitruk, A turbulence-driven model for heating and acceleration of the fast wind in coronal holes. Astrophys. J. Lett. 708, 116–120 (2010). doi: 10.1088/2041-8205/708/2/L116 CrossRefADSGoogle Scholar
  72. R. von Steiger, Transition region: first ionization potential effect, in Encycl. Astron. Astrophys., ed. by P. Murdin, (2000). doi: 10.1888/0333750888/2265 Google Scholar
  73. Y.M. Wang, Flux-tube divergence, coronal heating, and the solar wind. Astrophys. J. Lett. 410, 123–126 (1993). doi: 10.1086/186895 CrossRefADSGoogle Scholar
  74. Y.M. Wang, N.R. Sheeley Jr., Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726–732 (1990). doi: 10.1086/168805 CrossRefADSGoogle Scholar
  75. Y.M. Wang, N.R. Sheeley Jr., Why fast solar wind originates from slowly expanding coronal flux tubes. Astrophys. J. Lett. 372, 45–48 (1991). doi: 10.1086/186020 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of Theoretical AstrophysicsUniversity of OsloOsloNorway
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations