Space Science Reviews

, Volume 168, Issue 1–4, pp 333–362 | Cite as

Gravity Wave Mixing and Effective Diffusivity for Minor Chemical Constituents in the Mesosphere/Lower Thermosphere

  • M. GrygalashvylyEmail author
  • E. Becker
  • G. R. Sonnemann


The influence of gravity waves (GWs) on the distributions of minor chemical constituents in the mesosphere-lower thermosphere (MLT) is studied on the basis of the effective diffusivity concept. The mixing ratios of chemical species used for calculations of the effective diffusivity are obtained from numerical experiments with an off-line coupled model of the dynamics and chemistry abbreviated as KMCM-MECTM (Kuehlungsborn Mechanistic general Circulation Model—MEsospheric Chemistry-Transport Model). In our control simulation the MECTM is driven with the full dynamical fields from an annual cycle simulation with the KMCM, where mid-frequency GWs down to horizontal wavelengths of 350 km are resolved and their wave-mean flow interaction is self-consistently induced by an advanced turbulence model. A perturbation simulation with the MECTM is defined by eliminating all meso-scale variations with horizontal wavelengths shorter than 1000 km from the dynamical fields by means of spectral filtering before running the MECTM.

The response of the MECTM to GWs perturbations reveals strong effects on the minor chemical constituents. We show by theoretical arguments and numerical diagnostics that GWs have direct, down-gradient mixing effects on all long-lived minor chemical species that possess a mean vertical gradient in the MLT. Introducing the term wave diffusion (WD) and showing that wave mixing yields approximately the same WD coefficient for different chemical constituents, we argue that it is a useful tool for diagnostic irreversible transport processes. We also present a detailed discussion of the gravity-wave mixing effects on the photochemistry and highlight the consequences for the general circulation of the MLT.


Wave diffusion Gravity waves Wave mixing Effective diffusivity Atmospheric chemistry MLT 


  1. S. Adler-Golden, Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements. J. Geophys. Res. 102(A9), 19,969–19,976 (1997). doi: 10.1029/97JA01622 ADSCrossRefGoogle Scholar
  2. D.R. Allen, N. Nakamura, A seasonal climatology of effective diffusivity in the stratosphere. J. Geophys. Res. 106(D8), 7917–7935 (2001) ADSCrossRefGoogle Scholar
  3. E. Becker, Sensitivity of the upper mesosphere to the Lorenz Energy Cycle of the Troposphere. J. Atmos. Sci. 66, 647–666 (2009). doi: 10.1175/2008JAS2735.1 ADSCrossRefGoogle Scholar
  4. E. Becker, Dynamical control of the middle atmosphere. Space Sci. Rev. (2011). doi: 10.1007/s11214-011-9841-5 Google Scholar
  5. E. Becker, C. von Savigny, Dynamical heating of the polar summer mesopause induced by solar proton events. J. Geophys. Res. 115, D00I18 (2010). doi: 10.1029/2009JD012561 CrossRefGoogle Scholar
  6. A.N. Belyaev, An emission layer as a gravity wave detector. J. Atmos. Sol.-Terr. Phys. 71, 1974–1981 (2009). doi: 10.1016/j.jastp.2009.09.001 ADSCrossRefGoogle Scholar
  7. M. Bittner, D. Offermann, H.-H. Graef, M. Donner, K. Hamilton, An 18 year time series of OH rotational temperatures and middle atmosphere decadal variations. J. Atmos. Sol.-Terr. Phys. 64, 1147–1166 (2002) ADSCrossRefGoogle Scholar
  8. G. Brasseur, S. Solomon, Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, 2nd edn. (Reidel, Dordrecht, 1986) Google Scholar
  9. F.D. Colegrove, W.B. Hanson, F.S. Johnson, Eddy diffusion and oxygen transport in the lower thermosphere. J. Geophys. Res. 70, 4931 (1965) ADSCrossRefGoogle Scholar
  10. C. Eden, R. Greatbatch, D. Olbers, Interpreting eddy fluxes. J. Phys. Oceanogr. 37, 1282–1296 (2007). doi: 10.1175/JPO3050.1 ADSCrossRefGoogle Scholar
  11. C. Eden, D. Olbers, R. Greatbatch, A generalised Osborn-Cox relation. J. Fluid Mech. 632, 457–474 (2009). doi: 10.1017/S0022112009007484 ADSzbMATHCrossRefGoogle Scholar
  12. B. Fichtelmann, G. Sonnemann, On the variation of ozone in the upper mesosphere and lower thermosphere: a comparison between theory and observation. Z. Meteorol. 9(6), 297–308 (1989) Google Scholar
  13. J.E. Frederick, Influence of gravity wave activity on lower thermospheric photochemistry and composition. Planet. Space Sci. 27, 1469–1477 (1979) ADSCrossRefGoogle Scholar
  14. D.C. Fritts, M.J. Alexander, Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 41(1), 1003 (2003). doi: 10.1029/2001RG000106 MathSciNetADSCrossRefGoogle Scholar
  15. R.R. Garcia, S. Solomon, The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. J. Geophys. Res. 90, 3850–3868 (1985) ADSCrossRefGoogle Scholar
  16. R.R. Garcia, D.R. Marsh, D.E. Kinnison, B.A. Boville, F. Sassi, Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res. 112, D09301 (2007). doi: 10.1029/2006JD007485 CrossRefGoogle Scholar
  17. M. Grygalashvyly, G.R. Sonnemann, P. Hartogh, Long-term behavior of the concentration of the minor constituents in the mesosphere—a model study. Atmos. Chem. Phys. 9, 2779–2792 (2009) ADSCrossRefGoogle Scholar
  18. M. Grygalashvyly, E. Becker, G.R. Sonnemann, Wave mixing effects on minor chemical constituents in the MLT-region: results from a global CTM driven by high-resolution dynamics. J. Geophys. Res. 116, D18302 (2011). doi: 10.1029/2010JD015518 ADSCrossRefGoogle Scholar
  19. P. Haynes, E. Shuckburgh, Effective diffusivity as a diagnostic of atmospheric transport, 1. Stratosphere. J. Geophys. Res. 105(D18), 22,777–22,794 (2000a) ADSGoogle Scholar
  20. P. Haynes, E. Shuckburgh, Effective diffusivity as a diagnostic of atmospheric transport, 2. Troposphere and lower stratosphere. J. Geophys. Res. 105(D18), 22,795–22,810 (2000b) ADSGoogle Scholar
  21. P. Hartogh, C. Jarchow, G.R. Sonnemann, M. Grygalashvyly, On the spatiotemporal behavior of ozone within the mesosphere/mesopause region under nearly polar night conditions. J. Geophys. Res. 109, D18303 (2004). doi: 10.1029/2004JD004576 ADSCrossRefGoogle Scholar
  22. P. Hartogh, G.R. Sonnemann, M. Grygalashvyly, S. Li, U. Berger, F.-J. Luebken, Water vapor measurements at ALOMAR over a solar cycle compared with model calculations by LIMA. J. Geophys. Res. 115, D00I17 (2010). doi: 10.1029/2009JD012364 CrossRefGoogle Scholar
  23. M.P. Hickey, R.L. Walterscheid, Wave-modified mean exothermic heating in the mesopause region. Geophys. Res. Lett. 21, 2413–2416 (1994) ADSCrossRefGoogle Scholar
  24. M.P. Hickey, G. Schubert, R.L. Walterscheid, Seasonal and latitudinal variations of gravity wave-driven fluctuations in OH nightglow. J. Geophys. Res. 97, 14,911–14,922 (1992) ADSCrossRefGoogle Scholar
  25. M.P. Hickey, G. Schubert, R.L. Walterscheid, Gravity wave-driven fluctuations in the O2 atmospheric (0–1) nightglow from an extended, dissipative emission region. J. Geophys. Res. 98, 13717–13730 (1993) ADSCrossRefGoogle Scholar
  26. M.P. Hickey, R.L. Walterscheid, M.J. Taylor, W. Ward, G. Schubert, Q. Zhou, F. Garcia, M.C. Kelly, G.G. Shepherd, A numerical calculations of gravity waves imaged over Arecibo during the 10-day January 1993 campaign. J. Geophys. Res. 102, 11,475 (1997) ADSCrossRefGoogle Scholar
  27. M.P. Hickey, R.L. Walterscheid, P.G. Richards, Secular variations of atomic oxygen in the mesopause region induced by transient gravity wave packets. Geophys. Res. Lett. 27, 3599–3602 (2000) ADSCrossRefGoogle Scholar
  28. M.P. Hickey, T.-Y. Huang, R.L. Walterscheid, Gravity wave packet effects on chemical exothermic heating in the mesopause region. J. Geophys. Res. 108, 1448–1454 (2003). doi: 10.1029/2002JA009363 CrossRefGoogle Scholar
  29. P. Hoffmann, E. Becker, W. Singer, M. Placke, Seasonal variation of mesospheric waves at northern middle and high latitudes. J. Atmos. Sol.-Terr. Phys. 72, 1068–1079 (2010). doi: 10.1016/j.jastp.2010.07.002 ADSCrossRefGoogle Scholar
  30. T.-Y. Huang, Simulations of OH nightglow emission in the occurrence of sprites. J. Geophys. Res. 111, A11311 (2006) ADSCrossRefGoogle Scholar
  31. T.-Y. Huang, M.P. Hickey, On the latitudinal variations of the non-periodic response of minor species induced by a dissipative gravity-wave packet in the MLT region. J. Atmos. Sol.-Terr. Phys. 69, 741–757 (2007). doi: 10.1016/j.jastp.2007.01.011 ADSCrossRefGoogle Scholar
  32. T.-Y. Huang, M.P. Hickey, T.-F. Tuan, On nonlinear response of minor species with a layered structure to gravity waves. J. Geophys. Res. 108, 1173–1184 (2003). doi: 10.1029/2002JA009497 CrossRefGoogle Scholar
  33. H. Körnich, G. Schmitz, E. Becker, The role of stationary waves in the maintenance of the Northern Annular Mode as deduced from model experiments. J. Atmos. Sci. 63, 2931–2947 (2006) ADSCrossRefGoogle Scholar
  34. S.V. Kostrykin, G. Schmitz, Effective diffusivity in the middle atmosphere based on general circulation model winds. J. Geophys. Res. 111, D02304 (2006). doi: 10.1029/2004JD005472 CrossRefGoogle Scholar
  35. Ch. Kremp, U. Berger, P. Hoffmann, D. Keuer, G.R. Sonnemann, Seasonal variation of middle latitude wind fields of the mesopause region—a comparison between observation and model calculation. Geophys. Res. Lett. 26, 1279–1282 (1999) ADSCrossRefGoogle Scholar
  36. J.J. Leko, M.P. Hickey, P.G. Richards, Comparison of simulated gravity wave-driven mesospheric airglow fluctuations observed from the ground and space. J. Atmos. Sol.-Terr. Phys. 64, 397–403 (2002) ADSCrossRefGoogle Scholar
  37. C.B. Leovy, Photochemical destabilization of gravity wave near the mesopause. J. Atmos. Sci. 23, 223–232 (1966) ADSCrossRefGoogle Scholar
  38. R.S. Lindzen, Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res. 86, 9707–9714 (1981) ADSCrossRefGoogle Scholar
  39. J. London, Radiative energy sources and sinks in the stratosphere and mesosphere, in Proc. NATO Advanced Study Institute on Atmospheric Ozone: Its Variation and Human Influences, Algarve, Portugal, Report FAAEE-80-20, 703 (1980) Google Scholar
  40. S. Lossow, J. Urban, H. Schmidt, D.R. Marsh, J. Gumbel, P. Eriksson, D. Murtagh, Wintertime water vapor in the polar upper mesosphere and lower thermosphere: first satellite observations by Odin submillimeter radiometer. J. Geophys. Res. 114, D10304 (2009a). doi: 10.1029/2008JD011462 ADSCrossRefGoogle Scholar
  41. S. Lossow, M. Khaplanov, J. Gumbel, J. Stegman, G. Witt, P. Dalin, S. Kirkwood, F.J. Schmidlin, K.H. Fricke, U. Blum, Middle atmospheric water vapour and dynamics in the vicinity of the polar vortex during the Hygrosonde-2 campaign. Atmos. Chem. Phys. 9, 4407–4417 (2009b) ADSCrossRefGoogle Scholar
  42. F.-J. Lübken, Seasonal variation of turbulent energy dissipation rates at high latitudes as determined by in situ measurements of neutral density fluctuations. J. Geophys. Res. 102, 13,441–13,456 (1997) ADSCrossRefGoogle Scholar
  43. J. Ma, The modified Lagrangian-mean diagnostics of the stratospheric transport and chemistry, Ph.D. dissertation, University of Chicago, 130 pp., 1999 Google Scholar
  44. U.B. Makhlouf, R.H. Picard, J.R. Winick, Photochemical-dynamical modeling of the measured response of airglow to gravity waves. 1. Basic model for OH airglow. J. Geophys. Res. 100, 11289–11311 (1995) ADSCrossRefGoogle Scholar
  45. U.B. Makhlouf, R.H. Picard, J.R. Winick, T.F. Tuan, A model for the response of the atomic oxygen 557.7 nm and the OH Meinel airglow to atmospheric gravity waves in a realistic atmosphere. J. Geophys. Res. 103, 6261–6269 (1998) ADSCrossRefGoogle Scholar
  46. D. Marsh, A. Smith, G. Brasseur, M. Kaufmann, K. Grossmann, The existence of a tertiary ozone maximum in the high latitude middle mesosphere. Geophys. Res. Lett. 28, 4531–4534 (2001) ADSCrossRefGoogle Scholar
  47. I.C. McDade, E.J. Llewellyn, Kinetic parameters related to sources and sinks of vibrationally excited OH in the nightglow. J. Geophys. Res. 92, 7643–7650 (1987) ADSCrossRefGoogle Scholar
  48. A.S. Medvedev, R.J. Greatbatch, On advection and diffusion in the mesosphere and lower thermosphere: the role of rotational fluxes. J. Geophys. Res. 109, D07104 (2004). doi: 10.1029/2003JD003931 CrossRefGoogle Scholar
  49. L. Megner, D.E. Siskind, M. Rapp, J. Gumbel, Global and temporal distribution of meteoric smoke: a two dimensional simulation study. J. Geophys. Res. 113, D03202 (2008). doi: 10.1029/2007JD009054 CrossRefGoogle Scholar
  50. M.G. Mlynczak, S. Solomon, A detailed evaluation of the heating efficiency in the middle Atmosphere. J. Geophys. Res. 98, 10,517–10,541 (1993) ADSGoogle Scholar
  51. K.W. Morton, D.F. Mayers, Numerical Solution of Partial Differential Equations (Cambridge University Press, Cambridge, 1994) zbMATHGoogle Scholar
  52. D.P. Murtagh, G. Witt, J. Stegman, I.C. McDade, E.J. Llewellyn, F. Harris, R.G.H. Greer, An assessment of proposed O(1S) and O2(b1Σg 1) nightglow excitation parameters. Planet. Space Sci. 38, 43–53 (1990) ADSCrossRefGoogle Scholar
  53. N. Nakamura, Two-dimensional mixing, edge formation, and permeability diagnosed in an area coordinate. J. Atmos. Sci. 53, 1524–1537 (1996) ADSCrossRefGoogle Scholar
  54. N. Nakamura, A new look at eddy diffusivity as a mixing diagnostic. J. Atmos. Sci. 58, 3685–3701 (2001) ADSCrossRefGoogle Scholar
  55. R. Nassar, P.F. Bernath, C.D. Boone, G.L. Manney, S.D. McLeod, C.P. Rinsland, R. Skelton, K.A. Walker, ACE-FTS measurements across the edge of the winter 2004 Arctic vortex. Geophys. Res. Lett. 32, L15S05 (2005). doi: 10.1029/2005GL022671 CrossRefGoogle Scholar
  56. K. Nielsen, M.J. Taylor, P.-D. Pautet, D.C. Fritts, N. Mitchell, C. Beldon, B.P. Williams, W. Singer, F.J. Schmidlin, R.A. Goldberg, Propagation of short-period gravity waves at high-latitudes during the MaCWAVE winter campaign. Ann. Geophys. 24, 1227–1243 (2006) ADSCrossRefGoogle Scholar
  57. D. Offermann, R. Gerndt, Upper mesospheric temperature from OH emissions, in CIRA 1986. Adv. Space Res. 10(12), 217–221 (1990) ADSCrossRefGoogle Scholar
  58. D. Offermann, P. Hoffmann, P. Knieling, R. Koppmann, J. Oberheide, D.M. Riggin, V.M. Tunbridge, W. Steinbrecht, Quasi-two day waves in the summer mesosphere: triple structure of amplitudes and long-term development. J. Geophys. Res. 116, D00P02 (2011). doi: 10.1029/2010JD015051 CrossRefGoogle Scholar
  59. T.R. Osborn, C.S. Cox, Oceanic fine structure. Geophys. Astrophys. Fluid Dyn. 3(1), 321–345 (1972) ADSCrossRefGoogle Scholar
  60. R.A. Plumb, Tracer interrelationships in the stratosphere. Rev. Geophys. 45, RG4005 (2007). doi: 10.1029/2005RG000179 ADSCrossRefGoogle Scholar
  61. R.A. Plumb, M.K.W. Ko, Interrelationships between mixing ratios of long-lived stratospheric constituents. J. Geophys. Res. 97, 10,145–10,156 (1992) ADSCrossRefGoogle Scholar
  62. E.-P. Röth, Fast algorithm to calculate the photon flux in optically dense media for use in photochemical models. Ber. Bunsenges. Phys. Chem. 96, 417–420 (1992) CrossRefGoogle Scholar
  63. J.P. Russell, W.E. Ward, R.P. Lowe, R.G. Roble, G.G. Shepherd, B. Solheim, Atomic oxygen profiles (80 to 115 km) derived from Wind Imaging Interferometer/Upper Atmospheric Research Satellite measurements of the hydroxyl and greenline airglow: local time–latitude dependence. J. Geophys. Res. 110, D15305 (2005). doi: 10.1029/2004JD005570 ADSCrossRefGoogle Scholar
  64. S.P. Sander, R.R. Friedl, D.M. Golden, M.J. Kurylo, R.E. Huie, V.L. Orkin, G.K. Moortgat, P.H. Wine, A.R. Ravishankara, C.E. Kolb, M.J. Molina, B.J. Finlayson-Pitts, Chemical kinetics and photochemical data for use in stratospheric modeling, JPL Publication 06-2, Evaluation Number 15, California Institute of Technology, Pasadena, CA, USA (2006) Google Scholar
  65. G.A. Schmidt, R. Ruedy, J.E. Hansen, I. Aleinov, N. Bell, M. Bauer, S. Bauer, B. Cairns, V. Canuto, Y. Cheng, A. Del Genio, G. Faluvegi, A.D. Friend, T.M. Hall, Y. Hu, M. Kelley, N.Y. Kiang, D. Koch, A.A. Lacis, J. Lerner, K.K. Lo, R.L. Miller, L. Nazarenko, V. Oinas, J. Perlwitz, J. Perlwitz, D. Rind, A. Romanou, G.L. Russell, M. Sato, D.T. Shindell, P.H. Stone, S. Sun, N. Tausnev, D. Thresher, M.-S. Yao, Present day atmospheric simulations using GISS ModelE: comparison to in-situ, satellite and reanalysis data. J. Climate 19, 153–192 (2006). doi: 10.1175/JCLI3612.1 ADSCrossRefGoogle Scholar
  66. C.-Y. She, R.P. Lowe, Seasonal temperature variations in the mesopause region at mid-latitude: comparison of lidar and hydroxyl rotational temperatures using WINDII/UARS height profiles. J. Atmos. Sol.-Terr. Phys. 60, 1573–1583 (1998) ADSCrossRefGoogle Scholar
  67. T.G. Shepherd, Transport in the middle atmosphere. J. Meteorol. Soc. Jpn. 85B, 165–191 (2007) CrossRefGoogle Scholar
  68. T.G. Shepherd, J.N. Koshyk, K. Ngan, On the nature of large-scale mixing in the stratosphere and mesosphere. J. Geophys. Res. 105(D10), 12,433–12,446 (2000) ADSCrossRefGoogle Scholar
  69. T. Shimazaki, Minor Constituents in the Middle Atmosphere (Reidel, Dordrecht, 1985) Google Scholar
  70. E. Shuckburgh, W. Norton, A. Iwi, P. Haynes, Influence of the quasi-biennial oscillation on isentropic transport and mixing in the tropics and subtropics. J. Geophys. Res. 106(D13), 14,327–14,337 (2001) ADSCrossRefGoogle Scholar
  71. E. Shuckburgh, H. Jones, J. Marshall, C. Hill, Robustness of an effective diffusivity diagnostic in oceanic flows. J. Phys. Oceanogr. 39, 1993–2009 (2009a). doi: 10.1175/2009JPO4122.1 ADSCrossRefGoogle Scholar
  72. E. Shuckburgh, H. Jones, J. Marshall, C. Hill, Understanding the regional variability of eddy diffusivity in the Pacific sector of the southern ocean. J. Phys. Oceanogr. 39, 2011–2023 (2009b). doi: 10.1175/2009JPO4115.1 ADSCrossRefGoogle Scholar
  73. A.J. Simmons, D.M. Burridge, An energy and angular momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Weather Rev. 109, 758–766 (1981) ADSCrossRefGoogle Scholar
  74. A.K. Smith, M. Lopez-Puertas, M. Garcia-Comas, S. Tukiainen, SABER observations of mesospheric ozone during NH late winter 2002–2009. Geophys. Res. Lett. 36, L23804 (2009). doi: 10.1029/2009GL040942 ADSCrossRefGoogle Scholar
  75. A.K. Smith, D.R. Marsh, M.G. Mlynczak, J.C. Mast, Temporal variation of atomic oxygen in the upper mesosphere from SABER. J. Geophys. Res. 115, D18309 (2010). doi: 10.1029/2009JD013434 ADSCrossRefGoogle Scholar
  76. B.H. Solheim, E.J. Llewellyn, An indirect mechanism for the production of O(1S) in the aurora. Planet. Space Sci. 27, 473–479 (1979) ADSCrossRefGoogle Scholar
  77. G.R. Sonnemann, U. Körner, Total hydrogen mixing ratio anomaly around the mesopause region. J. Geophys. Res. 108, 4692–4702 (2003). doi: 10.1029/2002JD003015 CrossRefGoogle Scholar
  78. G. Sonnemann, Ch. Kremp, A. Ebel, U. Berger, Calculation of the global chemical heating rates by means of a 3d-model of dynamics and chemistry. Adv. Space Res. 20(6), 1153–1156 (1997) ADSCrossRefGoogle Scholar
  79. G. Sonnemann, Ch. Kremp, A. Ebel, U. Berger, A three-dimensional dynamic model of minor constituents of the mesosphere. Atmos. Environ. 32, 3157–3172 (1998a) CrossRefGoogle Scholar
  80. G.R. Sonnemann, M. Grygalashvyly, U. Berger, Autocatalytic water vapor production as a source of large mixing ratios within the middle to upper mesosphere. J. Geophys. Res. 110, D15303 (2005). doi: 10.1029/2004JD005593 ADSCrossRefGoogle Scholar
  81. G.R. Sonnemann, M. Grygalashvyly, P. Hartogh, C. Jarchow, Behavior of mesospheric ozone under nearly polar night conditions. Adv. Space Res. 40, 846–854 (2007) ADSCrossRefGoogle Scholar
  82. H. Takahashi, Y. Sahai, P.P. Batista, B.R. Clemesha, Atmospheric gravity wave effect on the airglow O (0,1) and OH (9,4) band intensity and temperature variations observed from a low latitude station. Adv. Space Res. 12, 131–134 (1992) ADSCrossRefGoogle Scholar
  83. H. Takahashi, M.L. Stella, B.R. Clemesha, D.M. Simonich, Atomic hydrogen and ozone concentration derived from simultaneous lidar and rocket airglow measurements in the equatorial region. J. Geophys. Res. 101, 4033 (1996) ADSCrossRefGoogle Scholar
  84. D.W. Tarasick, G.G. Shepherd, Effects of gravity waves on complex airglow chemistries. 2. OH emission. J. Geophys. Res. 97, 3195–3208 (1992) ADSCrossRefGoogle Scholar
  85. M.J. Taylor, P.J. Espy, D.J. Baker, R.J. Sica, P.C. Neal, W.R. Pendleton Jr., Simultaneous intensity, temperature and imaging measurements of short period wave structure in the OH nightglow emission. Planet. Space Sci. 39, 1171–1188 (1991) ADSCrossRefGoogle Scholar
  86. M.J. Taylor, D.C. Fritts, J.R. Isler, Determination of horizontal and vertical structure of an unusual pattern of short period gravity waves imaged during ALOHA-93. Geophys. Res. Lett. 22, 2837–2840 (1995a) ADSCrossRefGoogle Scholar
  87. M.J. Taylor, Y.Y. Gu, X. Tao, C.S. Gardner, M.B. Bishop, An investigation of intrinsic gravity wave signatures using coordinated lidar and nightglow image measurements. Geophys. Res. Lett. 22, 2853–2856 (1995b) ADSCrossRefGoogle Scholar
  88. M.J. Taylor, W.R. Pendleton Jr., S. Clark, H. Takahashi, D. Gobbi, R.A. Goldberg, Image measurements of short-period gravity waves at equatorial latitudes. J. Geophys. Res. 102, 26,283–26,299 (1997) ADSGoogle Scholar
  89. M.J. Taylor, S.H. Seo, T. Nakamura, T. Tsuda, H. Fukunishi, Y. Takahashi, Long base-line measurements of short-period mesospheric gravity waves during the SEEK campaign. Geophys. Res. Lett. 25, 1797–1800 (1998) ADSCrossRefGoogle Scholar
  90. R.J. Thomas, Atomic hydrogen and atomic oxygen density in the mesopause region: global and seasonal variations deduced from Solar Mesosphere Explorer near-infrared emissions. J. Geophys. Res. 95, 16,457–16,476 (1990) ADSGoogle Scholar
  91. U. von Zahn, K.H. Fricke, R. Gerndt, T. Blix, Mesospheric temperatures and the OH layer height as derived from ground-based lidar and OH spectrometry. J. Atmos. Sol.-Terr. Phys. 49, 863–869 (1987) ADSCrossRefGoogle Scholar
  92. C.J. Walcek, Minor flux adjustment near mixing ratio extremes for simplified yet highly accurate monotonic calculation of tracer advection. J. Geophys. Res. 105, 9335–9348 (2000) ADSCrossRefGoogle Scholar
  93. C.J. Walcek, N.M. Aleksic, A simple but accurate mass conservative, peak preserving, mixing ratio bounded advection algorithm with Fortran code. Atmos. Environ. 32, 3863–3880 (1998) CrossRefGoogle Scholar
  94. R.L. Walterscheid, G. Schubert, Gravity wave fluxes of O3 and OH at the nightside mesopause. Geophys. Res. Lett. 16, 719–722 (1989) ADSCrossRefGoogle Scholar
  95. R.L. Walterscheid, G. Schubert, J.M. Straus, A dynamicalchemical model of wave-driven fluctuations in OH nightglow. J. Geophys. Res. 92, 1241–1254 (1987) ADSCrossRefGoogle Scholar
  96. D.Y. Wang, W.E. Ward, Y.J. Rochon, G.G. Shepherd, Airglow intensity variations induced by gravity waves. Part 1: Generalization of the Hines-Narasick theory. J. Atmos. Sol.-Terr. Phys. 63, 35–46 (2001a) ADSCrossRefGoogle Scholar
  97. D.Y. Wang, Y.J. Rochon, S.P. Zhang, W.E. Ward, R.H. Wiens, D.Y. Liang, W.A. Gault, B.H. Solheim, G.G. Shepherd, Airglow intensity variations induced by gravity waves. Part 2: Comparisons with observations. J. Atmos. Sol.-Terr. Phys. 63, 47–60 (2001b) ADSCrossRefGoogle Scholar
  98. J. Weinstock, Theory of the interaction of gravity waves with O2(1Σ) airglow. J. Geophys. Res. 83, 5175 (1978) ADSCrossRefGoogle Scholar
  99. K.B. Winters, E.A. D’Asaro, Diascalar flux and the rate of fluid mixing. J. Fluid Mech. 317, 179–193 (1996) ADSzbMATHCrossRefGoogle Scholar
  100. J. Xu, Y. Wang, Y. Wang, The loss of photochemical heating caused by gravity waves in the mesopause region. J. Atmos. Sol.-Terr. Phys. 62, 37–45 (2000a) ADSCrossRefGoogle Scholar
  101. J. Xu, A.K. Smith, G.P. Brasseur, The effects of gravity waves on distributions of chemically active constituents in the mesopause region. J. Geophys. Res. 105, 26,593–26,602 (2000b) ADSGoogle Scholar
  102. J. Xu, A.K. Smith, G.P. Brasseur, Conditions for the photochemical destabilization of gravity waves in the mesopause region. J. Atmos. Sol.-Terr. Phys. 63, 1821–1829 (2001) ADSCrossRefGoogle Scholar
  103. J. Xu, A.K. Smith, R. Ma, A numerical study of the effect of gravity-wave propagation on minor species distributions in the mesopause region. J. Geophys. Res. 108, 4119–4130 (2003). doi: 10.1029/2001JD001570 CrossRefGoogle Scholar
  104. S.P. Zhang, R.H. Wiens, G.G. Shepherd, Gravity waves from O2 nightglow during the AIDA ’89 campaign I: emission rate/temperature observations. J. Atmos. Terr. Phys. 55, 355 (1993a) ADSCrossRefGoogle Scholar
  105. S.P. Zhang, R.H. Wiens, G.G. Shepherd, Gravity waves from O2 nightglow during the AIDA ’89 campaign II: a theory of the emission rate/temperature ratio, η. J. Atmos. Terr. Phys. 55, 377 (1993b) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Leibniz-Institute of Atmospheric Physics at the University Rostock in KühlungsbornOstseebad KühlungsbornGermany

Personalised recommendations