Space Science Reviews

, Volume 170, Issue 1–4, pp 837–860 | Cite as

Empirical Estimates of Martian Surface Pressure in Support of the Landing of Mars Science Laboratory



The aim of this work is to develop an empirical expression for diurnal mean martian surface pressure in support of the landing of Mars Science Laboratory. We evaluate the consistency of surface pressure measurements from four landers, Viking Lander 1, Viking Lander 2, Mars Pathfinder, and Phoenix, and one radio occultation experiment, Mars Global Surveyor. With the exception of Mars Pathfinder, whose measurements are 0.1 mbar smaller than expected, all are consistent. We assume that the diurnal mean surface pressure is a separable function of altitude and season, neglecting dependences on time of day, latitude, and longitude, and use the Viking Lander 1 dataset to characterize the seasonal dependence as a harmonic function of season with annual and semi-annual periods. We characterize the exponential dependence of surface pressure on altitude using Mars Global Surveyor radio occultation measurements widely-distributed below +1 km altitude and within 45 degrees of the equator. These measurements have local times of 3–5 hours, which may introduce biases into our estimates for diurnal mean surface pressure. Our empirical expression for diurnal mean surface pressure, pdm, is p0,VL1exp(−(zz0,VL1)/H0) (1+s1,VL1sin(1Ls)+c1,VL1cos(1Ls)+s2,VL1sin(2Ls)+c2,VL1cos(2Ls)) where z is altitude, Ls is season, the reference pressure, p0,VL1, is 7.972 mbar, the altitude of Viking Lander 1, z0,VL1, is −3.63 km, the reference scale height, H0, is 11 km, and the harmonic coefficients are s1=−0.069, c1=0.060, s2=0.045, and c2=−0.050. We validate this expression against the available datasets and estimate, with a 1-σ confidence level of 2 %, a diurnal mean surface pressure of 7.30 mbar at Gale Crater, the Mars Science Laboratory landing site, at Ls=150°.


Mars, atmosphere Atmospheres, structure 


  1. J.R. Barnes, Midlatitude disturbances in the Martian atmosphere—A second Mars year. J. Atmos. Sci. 38, 225–234 (1981). doi:10.1175/1520-0469(1981)038 ADSCrossRefGoogle Scholar
  2. W.V. Boynton, W.C. Feldman, I.G. Mitrofanov, L.G. Evans, R.C. Reedy, S.W. Squyres, R. Starr, J.I. Trombka, C. D’Uston, J.R. Arnold, P.A.J. Englert, A.E. Metzger, H. Wänke, J. Brückner, D.M. Drake, C. Shinohara, C. Fellows, D.K. Hamara, K. Harshman, K. Kerry, C. Turner, M. Ward, H. Barthe, K.R. Fuller, S.A. Storms, G.W. Thornton, J.L. Longmire, M.L. Litvak, A.K. Ton’chev, The Mars Odyssey Gamma-Ray Spectrometer instrument suite. Space Sci. Rev. 110, 37–83 (2004). doi:10.1023/B:SPAC.0000021007.76126.15 ADSCrossRefGoogle Scholar
  3. J.W. Chamberlain, D.M. Hunten, Theory of Planetary Atmospheres, 2nd edn. (Academic Press, New York, 1987) Google Scholar
  4. R.T. Clancy, B.J. Sandor, M.J. Wolff, P.R. Christensen, M.D. Smith, J.C. Pearl, B.J. Conrath, R.J. Wilson, An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: Seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere. J. Geophys. Res. 105, 9553–9572 (2000) ADSCrossRefGoogle Scholar
  5. J.A. Crisp, M. Adler, J.R. Matijevic, S.W. Squyres, R.E. Arvidson, D.M. Kass, Mars Exploration Rover mission. J. Geophys. Res. 108, 8061 (2003). doi:10.1029/2002JE002038 CrossRefGoogle Scholar
  6. P. Defraigne, O. de Viron, V. Dehant, T. Van Hoolst, F. Hourdin, Mars rotation variations induced by atmosphere and ice caps. J. Geophys. Res. 105, 24563–24570 (2000). doi:10.1029/1999JE001227 ADSCrossRefGoogle Scholar
  7. J.L. Elliot, M.J. Person, A.A.S. Gulbis, S.P. Souza, E.R. Adams, B.A. Babcock, J.W. Gangestad, A.E. Jaskot, E.A. Kramer, J.M. Pasachoff, R.E. Pike, C.A. Zuluaga, A.S. Bosh, S.W. Dieters, P.J. Francis, A.B. Giles, J.G. Greenhill, B. Lade, R. Lucas, D.J. Ramm, Changes in Pluto’s atmosphere: 1988–2006. Astron. J. 134, 1–13 (2007). doi:10.1086/517998 ADSCrossRefGoogle Scholar
  8. G. Fjeldbo, D. Sweetnam, J. Brenkle, E. Christensen, D. Farless, J. Mehta, B. Seidel, W. Michael Jr., A. Wallio, M. Grossi, Viking radio occultation measurements of the Martian atmosphere and topography—Primary mission coverage. J. Geophys. Res. 82, 4317–4324 (1977). doi:10.1029/JS082i028p04317 ADSCrossRefGoogle Scholar
  9. F. Forget, F. Hourdin, R. Fournier, C. Hourdin, O. Talagrand, M. Collins, S.R. Lewis, P.L. Read, J. Huot, Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. 104, 24155–24176 (1999). doi:10.1029/1999JE001025 ADSCrossRefGoogle Scholar
  10. M.P. Golombek, A.F.C. Haldemann, R.A. Simpson, R.L. Fergason, N.E. Putzig, R.E. Arvidson, J.F. Bell III, M.T. Mellon, Martian surface properties from joint analysis of orbital, Earth-based, and surface observations, in The Martian Surface—Composition, Mineralogy, and Physical Properties, ed. by J.F. Bell III (Cambridge University Press, Cambridge, 2008), pp. 468–498 CrossRefGoogle Scholar
  11. R.M. Haberle, M.A. Kahre, Detecting secular climate change on Mars. Int. J. Mars Sci. Explor. 5, 68–75 (2010). doi:10.1555/mars.2010.0003 Google Scholar
  12. R.M. Haberle, M.M. Joshi, J.R. Murphy, J.R. Barnes, J.T. Schofield, G. Wilson, M. Lopez-Valverde, J.L. Hollingsworth, A.F.C. Bridger, J. Schaeffer, General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data. J. Geophys. Res. 104, 8957–8974 (1999) ADSCrossRefGoogle Scholar
  13. S.L. Hess, R.M. Henry, C.B. Leovy, J.E. Tillman, J.A. Ryan, Meteorological results from the surface of Mars—Viking 1 and 2. J. Geophys. Res. 82, 4559–4574 (1977). doi:10.1029/JS082i028p04559 ADSCrossRefGoogle Scholar
  14. S.L. Hess, J.A. Ryan, J.E. Tillman, R.M. Henry, C.B. Leovy, The annual cycle of pressure on Mars measured by Viking landers 1 and 2. Geophys. Res. Lett. 7, 197–200 (1980). doi:10.1029/GL007i003p00197 ADSCrossRefGoogle Scholar
  15. D.P. Hinson, Radio occultation measurements of pressure variations on Mars, in Sixth International Conference on Mars, ed. by A.L. Albee, H.H. Kieffer (2003), p. 3032 Google Scholar
  16. D.P. Hinson, R.A. Simpson, J.D. Twicken, G.L. Tyler, F.M. Flasar, Initial results from radio occultation measurements with Mars Global Surveyor. J. Geophys. Res. 104, 26997–27012 (1999) ADSCrossRefGoogle Scholar
  17. D.P. Hinson, R.A. Simpson, J.D. Twicken, G.L. Tyler, F.M. Flasar, Erratum: Initial results from radio occultation measurements with Mars Global Surveyor. J. Geophys. Res. 105, 1717–1718 (2000) ADSCrossRefGoogle Scholar
  18. D.P. Hinson, M. Pätzold, R.J. Wilson, B. Häusler, S. Tellmann, G.L. Tyler, Radio occultation measurements and MGCM simulations of Kelvin waves on Mars. Icarus 193, 125–138 (2008a). doi:10.1016/j.icarus.2007.09.009 ADSCrossRefGoogle Scholar
  19. D.P. Hinson, M. Pätzold, S. Tellmann, B. Häusler, G.L. Tyler, The depth of the convective boundary layer on Mars. Icarus 198, 57–66 (2008b). doi:10.1016/j.icarus.2008.07.003 ADSCrossRefGoogle Scholar
  20. J.R. Holton, An Introduction to Dynamic Meteorology, 3rd edn. (Academic Press, New York, 1992) Google Scholar
  21. P.B. James, H.H. Kieffer, D.A. Paige, The seasonal cycle of carbon dioxide on Mars, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1992), pp. 934–968 Google Scholar
  22. Ö. Karatekin, T. Van Hoolst, V. Dehant, Martian global-scale CO2 exchange from time-variable gravity measurements. J. Geophys. Res. 111, E06003 (2006). doi:10.1029/2005JE002591 ADSCrossRefGoogle Scholar
  23. N.J. Kelly, W.V. Boynton, K. Kerry, D. Hamara, D. Janes, R.C. Reedy, K.J. Kim, R.M. Haberle, Seasonal polar carbon dioxide frost on Mars: CO2 mass and columnar thickness distribution. J. Geophys. Res. 111, E03S07 (2006). doi:10.1029/2006JE002678 ADSGoogle Scholar
  24. A.J. Kliore, Radio occultation exploration of Mars, in Exploration of the Planetary System, ed. by A. Woszczyk, C. Iwaniszewska. IAU Symposium Series, vol. 65 (Reidel, Dordrecht, 1974), pp. 295–316 CrossRefGoogle Scholar
  25. A.J. Kliore, Radio occultation observations of the ionospheres of Mars and Venus, in Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions. Geophys. Monogr. Ser., vol. 66 (Am. Geophys. Union, Washington, 1992), pp. 265–276 CrossRefGoogle Scholar
  26. A.J. Kliore, D.L. Cain, G. Fjeldbo, B.L. Seidel, M.J. Sykes, S.I. Rasool, The atmosphere of Mars from Mariner 9 radio occultation measurements. Icarus 17, 484–516 (1972) ADSCrossRefGoogle Scholar
  27. A.J. Kliore, G. Fjeldbo, B.L. Seidel, M.J. Sykes, P.M. Woiceshyn, S band radio occultation measurements of the atmosphere and topography of Mars with Mariner 9: Extended Mission coverage of polar and intermediate latitudes. J. Geophys. Res. 78, 4331–4351 (1973). doi:10.1029/JB078i020p04331 ADSCrossRefGoogle Scholar
  28. S.R. Lewis, M. Collins, P.L. Read, F. Forget, F. Hourdin, R. Fournier, C. Hourdin, O. Talagrand, J.-P. Huot, A climate database for Mars. J. Geophys. Res. 104, 24177–24194 (1999). doi:10.1029/1999JE001024 ADSCrossRefGoogle Scholar
  29. G.F. Lindal, H.B. Hotz, D.N. Sweetnam, Z. Shippony, J.P. Brenkle, G.V. Hartsell, R.T. Spear, Viking radio occultation measurements of the atmosphere and topography of Mars—Data acquired during 1 martian year of tracking. J. Geophys. Res. 84, 8443–8456 (1979) ADSCrossRefGoogle Scholar
  30. A.S. McEwen, L. Ojha, C. Dundas, S.S. Mattson, S. Byrne, J.J. Wray, S.C. Cull, S.L. Murchie, N. Thomas, V.C. Gulick, Seasonal flows on warm Martian slopes. Science 333, 740–743 (2011) ADSCrossRefGoogle Scholar
  31. M. Pätzold, F.M. Neubauer, L. Carone, A. Hagermann, C. Stanzel, B. Häusler, S. Remus, J. Selle, D. Hagl, D.P. Hinson, R.A. Simpson, G.L. Tyler, S.W. Asmar, W.I. Axford, T. Hagfors, J.-P. Barriot, J.-C. Cerisier, T. Imamura, K.-I. Oyama, P. Janle, G. Kirchengast, V. Dehant, MaRS: Mars Express orbiter radio science (ESA SP-1240: Mars Express: the scientific payload,, 2004), pp. 141–163
  32. M. Pätzold, S. Tellmann, B. Häusler, D. Hinson, R. Schaa, G.L. Tyler, A sporadic third layer in the ionosphere of Mars. Science 310, 837–839 (2005). doi:10.1126/science.1117755 ADSCrossRefGoogle Scholar
  33. S.C.R. Rafkin, R.M. Haberle, T.I. Michaels, The Mars Regional Atmospheric Modeling System: Model description and selected simulations. Icarus 151, 228–256 (2001). doi:10.1006/icar.2001.6605 ADSCrossRefGoogle Scholar
  34. B.V. Sanchez, D.D. Rowlands, R.M. Haberle, Variations of Mars gravitational field based on the NASA/Ames general circulation model. J. Geophys. Res. 111, E06010 (2006). doi:10.1029/2005JE002442 ADSCrossRefGoogle Scholar
  35. A. Seiff, The Viking atmosphere structure experiment—Techniques, instruments, and expected accuracies. Space Sci. Instrum. 2, 381–423 (1976) ADSGoogle Scholar
  36. A. Seiff, D.B. Kirk, Structure of the atmosphere of Mars in summer at mid-latitudes. J. Geophys. Res. 82, 4364–4378 (1977) ADSCrossRefGoogle Scholar
  37. A. Seiff, J.E. Tillman, J.R. Murphy, J.T. Schofield, D. Crisp, J.R. Barnes, C. LaBaw, C. Mahoney, J.D. Mihalov, G.R. Wilson, R. Haberle, The atmosphere structure and meteorology instrument on the Mars Pathfinder lander. J. Geophys. Res. 102, 4045–4056 (1997) ADSCrossRefGoogle Scholar
  38. D.E. Smith, M.T. Zuber, G.A. Neumann, Seasonal variations of snow depth on Mars. Science 294, 2141–2146 (2001). doi:10.1126/science.1066556 ADSCrossRefGoogle Scholar
  39. D.E. Smith, M.T. Zuber, R.M. Haberle, D.D. Rowlands, J.R. Murphy, The Mars seasonal CO2 cycle and the time variation of the gravity field: A general circulation model simulation. J. Geophys. Res. 104, 1885–1896 (1999). doi:10.1029/1998JE900024 ADSCrossRefGoogle Scholar
  40. D.E. Smith, M.T. Zuber, H.V. Frey, J.B. Garvin, J.W. Head, D.O. Muhleman, G.H. Pettengill, R.J. Phillips, S.C. Solomon, H.J. Zwally, W.B. Banerdt, T.C. Duxbury, M.P. Golombek, F.G. Lemoine, G.A. Neumann, D.D. Rowlands, O. Aharonson, P.G. Ford, A.B. Ivanov, C.L. Johnson, P.J. McGovern, J.B. Abshire, R.S. Afzal, X. Sun, Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23689–23722 (2001). doi:10.1029/2000JE001364 ADSCrossRefGoogle Scholar
  41. M.D. Smith, Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 167, 148–165 (2004). doi:10.1016/S0019-1035(03)00287-2 ADSCrossRefGoogle Scholar
  42. M.D. Smith, Spacecraft observations of the Martian atmosphere. Annu. Rev. Earth Planet. Sci. 36, 191–219 (2008). doi:10.1146/ ADSCrossRefGoogle Scholar
  43. M.D. Smith, M.J. Wolff, R.T. Clancy, S.L. Murchie, Compact Reconnaissance Imaging Spectrometer observations of water vapor and carbon monoxide. J. Geophys. Res. 114, E00D03 (2009). doi:10.1029/2008JE003288 ADSCrossRefGoogle Scholar
  44. J.R. Spencer, J.A. Stansberry, L.M. Trafton, E.F. Young, R.P. Binzel, S.K. Croft, Volatile Transport, seasonal cycles, and atmospheric dynamics on Pluto, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (1997), pp. 435–473 Google Scholar
  45. S.W. Squyres, R.E. Arvidson, E.T. Baumgartner, J.F. Bell, P.R. Christensen, S. Gorevan, K.E. Herkenhoff, G. Klingelhöfer, M.B. Madsen, R.V. Morris, R. Rieder, R.A. Romero, Athena Mars rover science investigation. J. Geophys. Res. 108, 8062 (2003). doi:10.1029/2003JE002121 CrossRefGoogle Scholar
  46. P.A. Taylor, D.C. Catling, M. Daly, C.S. Dickinson, H.P. Gunnlaugsson, A.-M. Harri, C.F. Lange, Temperature, pressure, and wind instrumentation in the Phoenix meteorological package. J. Geophys. Res. 113, E00A10 (2008). doi:10.1029/2007JE003015 ADSCrossRefGoogle Scholar
  47. J.E. Tillman, Mars global atmospheric oscillations—Annually synchronized, transient normal-mode oscillations and the triggering of global dust storms. J. Geophys. Res. 93, 9433–9451 (1988). doi:10.1029/JD093iD08p09433 ADSCrossRefGoogle Scholar
  48. J.E. Tillman, N.C. Johnson, P. Guttorp, D.B. Percival, The Martian annual atmospheric pressure cycle—Years without great dust storms. J. Geophys. Res. 98, 10963–10971 (1993). doi:10.1029/93JE01084 ADSCrossRefGoogle Scholar
  49. J.E. Tillman, N.C. Johnson, P. Guttorp, D.B. Percival, Erratum: “The Martian annual atmospheric pressure cycle: Years without great dust storms”. J. Geophys. Res. 99, 3813–3814 (1994). doi:10.1029/94JE00232 ADSCrossRefGoogle Scholar
  50. E. Van den Acker, T. Van Hoolst, O. de Viron, P. Defraigne, F. Forget, F. Hourdin, V. Dehant, Influence of the seasonal winds and the CO2 mass exchange between atmosphere and polar caps on Mars’ rotation. J. Geophys. Res. 107, 5055 (2002). doi:10.1029/2000JE001539 CrossRefGoogle Scholar
  51. P. Withers, J.R. Barnes, C.G. Justus, H.L. Justh, D.M. Kass, L. Montabone, S.C.R. Rafkin, Comparison of atmospheric observations and predictions for the atmospheric entries of Spirit and Opportunity, in Lunar and Planetary Institute Science Conference Abstracts, vol. 39 (2008), p. 2175 Google Scholar
  52. M.H.G. Zhang, J.G. Luhmann, A.J. Kliore, J. Kim, A post-Pioneer Venus reassessment of the martian dayside ionosphere as observed by radio occultation methods. J. Geophys. Res. 95, 14829–14839 (1990) ADSCrossRefGoogle Scholar
  53. R.W. Zurek, J.R. Barnes, R.M. Haberle, J.B. Pollack, J.E. Tillman, C.B. Leovy, Dynamics of the atmosphere of Mars, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1992), pp. 835–933 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Astronomy DepartmentBoston UniversityBostonUSA

Personalised recommendations