Advertisement

Space Science Reviews

, Volume 168, Issue 1–4, pp 315–332 | Cite as

Stratosphere NO y Species Measured by MIPAS and GOMOS Onboard ENVISAT During 2002–2010: Influence of Plasma Processes onto the Observed Distribution and Variability

  • Enrico ArnoneEmail author
  • Alain Hauchecorne
Article

Abstract

We present observations of stratosphere NO y species from 2002 to 2010 taken by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and by the Global Ozone Monitoring by Occultation of Stars (GOMOS) instruments on board ENVISAT. We jointly used observations of MIPAS NO2, HNO3, N2O5, ClONO2 and N2O, and GOMOS NO2 and NO3. MIPAS results are part of the MIPAS2D database retrieved adopting a full 2D tomographic approach. We describe the mean distribution and variability of NO y species in the stratosphere, identifying changes induced by plasma processes. Beside enhancements due to sporadic solar proton events, we show that winter polar NO2 has an almost linear relationship with the geomagnetic activity index Ap down to about 10 hPa. This indicates a dominant role of energetic precipitating particles in the production of upper atmosphere NO y . The correlation has clear signatures extending to mid latitudes. Partitioning of the NO y reservoir species are also traced, with HNO3 and N2O5 showing a correlation with Ap extending to lower altitude within the polar regions. We found no large signatures of an impact of thunderstorm-induced plasma processes onto monthly means of NO y species in the stratosphere.

Keywords

Stratosphere NOy NOx Energetic particle precipitation Plasma processes 

Notes

Acknowledgements

E.A. acknowledges the support by ESA CHIMTEA project within the framework of the Changing Earth Science Network Initiative.

References

  1. E. Arnone, A. Kero, B.M. Dinelli, C.-F. Enell, N.F. Arnold, E. Papandrea, C.J. Rodger, M. Carlotti, M. Ridolfi, E. Turunen, Seeking sprite-induced signatures in remotely sensed middle atmosphere NO2. Geophys. Res. Lett. 35, 5807 (2008). doi: 10.1029/2007GL031791 CrossRefGoogle Scholar
  2. E. Arnone, A. Kero, C.-F. Enell, M. Carlotti, C.J. Rodger, E. Papandrea, N.F. Arnold, B.M. Dinelli, M. Ridolfi, E. Turunen, Seeking sprite-induced signatures in remotely sensed middle atmosphere NO2: latitude and time variations. Plasma Sources Sci. Technol. 18(3), 034014 (2009). doi: 10.1088/0963-0252/18/3/034014 ADSCrossRefGoogle Scholar
  3. J. Baehr, H. Schlager, H. Ziereis, P. Stock, P. van Velthoven, R. Busen, J. Ström, U. Schumann, Aircraft observations of NO, NOy, CO, and O3 in the upper troposphere from 60N to 60S—interhemispheric differences at mitlatitudes. Geophys. Res. Lett. 30(11), 1598 (2003). doi: 10.1029/2003GL016935 ADSCrossRefGoogle Scholar
  4. C.A. Barth, S.M. Bailey, S.C. Solomon, Solar-terrestrial coupling: solar soft X-rays and thermospheric nitric oxide. Geophys. Res. Lett. 26, 1251–1254 (1999). doi: 10.1029/1999GL900237 ADSCrossRefGoogle Scholar
  5. S. Beirle, H. Huntrieser, T. Wagner, Direct satellite observation of lightning-produced NOx. Atmos. Chem. Phys. 10, 10965–10986 (2010). doi: 10.5194/acp-10-10965-2010 ADSCrossRefGoogle Scholar
  6. J.L. Bertaux, A. Hauchecorne, F. Dalaudier, C. Cot, E. Kyrölä, D. Fussen, J. Tamminen, G.W. Leppelmeier, V. Sofieva, S. Hassinen, O. Fanton D’Andon, G. Barrot, A. Mangin, B. Théodore, M. Guirlet, O. Korablev, P. Snoeij, R. Koopman, R. Fraisse, First results on GOMOS/ENVISAT. Adv. Space Res. 33, 1029–1035 (2004). doi: 10.1016/j.asr.2003.09.037 ADSCrossRefGoogle Scholar
  7. J.L. Bertaux, E. Kyrölä, D. Fussen, A. Hauchecorne, F. Dalaudier, V. Sofieva, J. Tamminen, F. Vanhellemont, O. Fanton D’Andon, G. Barrot, A. Mangin, L. Blanot, J.C. Lebrun, K. Pérot, T. Fehr, L. Saavedra, G.W. Leppelmeier, R. Fraisse, Global ozone monitoring by occultation of stars: an overview of GOMOS measurements on ENVISAT. Atmos. Chem. Phys. 10, 12091–12148 (2010). doi: 10.5194/acp-10-12091-2010 ADSCrossRefGoogle Scholar
  8. G.P. Brasseur, S. Solomon, Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere (Springer, Berlin, 2005) Google Scholar
  9. M. Calisto, I. Usoskin, E. Rozanov, T. Peter, Influence of galactic cosmic rays on atmospheric composition and dynamics. Atmos. Chem. Phys. 11, 4547–4556 (2011). doi: 10.5194/acp-11-4547-2011 ADSCrossRefGoogle Scholar
  10. L.B. Callis, J.D. Lambeth, NOy formed by precipitating electron events in 1991 and 1992: Descent into the stratosphere as observed by ISAMS. Geophys. Res. Lett. 25, 1875–1878 (1998). doi: 10.1029/98GL01219 ADSCrossRefGoogle Scholar
  11. L.B. Callis, R.E. Boughner, D.N. Baker, J.B. Blake, J.D. Lambeth, Precipitating relativistic electrons—their long-term effect on stratospheric odd nitrogen levels. J. Geophys. Res. 96, 2939–2976 (1991). doi: 10.1029/90JD02184 ADSCrossRefGoogle Scholar
  12. M. Carlotti, B.M. Dinelli, P. Raspollini, M. Ridolfi, Geo-fit approach to the analysis of limb-scanning satellite measurements. Appl. Opt. 40, 1872–1885 (2001). doi: 10.1364/AO.40.001872 ADSCrossRefGoogle Scholar
  13. M. Carlotti, G. Brizzi, E. Papandrea, M. Prevedelli, M. Ridolfi, B.M. Dinelli, L. Magnani, GMTR: Two-dimensional geo-fit multitarget retrieval model for Michelson Interferometer for Passive Atmospheric Sounding/Environmental Satellite observations. Appl. Opt. 45, 716–727 (2006). doi: 10.1364/AO.45.000716 ADSCrossRefGoogle Scholar
  14. P.J. Crutzen, Ozone production rates in an oxygen-hydrogen-nitrogen oxide atmosphere. J. Geophys. Res. 76, 7311–7327 (1971). doi: 10.1029/JC076i030p07311 ADSCrossRefGoogle Scholar
  15. P.J. Crutzen, U. Schmailzl, Chemical budgets of the stratosphere. Planet. Space Sci. 31, 1009–1032 (1983). doi: 10.1016/0032-0633(83)90092-2 ADSCrossRefGoogle Scholar
  16. P.J. Crutzen, I.S.A. Isaksen, G.C. Reid, Solar proton events—stratospheric sources of nitric oxide. Science 189, 457–459 (1975). doi: 10.1126/science.189.4201.457 ADSCrossRefGoogle Scholar
  17. B.M. Dinelli, D. Alpaslan, M. Carlotti, L. Magnani, M. Ridolfi, Multi-target retrieval (MTR): the simultaneous retrieval of pressure, temperature and volume mixing ratio profiles from limb-scanning atmospheric measurements. J. Quant. Spectrosc. Radiat. Transf. 84, 141–157 (2004). doi: 10.1016/S0022-4073(03)00137-7 ADSCrossRefGoogle Scholar
  18. B.M. Dinelli, E. Arnone, G. Brizzi, M. Carlotti, E. Castelli, L. Magnani, E. Papandrea, M. Prevedelli, M. Ridolfi, The MIPAS2D database of MIPAS/ENVISAT measurements retrieved with a multi-target 2-dimensional tomographic approach. Atmosp. Meas. Techn. 3, 355–374 (2010) CrossRefGoogle Scholar
  19. C.-F. Enell, E. Arnone, O. Chanrion, T. Adachi, P.T. Verronen, A. Seppälä, T. Neubert, T. Ulich, E. Turunen, Y. Takahashi, R.-R. Hsu, Parameterisation of the chemical effect of sprites in the middle atmosphere. Ann. Geophys. 26, 13–27 (2008) ADSCrossRefGoogle Scholar
  20. D.W. Fahey, K.K. Kelly, S.R. Kawa, A.F. Tuck, M. Loewenstein, Observations of denitrification and dehydration in the winter polar stratospheres. Nature 344, 321–324 (1990). doi: 10.1038/344321a0 ADSCrossRefGoogle Scholar
  21. H. Fischer, M. Birk, C. Blom, B. Carli, M. Carlotti, T. von Clarmann, L. Delbouille, A. Dudhia, D. Ehhalt, M. Endemann, J.M. Flaud, R. Gessner, A. Kleinert, R. Koopman, J. Langen, M. López-Puertas, P. Mosner, H. Nett, H. Oelhaf, G. Perron, J. Remedios, M. Ridolfi, G. Stiller, R. Zander, MIPAS: an instrument for atmospheric and climate research. Atmos. Chem. Phys. 8, 2151–2188 (2008) ADSCrossRefGoogle Scholar
  22. B. Funke, M. López-Puertas, S. Gil-López, T. von Clarmann, G.P. Stiller, H. Fischer, S. Kellmann, Downward transport of upper atmospheric NOx into the polar stratosphere and lower mesosphere during the Antarctic 2003 and Arctic 2002/2003 winters. J. Geophys. Res. 110, 24308 (2005). doi: 10.1029/2005JD006463 CrossRefGoogle Scholar
  23. B. Funke, M. López-Puertas, M. Garcia-Comas, G.P. Stiller, T. von Clarmann, N. Glatthor, Mesospheric N2O enhancements as observed by MIPAS on Envisat during the polar winters in 2002–2004. Atmos. Chem. Phys. 8, 5787–5800 (2008) ADSCrossRefGoogle Scholar
  24. B. Funke, A. Baumgaertner, M. Calisto, T. Egorova, C.H. Jackman, J. Kieser, A. Krivolutsky, M. López-Puertas, D.R. Marsh, T. Reddmann, E. Rozanov, S.-M. Salmi, M. Sinnhuber, G.P. Stiller, P.T. Verronen, S. Versick, T. von Clarmann, T.Y. Vyushkova, N. Wieters, J.M. Wissing, Composition changes after the “Halloween” solar proton event: the High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study. Atmos. Chem. Phys. 11, 9089–9139 (2011). doi: 10.5194/acp-11-9089-2011 ADSCrossRefGoogle Scholar
  25. F.J. Gordillo-Vázquez, Air plasma kinetics under the influence of sprites. J. Phys. D, Appl. Phys. 41(23), 234016 (2008). doi: 10.1088/0022-3727/41/23/234016 ADSCrossRefGoogle Scholar
  26. L.J. Gray, J. Beer, M. Geller, J.D. Haigh, M. Lockwood, K. Matthes, U. Cubasch, D. Fleitmann, G. Harrison, L. Hood, J. Luterbacher, G.A. Meehl, D. Shindell, B. van Geel, W. White, Solar influences on climate. Rev. Geophys. 48, 4001 (2010). doi: 10.1029/2009RG000282 ADSCrossRefGoogle Scholar
  27. J.K. Hargreaves, The Upper Atmosphere and Solar-Terrestrial Relations—An Introduction to the Aerospace Environment (Van Nostrand-Reinhold, New York, 1979) Google Scholar
  28. A. Hauchecorne, J.-L. Bertaux, F. Dalaudier, C. Cot, J.-C. Lebrun, S. Bekki, M. Marchand, E. Kyrölä, J. Tamminen, V. Sofieva, D. Fussen, F. Vanhellemont, O. Fanton D’Andon, G. Barrot, A. Mangin, B. Théodore, M. Guirlet, P. Snoeij, R. Koopman, L. Saavedra de Miguel, R. Fraisse, J.-B. Renard, First simultaneous global measurements of nighttime stratospheric NO2 and NO3 observed by Global Ozone Monitoring by Occultation of Stars (GOMOS)/Envisat in 2003. J. Geophys. Res. 110, 18301 (2005). doi: 10.1029/2004JD005711 CrossRefGoogle Scholar
  29. A. Hauchecorne, J.L. Bertaux, F. Dalaudier, P. Keckhut, P. Lemennais, S. Bekki, M. Marchand, J.C. Lebrun, E. Kyrölä, J. Tamminen, V. Sofieva, D. Fussen, F. Vanhellemont, O. Fanton D’Andon, G. Barrot, L. Blanot, T. Fehr, L. Saavedra de Miguel, Response of tropical stratospheric O3, NO2 and NO3 to the equatorial quasi-biennial oscillation and to temperature as seen from GOMOS/ENVISAT. Atmos. Chem. Phys. 10, 8873–8879 (2010). doi: 10.5194/acp-10-8873-2010 ADSCrossRefGoogle Scholar
  30. Y. Hiraki, Y. Kasai, H. Fukunishi, Chemistry of sprite discharges through ion-neutral reactions. Atmos. Chem. Phys. 8, 3919–3928 (2008) ADSCrossRefGoogle Scholar
  31. C.H. Jackman, E.L. Fleming, F.M. Vitt, Influence of extremely large solar proton events in a changing stratosphere. J. Geophys. Res. 105, 11659–11670 (2000). doi: 10.1029/2000JD900010 ADSCrossRefGoogle Scholar
  32. C.H. Jackman, R.D. McPeters, G.J. Labow, E.L. Fleming, C.J. Praderas, J.M. Russell, Northern hemisphere atmospheric effects due to the July 2000 solar proton event. Geophys. Res. Lett. 28, 2883–2886 (2001). doi: 10.1029/2001GL013221 ADSCrossRefGoogle Scholar
  33. C.H. Jackman, D.R. Marsh, F.M. Vitt, R.R. Garcia, E.L. Fleming, G.J. Labow, C.E. Randall, M. López-Puertas, B. Funke, T. von Clarmann, G.P. Stiller, Short- and medium-term atmospheric constituent effects of very large solar proton events. Atmos. Chem. Phys. 8, 765–785 (2008) ADSCrossRefGoogle Scholar
  34. M.K.W. Ko, D.K. Weisenstein, N.D. Sze, M.B. McElroy, Lightning—a possible source of stratospheric odd nitrogen. J. Geophys. Res. 91, 5395–5404 (1986). doi: 10.1029/JD091iD05p05395 ADSCrossRefGoogle Scholar
  35. V.R. Kotamarthi, M.K.W. Ko, D.K. Weisenstein, J.M. Rodriguez, N.D. Sze, Effect of lightning on the concentration of odd nitrogen species in the lower stratosphere: an update. J. Geophys. Res. 99, 8167–8174 (1994). doi: 10.1029/93JD03477 ADSCrossRefGoogle Scholar
  36. E. Kyrölä, J. Tamminen, G.W. Leppelmeier, V. Sofieva, S. Hassinen, A. Seppälä, P.T. Verronen, J.L. Bertaux, A. Hauchecorne, F. Dalaudier, D. Fussen, F. Vanhellemont, O.F. d’Andon, G. Barrot, A. Mangin, B. Theodore, M. Guirlet, R. Koopman, L.S. de Miguel, P. Snoeij, T. Fehr, Y. Meijer, R. Fraisse, Nighttime ozone profiles in the stratosphere and mesosphere by the global ozone monitoring by occultation of stars on Envisat. J. Geophys. Res. 111, 24306 (2006). doi: 10.1029/2006JD007193 CrossRefGoogle Scholar
  37. E. Kyrölä, J. Tamminen, V. Sofieva, J.L. Bertaux, A. Hauchecorne, F. Dalaudier, D. Fussen, F. Vanhellemont, O. Fanton D’Andon, G. Barrot, M. Guirlet, A. Mangin, L. Blanot, T. Fehr, L. Saavedra de Miguel, R. Fraisse, Retrieval of atmospheric parameters from GOMOS data. Atmos. Chem. Phys. 10, 11881–11903 (2010). doi: 10.5194/acp-10-11881-2010 ADSCrossRefGoogle Scholar
  38. M. López-Puertas, B. Funke, S. Gil-López, T. von Clarmann, G.P. Stiller, M. Höpfner, S. Kellmann, H. Fischer, C.H. Jackman, Observation of NOx enhancement and ozone depletion in the Northern and Southern hemispheres after the October–November 2003 solar proton events. J. Geophys. Res. 110, 09-43 (2005). doi: 10.1029/2005JA011050 Google Scholar
  39. D.R. Marsh, R.R. Garcia, D.E. Kinnison, B.A. Boville, F. Sassi, S.C. Solomon, K. Matthes, Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing. J. Geophys. Res. 112, 23306 (2007). doi: 10.1029/2006JD008306 CrossRefGoogle Scholar
  40. T. Neubert, M. Rycroft, T. Farges, E. Blanc, O. Chanrion, E. Arnone, A. Odzimek, N. Arnold, C.-F. Enell, E. Turunen, T. Bösinger, Á. Mika, C. Haldoupis, R.J. Steiner, O. van der Velde, S. Soula, P. Berg, F. Boberg, P. Thejll, B. Christiansen, M. Ignaccolo, M. Füllekrug, P.T. Verronen, J. Montanya, N. Crosby, Recent results from studies of electric discharges in the mesosphere. Surveys in Geophysics 14 (2008). doi: 10.1007/s10712-008-9043-1
  41. Y.J. Orsolini, G.L. Manney, M.L. Santee, C.E. Randall, An upper stratospheric layer of enhanced HNO3 following exceptional solar storms. Geophys. Res. Lett. 32, 12-01 (2005). doi: 10.1029/2004GL021588 CrossRefGoogle Scholar
  42. V.P. Pasko, Y. Yair, C.-L. Kuo, Lightning related transient luminous events at high altitude in the Earth’s atmosphere: phenomenology, mechanisms and effects. Space Science Rev., 287 (2011). doi: 10.1007/s11214-011-9813-9
  43. C.E. Randall, V.L. Harvey, C.S. Singleton, S.M. Bailey, P.F. Bernath, M. Codrescu, H. Nakajima, J.M. Russell, Energetic particle precipitation effects on the Southern Hemisphere stratosphere in 1992–2005. J. Geophys. Res. 112, 8308 (2007). doi: 10.1029/2006JD007696 CrossRefGoogle Scholar
  44. G.C. Reid, S. Solomon, R.R. Garcia, Response of the middle atmosphere to the solar proton events of August–December, 1989. Geophys. Res. Lett. 18, 1019–1022 (1991). doi: 10.1029/91GL01049 ADSCrossRefGoogle Scholar
  45. C.J. Rodger, A. Seppälä, M.A. Clilverd, Significance of transient luminous events to neutral chemistry: experimental measurements. Geophys. Res. Lett. 35, 7803 (2008). doi: 10.1029/2008GL033221 CrossRefGoogle Scholar
  46. D.W. Rusch, J.-C. Gerard, S. Solomon, P.J. Crutzen, G.C. Reid, The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere. I. Odd nitrogen. Planet. Space Sci. 29, 767–774 (1981). doi: 10.1016/0032-0633(81)90048-9 ADSCrossRefGoogle Scholar
  47. U. Schumann, H. Huntrieser, The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys. 7, 3823–3907 (2007) ADSCrossRefGoogle Scholar
  48. K. Semeniuk, V.I. Fomichev, J.C. McConnell, C. Fu, S.M.L. Melo, I.G. Usoskin, Middle atmosphere response to the solar cycle in irradiance and ionizing particle precipitation. Atmos. Chem. Phys. 11, 5045–5077 (2011). doi: 10.5194/acp-11-5045-2011 ADSCrossRefGoogle Scholar
  49. D.D. Sentman, H.C. Stenbaek-Nielsen, M.G. McHarg, J.S. Morrill, Plasma chemistry of sprite streamers. J. Geophys. Res. 113, 11112 (2008). doi: 10.1029/2007JD008941 CrossRefGoogle Scholar
  50. A. Seppälä, P.T. Verronen, E. Kyrölä, S. Hassinen, L. Backman, A. Hauchecorne, J.L. Bertaux, D. Fussen, Solar proton events of October-November 2003: ozone depletion in the Northern hemisphere polar winter as seen by GOMOS/Envisat. Geophys. Res. Lett. 31, 19107 (2004). doi: 10.1029/2004GL021042 ADSCrossRefGoogle Scholar
  51. A. Seppälä, P.T. Verronen, M.A. Clilverd, C.E. Randall, J. Tamminen, V. Sofieva, L. Backman, E. Kyrölä, Arctic and Antarctic polar winter NOx and energetic particle precipitation in 2002–2006. Geophys. Res. Lett. 341, 12810 (2007). doi: 10.1029/2007GL029733 ADSCrossRefGoogle Scholar
  52. M. Sinnhuber, S. Kazeminejad, J.M. Wissing, Interannual variation of NOx from the lower thermosphere to the upper stratosphere in the years 1991–2005. J. Geophys. Res. 116, 2312 (2011). doi: 10.1029/2010JA015825 CrossRefGoogle Scholar
  53. D.E. Siskind, An assessment of Southern Hemisphere stratospheric NOx enhancements due to transport from the upper atmosphere. Geophys. Res. Lett. 27, 329–332 (2000). doi: 10.1029/1999GL010940 ADSCrossRefGoogle Scholar
  54. D.E. Siskind, J.T. Bacmeister, M.E. Summers, J.M. Russell III, Two-dimensional model calculations of nitric oxide transport in the middle atmosphere and comparison with Halogen Occultation Experiment data. J. Geophys. Res. 102, 3527–3546 (1997). doi: 10.1029/96JD02970 ADSCrossRefGoogle Scholar
  55. A.K. Smith, Interactions between the lower, middle and upper atmosphere. Space Science Reviews, 76 (2011). doi: 10.1007/s11214-011-9791-y
  56. S. Solomon, R.R. Garcia, Simulation of NOx partitioning along isobaric parcel trajectories. Geophys. Res. Lett. 88, 5497–5501 (1983). doi: 10.1029/JC088iC09p05497 Google Scholar
  57. I.G. Usoskin, G.A. Kovaltsov, Cosmic ray induced ionization in the atmosphere: full modeling and practical applications. J. Geophys. Res. 111, 21206 (2006). doi: 10.1029/2006JD007150 CrossRefGoogle Scholar
  58. G. Verbanac, M. Mandea, B. Vršnak, S. Sentic, Evolution of solar and geomagnetic activity indices, and their relationship: 1960–2001. Sol. Phys. 271, 183–195 (2011). doi: 10.1007/s11207-011-9801-y ADSCrossRefGoogle Scholar
  59. P.T. Verronen, E. Turunen, T. Ulich, E. Kyrölä, Modelling the effects of the October 1989 solar proton event on mesospheric odd nitrogen using a detailed ion and neutral chemistry model. Ann. Geophys. 20, 1967–1976 (2002). doi: 10.5194/angeo-20-1967-2002 ADSCrossRefGoogle Scholar
  60. P.T. Verronen, S. Ceccherini, U. Cortesi, E. Kyrölä, J. Tamminen, Statistical comparison of night-time NO2 observations in 2003–2006 from GOMOS and MIPAS instruments. Adv. Space Res. 43, 1918–1925 (2009). doi: 10.1016/j.asr.2009.01.027 ADSCrossRefGoogle Scholar
  61. G. Wetzel, A. Bracher, B. Funke, F. Goutail, F. Hendrick, J.-C. Lambert, S. Mikuteit, C. Piccolo, M. Pirre, A. Bazureau, C. Belotti, T. Blumenstock, M. de Mazière, H. Fischer, N. Huret, D. Ionov, M. López-Puertas, G. Maucher, H. Oelhaf, J.-P. Pommereau, R. Ruhnke, M. Sinnhuber, G. Stiller, M. van Roozendael, G. Zhang, Validation of MIPAS-ENVISAT NO2 operational data. Atmos. Chem. Phys. 7, 3261–3284 (2007) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Istituto di Scienze dell’Atmosfera e del Clima, CNRBolognaItaly
  2. 2.LATMOS/IPSL, UVSQ, CNRS-INSUGuyancourtFrance

Personalised recommendations