Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Dawn Topography Investigation

Abstract

The objective of the Dawn topography investigation is to derive the detailed shapes of 4 Vesta and 1 Ceres in order to create orthorectified image mosaics for geologic interpretation, as well as to study the asteroids’ landforms, interior structure, and the processes that have modified their surfaces over geologic time. In this paper we describe our approaches for producing shape models, plans for acquiring the needed image data for Vesta, and the results of a numerical simulation of the Vesta mapping campaign that quantify the expected accuracy of our results. Multi-angle images obtained by Dawn’s framing camera will be used to create topographic models with 100 m/pixel horizontal resolution and 10 m height accuracy at Vesta, and 200 m/pixel horizontal resolution and 20 m height accuracy at Ceres. Two different techniques, stereophotogrammetry and stereophotoclinometry, are employed to model the shape; these models will be merged with the asteroidal gravity fields obtained by Dawn to produce geodetically controlled topographic models for each body. The resulting digital topography models, together with the gravity data, will reveal the tectonic, volcanic and impact history of Vesta, and enable co-registration of data sets to determine Vesta’s geologic history. At Ceres, the topography will likely reveal much about processes of surface modification as well as the internal structure and evolution of this dwarf planet.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. R.P. Binzel, S. Xu, Chips off of Asteroid 4 Vesta: Evidence for the parent body of basaltic achondrite meteorites. Science 260, 186–191 (1993)

  2. C. Capanna, L. Jorda, P.L. Lamy, G. Gesquiere, 3D reconstruction of solar system bodies using photoclinometry by deformation, in Proceedings of the International Conference on Computer Graphics, Visualization, Computer Vision and Image Processing, Rome (2011)

  3. B. Carry, C. Dumas, M. Fulchignoni, W.J. Merline, J. Bertheir, D. Hestroffer, T. Fusco, P. Tamblyn, Near-infrared mapping and physical properties of the dwarf-planet Ceres. Astron. Astrophys. 478, 235–244 (2008)

  4. J.C. Castillo-Rogez, T.B. McCord, Ceres’ evolution and present state constrained by shape data. Icarus 205, 443–459 (2010). doi:10.1016/j.icarus.2009.04.008

  5. J.F. Cavanaugh, J.C. Smith, X. Sun, A.E. Bartels, L. Ramos-Izquierdo, D.J. Krebs, J.F. McGarry, R. Trunzo, A. Novo-Gradac, J.L. Britt et al., The Mercury laser altimeter instrument for the MESSENGER mission. Space Sci. Rev. 131, 451–479 (2007). doi:10.1007/s11214-007-9273-4

  6. J. Drummond, J. Christou, Triaxial ellipsoid dimensions and rotational poles of seven asteroids from Lick Observatory adaptive optics images, and of Ceres. Icarus 97, 480–496 (2008)

  7. M.J. Gaffey, Surface lithologic heterogeneity of Asteroid 4 Vesta. Icarus 127, 130–157 (1997)

  8. R.W. Gaskell, O.S. Barnouin-Jha, D.J. Scheeres, A.S. Konopliv, T. Mukai, S. Abe, J. Saito, M. Ishiguro, T. Kubota, T. Hashimoto, J. Kawaguchi, M. Yoshikawa, K. Shirakawa, T. Kominato, N. Hirata, H. Demura, Characterizing and navigating small bodies with imaging data. Meteoritics and Planetary. Science 43, 1049–1062 (2008)

  9. R.W. Gaskell, Optical navigation near small bodies. AAS paper 11-220, AAS/AIAA Space Flight Mechanics Meeting, New Orleans, LA (2011)

  10. B. Giese, T. Denk, G. Neukum, T. Roatsch, P. Helfenstein, P. Thomas, E. Turtle, A. McEwen, C. Porco, The topography of Iapetus’ leading side. Icarus 193, 359–371 (2007)

  11. R. Greeley, G. Batson, Planetary Mapping (Cambridge University Press, Cambridge, 1990)

  12. K. Gwinner, F. Scholten, M. Spiegel, R. Schmidt, B. Giese, J. Oberst, C. Heipke, R. Jaumann, G. Neukum, Derivation and validation of high-resolution digital topographic models from Mars express HRSC data. Photogramm. Eng. Remote Sens. 75, 1127–1142 (2009a)

  13. K. Gwinner, F. Scholten, F. Preusker, S. Elgner, T. Roatsch, M. Spiegel, R. Schmidt, J. Oberst, R. Jaumann, C. Heipke, Topography of Mars from global mapping by 17 HRSC high-resolution digital topographic models and orthoimages: characteristics and performance. Earth Planet. Sci. Lett. (2009b). doi:10.1016/j.epsl.2009.11.007

  14. S.E. Hawkins III, J.D. Boldt, E.H. Darlington, M.P. Grey, C.J. Kardian Jr., S.L. Murchie, K. Peacock, E.D. Schaefer, B.D. Williams, Overview of the MESSENGER Mercury dual imaging system, in 33rd Lunar and Planetary Science Conference, vol. 8041 (2001)

  15. R. Jaumann, G. Neukum, T. Behnke, T.C. Duxbury, J. Flohrer, S. v. Gasselt, B. Giese, K. Gwinner, E. Hauber, H. Hoffmann, U. Köhler, K.-D. Matz, T.B. McCord, V. Mertens, J. Oberst, R. Pischel, D. Reiss, T. Roatsch, P. Saiger, F. Scholten, G. Schwarz, K. Stephan, M. Wählisch, The High Resolution Stereo Camera (HRSC) experiment on Mars express: instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planet. Space Sci. 55, 928–952 (2007)

  16. A.S. Konopliv, S.W. Asmar, B.G. Bills, N. Mastrodemos, R.S. Park, C.A. Raymond, D.E. Smith, M.T. Zuber, The Dawn gravity investigation at Vesta and Ceres. Space Sci. Rev. (2011). doi:10.1007/s11214-011-9794-8

  17. J.-Y. Li, L.A. McFadden, J.Wm. Parker, E.F. Young, P.C. Thomas, C.T. Russell, M.V. Sykes, S.A. Stern, Photometric analysis of 1 Ceres and surface mapping from HST observations. Icarus 182, 143–160 (2006)

  18. J.-Y. Li, L.A. McFadden, P.C. Thomas, M.J. Mutchler, J.W. Parker, E.F. Young, C.T. Russell, M.V. Sykes, B.E. Schmidt, Photometric mapping of Asteroid (4) Vesta’s southern hemisphere with Hubble Space Telescope. Icarus 208, 238–251 (2010)

  19. T.B. McCord, J.B. Adams, T.V. Johnson, Asteroid Vesta: spectral reflectivity and compositional implications. Science 168, 1445–1447 (1970)

  20. T.B. McCord, C. Sotin, Ceres: Evolution and current state. J. Geophys. Res. 110, E05009 (2005)

  21. G.A. Neumann, D.D. Rowlands, F.G. Lemoine, D.E. Smith, M.T. Zuber, Crossover analysis of Mars Orbiter Laser Altimeter data. J. Geophys. Res. 106, 23,753–23,768 (2001). doi:10.1029/2000JE001381

  22. J. Oberst, F. Scholten, K.-D. Matz, T. Roatsch, M. Wählisch, I. Haase, P. Gläser, K.K. Gwinner, M.S. Robinson (The LROC Team), Apollo17 landing site topography from LROC NAC stereo data—first analysis and results, in 41st Lunar and Planetary Science, vol. 2051 (2009)

  23. D.E. Pavlis et al., GEODYN operations manuals. Raytheon ITTS Contractor Report, Lanham, MD (2001)

  24. C.M. Pieters, L.A. McFadden, T. Prettyman, M.C. De Sanctis, T.B. McCord, T. Hiroi, R. Klima, J.-Y. Li, R. Jaumann, Surface composition of Vesta: issues and integrated approach. Space Sci. Rev. (2011). doi:10.1007/s11214-011-9809-5

  25. C.A. Polanskey, S.P. Joy, C.A. Raymond, Dawn science planning, operations and archiving. Space Sci. Rev. (2011). doi:10.1007/s11214-011-9855-z

  26. F. Preusker et al., Stereo topographic models of Mercury after three MESSENGER flybys. Planet. Space Sci. (2011). doi:10.1016/j.pss.2011.07.005

  27. V. Reddy, M.J. Gaffey, M.S. Kelley, A. Nathues, J.-Y. Li, R. Yarbrough, Compositional heterogeneity of Asteroid 4 Vesta’s southern hemisphere: implications for the Dawn mission. Icarus 210, 693–706 (2010)

  28. T. Roatsch, M. Wählisch, B. Giese, A. Hoffmeister, K.-D. Matz, F. Scholten, A. Kuhn, R. Wagner, G. Neukum, P. Helfenstein, C. Porco, High-resolution Enceladus atlas derived from Cassini-ISS images. Planet. Space Sci. 56, 109–116 (2008)

  29. D.D. Rowlands et al., GEODYN II system description. Hughes-STX Contractor Report, Greenbelt, MD (1993)

  30. C.T. Russell, C.A. Raymond, The Dawn discovery mission to Vesta and Ceres. Space Sci. Rev. (2011). doi:10.1007/s11214-011-9836-2

  31. F. Scholten, K. Gwinner, Operational parallel processing in digital photogrammetry—strategy and results using different multi-line cameras, in Proceedings ISPRS XXth Congress, vol. 35(B) (2004), pp. 408–413

  32. F. Scholten, K. Gwinner, T. Roatsch, K.-D. Matz, M. Wählisch, B. Giese, J. Oberst, R. Jaumann, G. Neukum, HRSC co-investigator team Mars express HRSC data processing—methods and operational aspects. Photogramm. Eng. Remote Sens. 71, 1143–1152 (2005)

  33. F. Scholten, J. Oberst, K.-D. Matz, T. Roatsch, M. Wählisch, M.S. Robinson (The LROC Team), Towards global lunar topography using LROC WAC stereo data, in 41st Lunar and Planetary Science Conference, vol. 2051 (2009)

  34. H. Sierks, H.U. Keller, R. Jaumann, H. Michalik, F. Bubenhagen, I. Büttner, U. Carsenty, U. Christensen, R. Enge, F. Fiethe, P. Gutiérrez Marqués, H. Hartwig, H. Krüger, W. Kühne, T. Maue, S. Mottola, A. Nathues, K.-U. Reiche, M.L. Richards, T. Roatsch, S.E. Schröder, I. Szemerey, M. Tschentscher, The Dawn framing camera. Space Sci. Rev. (2011, this issue). doi:10.1007/s11214-011-9745-4

  35. P.C. Thomas, R.R. Benzel, M.J. Gaffey, B.H. Zellner, A.D. Storrs, E. Wells, Vesta: spin pole, size, and shape from HST images. Icarus 128, 88–94 (1997)

  36. P.C. Thomas, J.Wm. Parker, L.A. McFadden, C.T. Russell, S.A. Stern, M.V. Sykes, E.F. Young, Differentiation of the asteroid Ceres as revealed by its shape. Nature 437, 224–226 (2005)

  37. F. Wewel, F. Scholten, K. Gwinner, High resolution stereo camera (HRSC)—multispectral 3D-data acquisition and photogrammetric processing. Can. J. Remote Sens. 26, 466–474 (2000)

  38. M.T. Zuber, D.E. Smith, A.F. Cheng, J.B. Garvin, O. Aharonson, T.D. Cole, P.J. Dunn, Y. Guo, F.G. Lemoine, G.A. Neumann, D.D. Rowlands, M.H. Torrence, The shape of 433 Eros from the NEAR-shoemaker laser rangefinder. Science 289, 2097–2101 (2000). doi:10.1126/science.289.5487.2097

Download references

Acknowledgements

The authors are grateful for support of the Virtual Vesta analysis by the Dawn project team, and for the comments of two anonymous reviewers, which improved the paper. A portion of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.

Author information

Correspondence to C. A. Raymond.

Additional information

Government sponsorship acknowledged.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Raymond, C.A., Jaumann, R., Nathues, A. et al. The Dawn Topography Investigation. Space Sci Rev 163, 487–510 (2011). https://doi.org/10.1007/s11214-011-9863-z

Download citation

Keywords

  • Vesta
  • Ceres
  • Dawn
  • Asteroid topography