Space Science Reviews

, Volume 163, Issue 1–4, pp 371–459 | Cite as

Dawn’s Gamma Ray and Neutron Detector

  • Thomas H. PrettymanEmail author
  • William C. Feldman
  • Harry Y. McSweenJr.
  • Robert D. Dingler
  • Donald C. Enemark
  • Douglas E. Patrick
  • Steven A. Storms
  • John S. Hendricks
  • Jeffery P. Morgenthaler
  • Karly M. Pitman
  • Robert C. Reedy


The NASA Dawn Mission will determine the surface composition of 4 Vesta and 1 Ceres, providing constraints on their formation and thermal evolution. The payload includes a Gamma Ray and Neutron Detector (GRaND), which will map the surface elemental composition at regional spatial scales. Target elements include the constituents of silicate and oxide minerals, ices, and the products of volcanic exhalation and aqueous alteration. At Vesta, GRaND will map the mixing ratio of end-members of the howardite, diogenite, and eucrite (HED) meteorites, determine relative proportions of plagioclase and mafic minerals, and search for compositions not well sampled by the meteorite collection. The large south polar impact basin may provide an opportunity to determine the composition of Vesta’s mantle and lower crust. At Ceres, GRaND will provide chemical information needed to test different models of Ceres’ origin and thermal and aqueous evolution. GRaND is also sensitive to hydrogen layering and can determine the equivalent H2O/OH content of near-surface hydrous minerals as well as the depth and water abundance of an ice table, which may provide information about the state of water in the interior of Ceres. Here, we document the design and performance of GRaND with sufficient detail to interpret flight data archived in the Planetary Data System, including two new sensor designs: an array of CdZnTe semiconductors for gamma ray spectroscopy, and a loaded-plastic phosphor sandwich for neutron spectroscopy. An overview of operations and a description of data acquired from launch up to Vesta approach is provided, including annealing of the CdZnTe sensors to remove radiation damage accrued during cruise. The instrument is calibrated using data acquired on the ground and in flight during a close flyby of Mars. Results of Mars flyby show that GRaND has ample sensitivity to meet science objectives at Vesta and Ceres. Strategies for data analysis are described and prospective results for Vesta are presented for different operational scenarios and compositional models.


Dawn mission Asteroid Vesta Ceres Geochemistry Gamma ray Neutron Spectroscopy 

Acronyms and Abbreviations


Analog to Digital Converter


Linear amplifier


Assembly, Test, and Launch Operations


Boron-Loaded Plastic


Bismuth Germanate




Central Moving Average


Coplanar Grids


Cadmium Zinc Telluride


Differential Line Receiver


Data Number


Decimated Time Series


Experimental Data Record


Electromagnetic conductance or Earth-Mars Cruise


Electromagnetic interference


End of Process


Front End Electronics


Full Energy Interaction Rate


Field Effect Transistor


Field Programmable Gate Array


Full Width at Half Maximum


Gated Integrator


GRaND Peak Analysis Widget


Gamma Ray and Neutron Detector


Howardite, Eucrite, and Diogenite


High Voltage


High Voltage Power Supply


Initial Check Out


Signal invert


Low Altitude Mapping Orbit


Lithium-loaded Glass


Lower Level Discriminator


Low Pass Filter


Low Voltage Power Supply


Mars Closest Approach


Monte Carlo N-Particle eXtended


Mars Gravity Assist




Mars-Vesta Cruise


Non-Interactive Payload Command


Planetary Data System


Photomultiplier tube


Charge-sensitive preamplifier


Reduced Data Record


Rare Earth Elements


Root Mean Square




Spacecraft Event Time/Universal Time Coordinated


Solar Energetic Particle


Software Interface Specification


State of Health


System of applications and data maintained by NASA’s Navigation and Ancilliary Information Facility (Acton 1996)


Scintillator Shaper-Digitizer


Threshold Generator


Time to Second Pulse


Thermal cycling in Vacuum for instrument Qualification


Universal Asynchronous Receiver/Transmitter


Visible and Infrared


Virtual Recorder


Water-Equivalent Hydrogen


Zero-Crossing Discriminator



We wish to express our sincere gratitude to everyone who contributed to the development and operation of GRaND. The hardware was built by a dedicated team of engineers and technicians at Los Alamos National Laboratory (LANL). Significant contributions were made by Frank Ameduri, Sean Apgar, Juan Baldonado, Bruce Barraclough, John Bernardin, Robert Clanton, David Cronk, Danny Everett, Ken Fuller (deceased), Jack Gioia, Irma Gonzales, Jerome Kolar, Cindy Little, Ruxanne Lopez, Gary Smith, James Sheldon, Belinda Wong-Swanson, Martin Sweet, Vernon Vigil, and Bob Williford. We greatly appreciate the support of David Seagraves and the staff of the LANL Calibration Facility. Key contributions to the development and manufacturing of sensor components were made by Chuck Hurlbut of Eljen Technology, Phil Parkhurst of Proteus, Inc., and Steve Soldner and Csaba Szeles of EI Detection and Imaging Systems. We are grateful for the support of the Dawn Payload Team at the Jet Propulsion Laboratory, especially Ed Miller and Betina Pavri, from development through launch, as well as the support of Mike Violet and his team at Orbital Sciences Corporation during integration. We acknowledge the Dawn Science Operations Team, including Steve Joy (UCLA), Joe Mafi (UCLA), and Carol Polanskey (JPL), who made many contributions essential to successful flight operations. GRaND suffered a major setback, late in development, when several photomultiplier tubes cracked during thermal cycling in vacuum. We are grateful to John Goldsten of JHU-APL for providing a flight-quality photomultiplier tube (PMT) to replace one that was damaged and to Holger Sierks (MPS) for his help in finding a source of tubes in Europe. David Lawrence (JHU-APL) and Larry Nittler (Carnegie Institution) provided thorough reviews data and documents submitted to the Planetary Data System. We wish to thank David Lawrence and Mike Toplis (University of Toulouse) for their insightful reviews of this manuscript. Finally, we are grateful for many helpful discussions with members of the planetary community and Dawn team, including Mike Gaffey, Ralph Milliken, David Mittlefehldt, Marc Rayman, Carol Raymond, Chris Russell, and Naoyuki Yamashita. A portion of this work was performed under a grant from the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.


  1. C.H. Acton, Planet. Space Sci. 44(1), 65–70 (1996) CrossRefADSGoogle Scholar
  2. J.A. Barrat et al., Meteorit. Planet. Sci. 43, 1759–1775 (2008) CrossRefADSGoogle Scholar
  3. J.A. Barrat et al., Meteorit. Planet. Sci. 44, 359–374 (2009) CrossRefADSGoogle Scholar
  4. A. Beck, H.Y. McSween Jr., Meteorit. Planet. Sci. (2010). doi: 10.1111.j.1945-5100.2010.01061.x Google Scholar
  5. B.G. Bills, F. Nimmo, Icarus (2010). doi: 10.1016/j.icarus.2010.09.002 Google Scholar
  6. R.P. Binzel et al., Icarus 128, 95–103 (1997) CrossRefADSGoogle Scholar
  7. J.B. Birks, The Theory and Practice of Scintillation Counting (Macmillan, New York, 1964) Google Scholar
  8. T.H. Burbine, R.C. Greenwood, P.C. Buchanan, I.A. Franchi, C.L. Smith, in 38th Lunar and Planetary Science Conference, 12–16 March 2007, League City, Texas, USA (2007) Google Scholar
  9. J.C. Castillo-Rogez, T.B. McCord, Icarus (2009). doi: 10.1016/j.icarus.2009.04.008 Google Scholar
  10. C.-L. Chou, W.V. Boynton, J. Kimberlin, J.T. Wasson, R.W. Bild, in Proceedings 7th Lunar Science Conference, Houston, Tex., 15–19 March 1976, vol. 3 (Pergamon Press, New York, 1976), pp. 3501–3518. (A77-34651 15-91) Google Scholar
  11. R.N. Clark, Science (2009). doi: 10.1126/science.1178105 Google Scholar
  12. A. Coradini, D. Turrini, C. Federico, G. Magni, Space Sci. Rev. (2011). doi: 10.1007/s11214-011-9792-x Google Scholar
  13. B. Diez, W.C. Feldman, S. Maurice, O. Gasnault, T.H. Prettyman, M.T. Mellon, O. Aharonson, N. Schorghofer, Icarus 196, 409–421 (2008). doi: 10.1016/j.icarus.2008.02.006 CrossRefADSGoogle Scholar
  14. J.J. Duderstadt, L.J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976) Google Scholar
  15. R.C. Elphic, D.J. Lawrence, W.C. Feldman, B.L. Barraclough, S. Maurice, A.B. Binder, P.G. Lucey, J. Geophys. Res. 105(E8), 20,333–20,345 (2000) CrossRefADSGoogle Scholar
  16. R.C. Elphic, V.R. Eke, L.F.A. Teodoro, D.J. Lawrence, D.B.J. Bussey, Geophys. Res. Lett. 34, L13204 (2007). doi: 10.1029/2007GL029954 CrossRefADSGoogle Scholar
  17. L.G. Evans, R.D. Starr, J. Bruckner, R.C. Reedy, W.V. Boynton, J.I. Trombka, J.O. Goldsten, J. Masarik, L.R. Nittler, T.J. McCoy, Meteorit. Planet. Sci. 36, 1639–1660 (2001) CrossRefADSGoogle Scholar
  18. B. Fabroni, A. Cavallini, N. Auricchio, W. Dusi, M. Zanarini, P. Siffert, Semicond. Sci. Technol. 21, 1034 (2006). doi: 10.1088/0268-1242/21/8/009 CrossRefADSGoogle Scholar
  19. F.P. Fanale, J.R. Salvail, Icarus 82, 97 (1989) CrossRefADSGoogle Scholar
  20. W.C. Feldman, D.M. Drake, R.D. O’Dell, F. Brinkley, R.C. Anderson, J. Geophys. Res. 94(B1), 513–525 (1989a) CrossRefADSGoogle Scholar
  21. W.C. Feldman, G. Auchampaugh, D. Drake, Nucl. Methods Phys. Res. A 287, 595–605 (1989b) CrossRefADSGoogle Scholar
  22. W.C. Feldman, R.C. Reedy, D.S. McKay, Geophys. Res. Lett. 18(11), 2157–2160 (1991a). doi: 10.1029/91GL02618 CrossRefADSGoogle Scholar
  23. W.C. Feldman, G.F. Auchampaugh, R.C. Byrd, Nucl. Instrum. Methods Phys. Res. A 306(1–2), 350–365 (1991b) CrossRefADSGoogle Scholar
  24. W.C. Feldman, W.V. Boynton, B.M. Jakosky, M.T. Mellon, J. Geophys. Res. 98(E11), 20,855–20,870 (1993) CrossRefADSGoogle Scholar
  25. W.C. Feldman, B.L. Barraclough, K.R. Fuller, D.J. Lawrence, S. Maurice, M.C. Miller, T.H. Prettyman, A.B. Binder, Nucl. Instrum. Methods Phys. Res. A 422(1–3), 562–566 (1999) CrossRefADSGoogle Scholar
  26. W.C. Feldman, D.J. Lawrence, R.C. Elphic, D.T. Vaniman, D.R. Thomsen, B.L. Barraclough, S. Maurice, A.B. Binder, J. Geophys. Res. 105(E8), 20,347–20,363 (2000) CrossRefADSGoogle Scholar
  27. W.C. Feldman, S. Maurice, D.J. Lawrence, R.C. Little, S.L. Lawson, O. Gasnault, R.C. Wiens, B.L. Barraclough, R.C. Elphic, T.H. Prettyman, J.T. Steinberg, A.B. Binder, J. Geophys. Res. 106(E10), 23,231 (2001) CrossRefADSGoogle Scholar
  28. W.C. Feldman, T.H. Prettyman, R.L. Tokar, R.C. Byrd, K.R. Fuller, O. Gasnault, J.L. Longmire, R.H. Olsher, S.A. Storms, G.W. Thornton, W.V. Boynton, J. Geophys. Res. 107, 1083 (2002). doi: 10.1029/2001JA000295 CrossRefGoogle Scholar
  29. W.C. Feldman, K. Ahola, B.L. Barraclough, R.D. Belian, R.K. Black, R.C. Elphic, D.T. Everett, K.R. Fuller, J. Kroesche, D.J. Lawrence, S.L. Lawson, J.L. Longmire, S. Maurice, M.C. Miller, T.H. Prettyman, S.A. Storms, G.W. Thornton, J. Geophys. Res. 109, E07S06 (2004a). doi: 10.1029/2003JE002207 CrossRefGoogle Scholar
  30. W.C. Feldman, T.H. Prettyman, S. Maurice, J.J. Plaut, D.L. Bish, D.T. Vaniman, M.T. Mellon, A.E. Metzger, S.W. Squyres, S. Karunatillake, W.V. Boynton, R.C. Elphic, H.O. Funsten, D.J. Lawrence, R.L. Tokar, J. Geophys. Res. 109, E09006 (2004b). doi: 10.1029/2003JE002160 CrossRefGoogle Scholar
  31. W.C. Feldman, M.C. Bourke, R.C. Elphic, S. Maurice, J. Bandfield, T.H. Prettyman, B. Diez, D.J. Lawrence, Icarus 196(2), 422–432 (2008) CrossRefADSGoogle Scholar
  32. E. Fermi, Nuclear Physics (The University of Chicago Press, Chicago, 1949) Google Scholar
  33. J.D. Foley, A. van Dam, S.K. Feiner, J.F. Hughes, Computer Graphics: Principles and Practice in C, 2nd edn. (Addison-Wesley, Reading, 1995). ISBN 978-0201848403 Google Scholar
  34. R.W. Gaskell, O.S. Barnouin-Jha, D.J. Scheeres, A.S. Konopliv, T. Mukai, S. Abe, J. Saito, M. Ishiguro, T. Kubota, T. Hashimoto, J. Kawaguchi, M. Yoshikawa, K. Shirakawa, T. Kominato, N. Hirata, H. Demura, Meteorit. Planet. Sci. 43(6), 1049–1061 (2010). doi: 10.1111/j.1945-5100.2008.tb00692.x CrossRefADSGoogle Scholar
  35. O. Gasnault, W.C. Feldman, S. Maurice, I. Genetay, C. d’Uston, T.H. Prettyman, K.R. Moore, Geophys. Res. Lett. 28(19), 3797–3800 (2001) CrossRefADSGoogle Scholar
  36. G.L. George, R.H. Olsher, D.T. Seagraves, Los Alamos National Laboratory document LA-UR-02-516 (2002) Google Scholar
  37. J.O. Goldsten et al., Space Sci. Rev. 131(1–4), 339–391 (2007). doi: 10.1007/s11214-007-9262-7 CrossRefADSGoogle Scholar
  38. A. Ghosh, H.Y. McSween, Icarus 134, 187–206 (1998) CrossRefADSGoogle Scholar
  39. H. Haack, E.R.D. Scott, K.L. Rasmussen, Geochim. Cosmochim. Acta 60(14), 2609–2619 (1996). doi: 10.1016/0016-7037(96)00110-X CrossRefADSGoogle Scholar
  40. S. Hasegawa, K. Murakawa, M. Ishiguro, H. Nonaka, N. Takato, C.J. Davis, M. Ueno, T. Hiroi, Geophys. Res. Lett. 30(21), 2123 (2003). doi: 10.1029/2003GL018627 CrossRefADSGoogle Scholar
  41. L. Haskin, P. Warren, in Lunar Sourcebook: A User’s Guide to the Moon (Cambridge University Press, Cambridge, 1991). ISBN 0-521-33444-6 Google Scholar
  42. Z. He, B.W. Sturm, Nucl. Instrum. Methods Phys. Res. A 554, 291 (2005) CrossRefADSGoogle Scholar
  43. J.H. Hubbell, S.M. Seltzer, Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients (version 1.4). Online available: [2010, November 1] (National Institute of Standards and Technology, Gaithersburg, MD, 2004)
  44. P.A. Jansson, in Deconvolution of Images and Spectra (Elsevier, New York, 1997), pp. 107–181 Google Scholar
  45. K. Keil, in Asteroids III (The University of Arizona Press, Tucson, 2002), pp. 573–584 Google Scholar
  46. T.V.V. King, R.N. Clark, W.M. Calvin, D.M. Sherman, R.H. Brown, Science 255, 1551–1553 (1992) CrossRefADSGoogle Scholar
  47. D.J. Lawrence, W.C. Feldman, R.C. Elphic, R.C. Little, T.H. Prettyman, S. Maurice, P.G. Lucey, A.B. Binder, J. Geophys. Res. 107(E12), 5130 (2002). doi: 10.1029/2001JE001530 CrossRefGoogle Scholar
  48. D.J. Lawrence, R.C. Elphic, W.C. Feldman, T.H. Prettyman, O. Gasnault, S. Maurice, J. Geophys. Res. 108(E9), 5102 (2003). doi: 10.1029/2003JE002050 CrossRefGoogle Scholar
  49. D.J. Lawrence, S. Maurice, W.C. Feldman, J. Geophys. Res. 109, E07S05 (2004). doi: 10.1029/2003JE002206 CrossRefGoogle Scholar
  50. D.J. Lawrence, R.C. Puetter, R.C. Elphic, W.C. Feldman, J.J. Hagerty, T.H. Prettyman, P.D. Spudis, Geophys. Res. Lett. 34, L03201 (2007). doi: 10.1029/2006GL028530 CrossRefGoogle Scholar
  51. D.J. Lawrence, D.M. Hurley, W.C. Feldman, R.C. Elphic, S. Maurice, R.S. Miller, T.H. Prettyman, J. Geophys. Res. 116, E01002 (2011). doi: 10.1029/2010JE003678 CrossRefGoogle Scholar
  52. K. Lodders, B. Fegley Jr., The Planetary Scientist’s Companion (Oxford University Press, New York, 1998). ISBN 0-19-511694-1 Google Scholar
  53. P.N. Luke, Appl. Phys. Lett. 65(22), 2884–2886 (1994). doi: 10.1063/1.112523 CrossRefADSGoogle Scholar
  54. P.N. Luke, IEEE Trans. Nucl. Sci. 42, 207–213 (1995) CrossRefADSGoogle Scholar
  55. J.-Y. Li, L.A. McFadden, J.W. Parker, E.F. Young, S.A. Stern, P.C. Thomas, C.T. Russell, M.V. Sykes, Icarus 182, 143–160 (2006) CrossRefADSGoogle Scholar
  56. J.-Y. Li, L.A. McFadden, P.C. Thomas, M.J. Mutchler, J.W. Parker, E.F. Young, C.T. Russell, M.V. Sykes, B.E. Schmidt, Icarus 208(1), 238–251 (2010). doi: 10.1016/j.icarus.2010.02.008 CrossRefADSGoogle Scholar
  57. M.A. Mariscotti, Nucl. Instrum. Methods 50(2), 309–320 (1967) CrossRefADSGoogle Scholar
  58. C.B. Markwardt, in Proceedings of the Astronomical Data Analysis Software and Systems XVIII ASP Conference Series, vol. 411, 2–5 November 2008, Québec City, QC, Canada, ed. by D.A. Bohlender, D. Durand, P. Dowler (Astronomical Society of the Pacific, San Francisco, 2009), p. 251 Google Scholar
  59. T.B. McCord, J.B. Adam, T.V. Johnson, Science 168, 1445–1447 (1970) CrossRefADSGoogle Scholar
  60. T.B. McCord, C. Sotin, J. Geophys. Res. 110, E05009 (2005). doi: 10.1029/2004JE002244 CrossRefGoogle Scholar
  61. T.B. McCord, J. Castillo-Rogez, A. Rivkin, Space Sci. Rev. (2011). doi: 10.1007/s11214-010-9729-9 Google Scholar
  62. G.W. McKinney, D.J. Lawrence, T.H. Prettyman, R.C. Elphic, W.C. Feldman, J.J. Hagerty, J. Geophys. Res. 111, E06004 (2006). doi: 10.1029/2005JE002551 CrossRefGoogle Scholar
  63. H.Y. McSween, D.W. Mittlefehldt, A.W. Beck, R.G. Mayne, T.J. McCoy, Space Sci. Rev. (2010). doi: 10.1007/s11214-010-9637-z Google Scholar
  64. A.E. Metzger, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, ed. by C.M. Pieters, P.A.J. Englert (Cambridge Univ. Press, New York, 1993), pp. 341–365 Google Scholar
  65. R.E. Milliken, A.S. Rivkin, Nat. Geosci. 2, 258–261 (2009). doi: 10.1038/ngeo478 CrossRefADSGoogle Scholar
  66. D.W. Mittlefehldt, M.M. Lindstrom, Geochim. Cosmochim. Acta 67, 1911–1935 (2003). doi: 10.1016/S0016-7037(02)01411-4 CrossRefADSGoogle Scholar
  67. J. Moré, in Lecture Notes in Mathematics, vol. 630, ed. by G. Watson (Springer, Berlin, 1978), pp. 105–116. doi: 10.1007/BFb0067700 Google Scholar
  68. R.J. Oliversen, F. Scherb, W.H. Smyth, M.E. Freed, R.C. Woodward, M.L. Marconi, K.D. Retherford, O.L. Lupie, J.P. Morgenthaler, J. Geophys. Res. A 106(11), 26,183–26,193 (2001) ADSGoogle Scholar
  69. D.B. Pelowitz (ed.), MCNPX user’s manual, version 2.7.0, Los Alamos National Laboratory document LA-CP-11-00438 (2011) Google Scholar
  70. C.M. Pieters, J.N. Goswami, R.N. Clark, M. Annadurai, J. Boardman, B. Buratti, J.-P. Combe, M.D. Dyar, R. Green, J.W. Head, C. Hibbitts, M. Hicks, P. Isaacson, R. Klima, G. Kramer, S. Kumar, E. Livo, S. Lundeen, E. Malaret, T. McCord, J. Mustard, J. Nettles, N. Petro, C. Runyon, M. Staid, J. Sunshine, L.A. Taylor, S. Tompkins, P. Varanasi, Science (2009). doi: 10.1126/science.1178658 zbMATHGoogle Scholar
  71. C.M. Pieters, L.A. McFadden, T. Prettyman, M.C. De Sanctis, T.B. McCord, T. Hiroi, R. Klima, J.-Y. Li, R. Jaumann, Space Sci. Rev. (2011). doi: 10.1007/s11214-011-9809-5 Google Scholar
  72. T.H. Prettyman, C.S. Cooper, P.N. Luke, P.A. Russo, M. Amman, D.J. Mercer, J. Radioanal. Nucl. Chem. 233(1–2), 257–264 (1998) CrossRefGoogle Scholar
  73. T.H. Prettyman, Nucl. Instrum. Methods Phys. Res. A 422(1–3), 232–237 (1999) CrossRefADSGoogle Scholar
  74. T.H. Prettyman, M.C. Browne, J.D. Chavez, K.D. Ianakiev, T. Marks Jr., C.E. Moss, S.A. Soldner, M.R. Sweet, in 41st Annual INMM Meeting, 16–20 July 2000, New Orleans, LA (2000). Los Alamos National Laboratory document LA-UR-00-3409 Google Scholar
  75. T.H. Prettyman et al., IEEE Trans. Nucl. Sci. 49(4), 1881 (2002) CrossRefADSGoogle Scholar
  76. T.H. Prettyman, W.C. Feldman, F.P. Ameduri, B.L. Barraclough, E.W. Cascio, K.R. Fuller, H.O. Funsten, D.J. Lawrence, G.W. McKinney, C.T. Russell, S.A. Soldner, S.A. Storms, Cs. Szeles, R.L. Tokar, IEEE Trans. Nucl. Sci. 50(4), 1190 (2003) CrossRefADSGoogle Scholar
  77. T.H. Prettyman et al., Proc. SPIE 5660, 107 (2004a). doi: 10.1117/12.578551 CrossRefADSGoogle Scholar
  78. T.H. Prettyman et al., J. Geophys. Res. 109, E05001 (2004b). doi: 10.1029/2003JE002139 CrossRefGoogle Scholar
  79. T.H. Prettyman, J.J. Hagerty, R.C. Elphic, W.C. Feldman, D.J. Lawrence, G.W. McKinney, D.T. Vaniman, J. Geophys. Res. 111, E12007 (2006). doi: 10.1029/2005JE002656 CrossRefADSGoogle Scholar
  80. T.H. Prettyman, ESS article (2007) Google Scholar
  81. T.H. Prettyman, W.C. Feldman, T.N. Titus, J. Geophys. 114, E08005 (2009). doi: 10.1029/2008JE003275 CrossRefGoogle Scholar
  82. T.H. Prettyman, Dawn grand calibrated mars flyby counts, V1.0. Dawn-m-grand-2-rdr-mars-counts-V1.0. NASA Planetary Data System (2011) Google Scholar
  83. T.H. Prettyman, H.Y. McSween Jr., in Proc. 42nd Lunar and Planetary Science Conference (2011). Abstract #2731 Google Scholar
  84. K. Righter, M.J. Drake, Meteorit. Planet. Sci. 32, 929–944 (1997) CrossRefADSGoogle Scholar
  85. A.S. Rivkin, E.L. Volquardsen, B.E. Clark, Icarus 185, 563–567 (2006) CrossRefADSGoogle Scholar
  86. A.S. Rivkin, J.-Y. Li, R.E. Milliken, L.F. Lim, A.J. Lovell, B.E. Schmidt, L.A. McFadden, B.A. Cohen, Space Sci. Rev. (2010). doi: 10.1007/s11214-010-9677-4 Google Scholar
  87. A.S. Rivkin, E.L. Volquardsen, Icarus 206, 327–333 (2010) CrossRefADSGoogle Scholar
  88. C.A. Raymond, R. Jaumann, A. Nathues, H. Sierks, T. Roatsch, F. Preusker, F. Scholten, R.W. Gaskell, L. Jorda, H.-U. Keller, M.T. Zuber, D.E. Smith, N. Mastrodemos, S. Mottola, Space Sci. Rev. (2011). doi: 10.1007/s11214-011-9863-z Google Scholar
  89. C.T. Russell, F. Capaccioni, A. Coradini, M.C. De Sanctis, W.C. Feldman, R. Jaumann, H.U. Keller, T.B. McCord, L.A. McFadden, S. Mottola, C.M. Pieters, T.H. Prettyman, C.A. Raymond, M.V. Sykes, D.E. Smith, M.T. Zuber, Earth Moon Planets 101, 65 (2007) CrossRefADSGoogle Scholar
  90. C.T. Russell, J.G. Luhmann, L.K. Jian, Rev. Geophys. (2010). doi: 10.1029/2009RG000316 Google Scholar
  91. C.T. Russell, C.A. Raymond, Space Sci. Rev. (2011). doi: 10.1007/s11214-011-9836-2 Google Scholar
  92. N. Schorghofer, Astrophys. J. 682, 697 (2008) CrossRefADSGoogle Scholar
  93. J.M. Sunshine, C.M. Pieters, S.F. Pratt, J. Geophys. Res. 95, 6955–6966 (1990). doi: 10.1029/JB095iB05p06955 CrossRefADSGoogle Scholar
  94. J.M. Sunshine, T.L. Farnham, L.M. Feaga, O. Groussin, F. Merlin, R.E. Milliken, M.F. A’Hearn, Science (2009). doi: 10.1126/science.1179788 Google Scholar
  95. P.C. Thomas et al., Icarus 128, 88–94 (1997). CrossRefADSGoogle Scholar
  96. P. Tricarico, M.V. Sykes, Planet. Space Sci. 58(12), 1516–1525 (2010) CrossRefADSGoogle Scholar
  97. T. Usui, H.Y. McSween, Meteorit. Planet. Sci. 42(2), 255 (2007) CrossRefADSGoogle Scholar
  98. T. Usui, H.Y. McSween, D.W. Mittlefehldt, T.H. Prettyman, Meteorit. Planet. Sci. (2010). doi: 10.1111/j.1945-5100.2010.01071.x Google Scholar
  99. P.H. Warren, G.W. Kallemeyn, H. Huber, F. Ulf-Møller, W. Choe, Geochim. Cosmochim. Acta 73, 5918 (2009) CrossRefADSGoogle Scholar
  100. J.T. Wasson, A.E. Rubin, Proc. Lunar Planet. Sci. XVI, 895–896 (1985). Abstract ADSGoogle Scholar
  101. M.Y. Zolotov, Icarus 204, 183 (2009) CrossRefADSGoogle Scholar
  102. M.T. Zuber, H.Y. McSween Jr., R.P. Binzel, L.T. Elkins-Tanton, A.S. Konopliv, C.M. Pieters, D.E. Smith, Space Sci. Rev. (2011). doi: 10.1007/s11214-011-9806-8 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Thomas H. Prettyman
    • 1
    Email author
  • William C. Feldman
    • 1
  • Harry Y. McSweenJr.
    • 3
  • Robert D. Dingler
    • 2
  • Donald C. Enemark
    • 2
  • Douglas E. Patrick
    • 2
  • Steven A. Storms
    • 2
  • John S. Hendricks
    • 4
  • Jeffery P. Morgenthaler
    • 1
  • Karly M. Pitman
    • 1
  • Robert C. Reedy
    • 1
  1. 1.Planetary Science InstituteTucsonUSA
  2. 2.Los Alamos National LaboratoryLos AlamosUSA
  3. 3.University of TennesseeKnoxvilleUSA
  4. 4.TechSource, Inc.Los AlamosUSA

Personalised recommendations