Space Science Reviews

, Volume 164, Issue 1–4, pp 1–83

Mapping Magnetospheric Equatorial Regions at Saturn from Cassini Prime Mission Observations

  • C. S. Arridge
  • N. André
  • H. J. McAndrews
  • E. J. Bunce
  • M. H. Burger
  • K. C. Hansen
  • H.-W. Hsu
  • R. E. Johnson
  • G. H. Jones
  • S. Kempf
  • K. K. Khurana
  • N. Krupp
  • W. S. Kurth
  • J. S. Leisner
  • C. Paranicas
  • E. Roussos
  • C. T. Russell
  • P. Schippers
  • E. C. Sittler
  • H. T. Smith
  • M. F. Thomsen
  • M. K. Dougherty
Article

Abstract

Saturn’s rich magnetospheric environment is unique in the solar system, with a large number of active magnetospheric processes and phenomena. Observations of this environment from the Cassini spacecraft has enabled the study of a magnetospheric system which strongly interacts with other components of the saturnian system: the planet, its rings, numerous satellites (icy moons and Titan) and various dust, neutral and plasma populations. Understanding these regions, their dynamics and equilibria, and how they interact with the rest of the system via the exchange of mass, momentum and energy is important in understanding the system as a whole. Such an understanding represents a challenge to theorists, modellers and observers. Studies of Saturn’s magnetosphere based on Cassini data have revealed a system which is highly variable which has made understanding the physics of Saturn’s magnetosphere all the more difficult. Cassini’s combination of a comprehensive suite of magnetospheric fields and particles instruments with excellent orbital coverage of the saturnian system offers a unique opportunity for an in-depth study of the saturnian plasma and fields environment. In this paper knowledge of Saturn’s equatorial magnetosphere will be presented and synthesised into a global picture. Data from the Cassini magnetometer, low-energy plasma spectrometers, energetic particle detectors, radio and plasma wave instrumentation, cosmic dust detectors, and the results of theory and modelling are combined to provide a multi-instrumental identification and characterisation of equatorial magnetospheric regions at Saturn. This work emphasises the physical processes at work in each region and at their boundaries. The result of this study is a map of Saturn’s near equatorial magnetosphere, which represents a synthesis of our current understanding at the end of the Cassini Prime Mission of the global configuration of the equatorial magnetosphere.

Keywords

Cassini Saturn Magnetospheric regions Plasma processes 

References

  1. N. Achilleos, C. Bertucci, C.T. Russell, G.B. Hospodarsky, A.M. Rymer, C.S. Arridge, M.E. Burton, M.K. Dougherty, S. Hendricks, E.J. Smith, B.T. Tsurutani, Orientation, location, and velocity of Saturn’s bow shock: Initial results from the Cassini spacecraft. J. Geophys. Res. 111, A03201 (2006). doi:10.1029/2005JA011297 Google Scholar
  2. N. Achilleos, C.S. Arridge, H.J. McAndrews, A. Masters, M.K. Dougherty, A.J. Coates, High-latitude structure of Saturn’s magnetopause: Cassini observations. Eos Trans. AGU 88(52), Fall Meet. Suppl., Abstract P53D-01 (2007) Google Scholar
  3. N. Achilleos, C.S. Arridge, C. Bertucci, C.M. Jackman, M.K. Dougherty, K.K. Khurana, C.T. Russell, Large-scale dynamics of Saturn’s magnetopause: observations by Cassini. J. Geophys. Res. 113(11), A11209 (2008) ADSGoogle Scholar
  4. N. Achilleos, P. Guio, C.S. Arridge, A model of force balance in Saturn’s magnetodisc. Mon. Not. R. Astron. Soc. 401(4), 2349–2371 (2010a). doi:10.1111/j.1365-2966.2009.15865.x ADSGoogle Scholar
  5. N. Achilleos, P. Guio, C.S. Arridge, N. Sergis, R.J. Wilson, M.F. Thomsen, Influence of hot plasma pressure on the global structure of Saturn’s magnetodisk. Geophys. Res. Lett. 37, L20201 (2010b). doi:10.1029/2010GL045159 ADSGoogle Scholar
  6. N. André, K.M. Ferrière, Low-frequency waves and instabilities in stratified, gyrotropic, multicomponent plasmas: Theory and application to plasma transport in the Io torus. J. Geophys. Res. 109(12), A12225 (2004) ADSGoogle Scholar
  7. N. André, K.M. Ferrière, Stratification-driven instabilities with bi-kappa distribution functions in the Io plasma torus. J. Geophys. Res. 113(9), A0902 (2008) Google Scholar
  8. N. André, M.K. Dougherty, C.T. Russell, J.S. Leisner, K.K. Khurana, Dynamics of the saturnian inner magnetosphere: First inferences from the Cassini magnetometers about small-scale plasma transport in the magnetosphere. Geophys. Res. Lett. 32(14), L14S06 (2005) Google Scholar
  9. N. André, A.M. Persoon, J. Goldstein, P. Louarn, G.R. Lewis, A.M. Rymer, A.J. Coates, W.S. Kurth, E.C. Sittler, M.F. Thomsen, F.J. Crary, M.K. Dougherty, D.A. Gurnett, D.T. Young, Magnetic signatures of plasma-depleted flux tubes in the saturnian inner magnetosphere. Geophys. Res. Lett. 34(14), L14108 (2007) ADSGoogle Scholar
  10. N. André, M. Blanc, S. Maurice, P. Schippers, E. Pallier, T.I. Gombosi, K.C. Hansen, D.T. Young, F.J. Crary, S. Bolton, E.C. Sittler, H.T. Smith, R.E. Johnson, R.A. Baragiola, A.J. Coates, A.M. Rymer, M.K. Dougherty, N. Achilleos, C.S. Arridge, S.M. Krimigis, D.G. Mitchell, N. Krupp, D.C. Hamilton, I. Dandouras, D.A. Gurnett, W.S. Kurth, P. Louarn, R. Srama, S. Kempf, H.J. Waite, L.W. Esposito, J.T. Clarke, Identification of Saturn’s magnetospheric regions and associated plasma processes: Synposis of Cassini observations during orbit insertion. Rev. Geophys. 46(4), RG4008 (2008) ADSGoogle Scholar
  11. D.J. Andrews, E.J. Bunce, S.W.H. Cowley, M.K. Dougherty, G. Provan, D.J. Southwood, Planetary period oscillations in Saturn’s magnetosphere: Phase relation of equatorial magnetic field oscillations and Saturn kilometric radiation modulation. J. Geophys. Res. 113(9), A09205 (2008) Google Scholar
  12. D.J. Andrews, S.W.H. Cowley, M.K. Dougherty, G. Provan, Magnetic field oscillations near the planetary period in Saturn’s equatorial magnetosphere: Variation of amplitude and phase with radial distance and local time. J. Geophys. Res. 115, A04212 (2010). doi:10.1029/2009JA014729 Google Scholar
  13. C.S. Arridge, N. Achilleos, M.K. Dougherty, K.K. Khurana, C.T. Russell, Modeling the size and shape of Saturn’s magnetopause with variable dynamic pressure. J. Geophys. Res. 111(11), A11227 (2006) ADSGoogle Scholar
  14. C.S. Arridge, C.T. Russell, K.K. Khurana, N. Achilleos, N. André, A.M. Rymer, M.K. Dougherty, A.J. Coates, Mass of Saturn’s magnetodisc: Cassini observations. Geophys. Res. Lett. 34(9), L09108 (2007) Google Scholar
  15. C.S. Arridge, N. André, N. Achilleos, K.K. Khurana, C.L. Bertucci, L.K. Gilbert, G.R. Lewis, A.J. Coates, M.K. Dougherty, Thermal electron periodicities at 20RS in Saturn’s magnetosphere. Geophys. Res. Lett. 35(15), L15107 (2008a) ADSGoogle Scholar
  16. C.S. Arridge, K.K. Khurana, C.T. Russell, D.J. Southwood, N. Achilleos, M.K. Dougherty, A.J. Coates, H.K. Leinweber, Warping of Saturn’s magnetospheric and magnetotail current sheets. J. Geophys. Res. 113(8), A08217 (2008b) Google Scholar
  17. C.S. Arridge, C.T. Russell, K.K. Khurana, N. Achilleos, S.W.H. Cowley, M.K. Dougherty, D.J. Southwood, E.J. Bunce, Saturn’s magnetodisc current sheet. J. Geophys. Res. 113(4), A04214 (2008c) Google Scholar
  18. C.S. Arridge, L.K. Gilbert, G.R. Lewis, E.C. Sittler, G.H. Jones, D.O. Kataria, A.J. Coates, D.T. Young, The effect of spacecraft radiation sources on electron moments from the Cassini CAPS Electron Spectrometer. Planet. Space Sci. 57(7), 854–869 (2009a). doi:10.1016/j.pss.2009.02.011 ADSGoogle Scholar
  19. C.S. Arridge, H.J. McAndrews, C.M. Jackman, C. Forsyth, A.P. Walsh, E.C. Sittler, L.K. Gilbert, G.R. Lewis, C.T. Russell, A.J. Coates, M.K. Dougherty, G.A. Collinson, A. Wellbrock, D.T. Young, Plasma electrons in Saturn’s magnetotail: Structure, distribution and energisation. Planet. Space Sci. 57(14–15), 2032–2047 (2009b). doi:10.1016/j.pss.2009.09.007 ADSGoogle Scholar
  20. C.S. Arridge, N. André, K.K. Khurana, C.T. Russell, S.W.H. Cowley, G. Provan, D.J. Andrews, C.M. Jackman, A.J. Coates, E.C. Sittler, M.K. Dougherty, D.T. Young, Periodic motion of Saturn’s nightside plasma sheet. J. Geophys. Res. 116, A11205 (2011). doi:10.1029/2011JA016827 ADSGoogle Scholar
  21. S.V. Badman, S.W.H. Cowley, Significance of Dungey-cycle flows in Jupiter’s and Saturn’s magnetospheres, and their identification on closed equatorial field lines. Ann. Geophys. 25, 941–951 (2007) ADSGoogle Scholar
  22. S.V. Badman, S.W.H. Cowley, L. Lamy, B. Cecconi, P. Zarka, Relationship between solar wind corotating interaction regions and the phasing and intensity of Saturn kilometric radiation bursts. Ann. Geophys. 26, 3641–3651 (2008) ADSGoogle Scholar
  23. F. Bagenal, P.A. Delamere, Flow of mass and energy in the magnetospheres of Jupiter and Saturn. J. Geophys. Res. 116, A05209 (2011). doi:10.1029/2010JA016294 Google Scholar
  24. D.D. Barbosa, Titan’s atomic nitrogen torus—inferred properties and consequences for the saturnian aurora. Icarus 72, 53–61 (1987) ADSGoogle Scholar
  25. D.D. Barbosa, Theory and observation of electromagnetic ion-cyclotron waves in Saturn’s inner magnetosphere. J. Geophys. Res. 98(6), 9345–9350 (1993) ADSGoogle Scholar
  26. D.B. Beard, M.A. Gast, The magnetosphere of Saturn. J. Geophys. Res. 92(A6), 5763–5767 (1987) ADSGoogle Scholar
  27. M. Blanc, S. Bolton, J. Bradley, M.E. Burton, T.E. Cravens, I. Dandouras, M.K. Dougherty, M.C. Festou, J. Feynman, R.E. Johnson, T.G. Gombosi, W.S. Kurth, P.C. Liewer, B.H. Mauk, S. Maurice, D. Mitchell, F.M. Neubauer, J.D. Richardson, D.E. Shemansky, E.C. Sittler, B.T. Tsurutani, P. Zarka, L.W. Esposito, E. Grün, D.A. Gurnett, A.J. Kliore, S.M. Krimigis, D.J. Southwood, J.H. Waite, D.T. Young, Magnetospheric and plasma science with Cassini-huygens. Space Sci. Rev. 104(1), 253–346 (2002) ADSGoogle Scholar
  28. M. Bouhram, R.E. Johnson, J.-J. Berthelier, J.-M. Illiano, R.L. Tokar, D.T. Young, F.J. Crary, A test-particle model of the atmosphere/ionosphere system of Saturn’s main rings. Geophys. Res. Lett. 33(5), L05106 (2006) Google Scholar
  29. P.C. Brandt, C.P. Paranicas, J.F. Carbary, D.G. Mitchell, B.H. Mauk, S.M. Krimigis, Understanding the global evolution of Saturn’s ring current. Geophys. Res. Lett. 35(17), L17101 (2008) ADSGoogle Scholar
  30. P.C. Brandt, K.K. Khurana, D.G. Mitchell, N. Sergis, K. Dialynas, J.F. Carbary, E.C. Roelof, C.P. Paranicas, S.M. Krimigis, B.H. Mauk, Saturn’s periodic magnetic field perturbations caused by a rotating partial ring current. Geophys. Res. Lett. 37, L22103 (2010). doi:10.1029/2010GL045285 ADSGoogle Scholar
  31. M.E. Brown, Periodicities in the Io plasma torus. J. Geophys. Res. 100, 21683–21696 (1995) ADSGoogle Scholar
  32. E.J. Bunce, S.W.H. Cowley, D.M. Wright, A.J. Coates, M.K. Dougherty, N. Krupp, W.S. Kurth, A.M. Rymer, In situ observations of a solar wind compression-induced hot plasma injection in Saturn’s tail. Geophys. Res. Lett. 32(20), L20S04 (2005) Google Scholar
  33. E.J. Bunce, S.W.H. Cowley, I.I. Alexeev, C.S. Arridge, M.K. Dougherty, J.D. Nichols, C.T. Russell, Cassini observations of the variation of Saturn’s ring current parameters with system size. J. Geophys. Res. 112(10), A10202 (2007) ADSGoogle Scholar
  34. E.J. Bunce, C.S. Arridge, S.W.H. Cowley, M.K. Dougherty, Magnetic field structure of Saturn’s dayside magnetosphere and its mapping to the ionosphere: Results from ring current modelling. J. Geophys. Res. 113(2), A02207 (2008) Google Scholar
  35. J.L. Burch, J.J. Goldstein, T.W. Hill, D.T. Young, F.J. Crary, A.J. Coates, N. André, W.S. Kurth, E.C. Sittler, Properties of local plasma injections in Saturn’s magnetosphere. Geophys. Res. Lett. 32(14), L14S02 (2005) Google Scholar
  36. J.L. Burch, J. Goldstein, W.S. Lewis, D.T. Young, A.J. Coates, M. Dougherty, N. André, Tethys and Dione as sources of outward flowing plasma in Saturn’s magnetosphere. Nature 447(7146), 833–835 (2007) ADSGoogle Scholar
  37. J.L. Burch, J. Goldstein, P. Mokashi, W.S. Lewis, C. Paty, D.T. Young, A.J. Coates, M.K. Dougherty, N. André, On the cause of Saturn’s plasma periodicity. Geophys. Res. Lett. 35, L14105 (2008). doi:10.1029/2008GL034951 ADSGoogle Scholar
  38. J.L. Burch, A.D. DeJong, J. Goldstein, D.T. Young, Periodicity in Saturn’s magnetosphere: Plasma cam. Geophys. Res. Lett. 36, L14203 (2009). doi:10.1029/2009GL039043 ADSGoogle Scholar
  39. M.H. Burger, E.C. Sittler, R.E. Johnson, H.T. Smith, O.J. Tucker, V.I. Shematovich, Understanding the escape of water from Enceladus. J. Geophys. Res. 112, A06219 (2007). doi:10.1029/2006JA012086 Google Scholar
  40. M.E. Burton, M.K. Dougherty, C.T. Russell, E.J. Smith, Model of Saturn’s internal planetary magnetic field based on Cassini observations. Planet. Space Sci. 57(14–15), 1706–1713 (2009). doi:10.1016/j.pss.2009.04.008 ADSGoogle Scholar
  41. M.E. Burton, M.K. Dougherty, C.T. Russell, Saturn’s internal planetary field. Geophys. Res. Lett. 37, L24105 (2010). doi:10.1029/2010GL045148 ADSGoogle Scholar
  42. J.F. Carbary, S.M. Krimigis, Charged particle periodicity in the saturnian magnetosphere. Geophys. Res. Lett. 9, 1073–1076 (1982) ADSGoogle Scholar
  43. J.F. Carbary, D.G. Mitchell, S.M. Krimigis, D.C. Hamilton, N. Krupp, Spin-period effects in magnetospheres with no axial tilt. Geophys. Res. Lett. 34, L18107 (2007a). doi:10.1029/2007GL030483 ADSGoogle Scholar
  44. J.F. Carbary, D.G. Mitchell, S.M. Krimigis, N. Krupp, Evidence for spiral pattern in Saturn’s magnetosphere using the new SKR longitudes. Geophys. Res. Lett. 34, L13105 (2007b). doi:10.1029/2007GL030167 ADSGoogle Scholar
  45. J.F. Carbary, D.G. Mitchell, P. Brandt, C. Paranicas, S.M. Krimigis, ENA periodicities at Saturn. Geophys. Res. Lett. 35(7), L07102 (2008a) Google Scholar
  46. J.F. Carbary, D.G. Mitchell, C. Paranicas, E.C. Roelof, S.M. Krimigis, Direct observation of warping in the plasma sheet of Saturn. Geophys. Res. Lett. 35(24), L24201 (2008b) ADSGoogle Scholar
  47. J.F. Carbary, D.G. Mitchell, P. Brandt, E.C. Roelof, S.M. Krimigis, Track analysis of energetic neutral atom blobs at Saturn. J. Geophys. Res. 113(1), A01209 (2008c) Google Scholar
  48. J.F. Carbary, D.G. Mitchell, P. Brandt, E.C. Roelof, S.M. Krimigis, Statistical morphology of ENA emissions at Saturn. J. Geophys. Res. 113(5), A05210 (2008d) Google Scholar
  49. J.F. Carbary, D.G. Mitchell, P. Brandt, E.C. Roelof, S.M. Krimigis, Periodic tilting of Saturn’s plasma sheet. Geophys. Res. Lett. 35, L24101 (2008e). doi:10.1029/2008GL036339 ADSGoogle Scholar
  50. R.W. Carlson, Photosputtering of Saturn’s rings. Nature 283, 461–462 (1980) ADSGoogle Scholar
  51. T.A. Cassidy, R.E. Johnson, Collisional spreading of Enceladus’s neutral cloud, Icarus (2010). doi:10.1016/j.icarus.2010.04.010
  52. Y.Y. Chen, T.W. Hill, Statistical analysis of injection/dispersion events in Saturn’s inner magnetosphere. J. Geophys. Res. 113(7), A07215 (2008) Google Scholar
  53. Y. Chen, T.W. Hill, A.M. Rymer, R.J. Wilson, Rate of radial transport of plasma in Saturn’s inner magnetosphere. J. Geophys. Res. 115, A10211 (2010) ADSGoogle Scholar
  54. K.E. Clarke, N. André, D.J. Andrews, A.J. Coates, S.W.H. Cowley, M.K. Dougherty, G.R. Lewis, H.J. McAndrews, J.D. Nichols, T.R. Robinson, D.M. Wright, Cassini observations of planetary-period oscillations of Saturn’s magnetopause. Geophys. Res. Lett. 33(23), L23104 (2006) ADSGoogle Scholar
  55. K.E. Clarke, D.J. Andrews, C.S. Arridge, A.J. Coates, S.W.H. Cowley, M.K. Dougherty, Magnetopause oscillations near the planetary period at Saturn: Occurrence, phase and amplitude. J. Geophys. Res. (2010a). doi:10.1029/2009JA014745 Google Scholar
  56. K.E. Clarke, D.J. Andrews, A.J. Coates, S.W.H. Cowley, A. Masters, Magnetospheric period oscillations of Saturn’s bow shock. J. Geophys. Res. 115, A05202 (2010b). doi:10.1029/2009JA015164 Google Scholar
  57. A.J. Coates, H.J. McAndrews, A.M. Rymer, D.T. Young, F.J. Crary, S. Maurice, R.E. Johnson, R.A. Baragiola, R.L. Tokar, E.C. Sittler, G.R. Lewis, Plasma electrons above Saturn’s main rings: CAPS observations. Geophys. Res. Lett. 32(14), L14S09 (2005) Google Scholar
  58. J.E.P. Connerney, J.H. Waite, New models of Saturn’s ionosphere with an influx of water from the rings. Nature 312, 136–138 (1984) ADSGoogle Scholar
  59. J.E.P. Connerney, M.H. Acuna, N.F. Ness, Saturn’s ring current and inner magnetosphere. Nature 292, 724–726 (1981) ADSGoogle Scholar
  60. J.E.P. Connerney, N.F. Ness, M.H. Acuña, Zonal harmonic model of Saturn’s magnetic field from Voyager 1 and 2 observations. Nature 298, 44–46 (1982) ADSGoogle Scholar
  61. J.E.P. Connerney, M.H. Acuna, N.F. Ness, Currents in Saturn’s magnetosphere. J. Geophys. Res. 88(11), 8779–8789 (1983) ADSGoogle Scholar
  62. J.F. Cooper, Nuclear cascades in Saturn’s rings—Cosmic ray albedo neutron decay and origins of trapped protons in the inner magnetosphere. J. Geophys. Res. 88(5), 3945–3954 (1983) ADSGoogle Scholar
  63. J.F. Cooper, J.A. Simpson, Sources of high energy protons in Saturn’s magnetosphere. J. Geophys. Res. 85(11), 5793–5802 (1980) ADSGoogle Scholar
  64. J.F. Cooper, E.C. Sittler, S. Maurice, B.H. Mauk, R.S. Selesnick, Local time asymmetry of drift shells for energetic electrons in the middle magnetosphere of Saturn. Adv. Space Res. 21(11), 1479–1482 (1998) ADSGoogle Scholar
  65. A. Coustenis, S.K. Atreya, T. Balint, R.H. Brown, M.K. Dougherty, F. Ferri, M. Fulchignoni, D. Gautier, R.A. Gowen, C.A. Griffith, L.I. Gurvits, R. Jaumann, Y. Langevin, M.R. Leese, J.I. Lunine, C.P. McKay, X. Moussas, I. Müller-Wodarg, F. Neubauer, T.C. Owen, F. Raulin, E.C. Sittler, F. Sohl, C. Sotin, G. Tobie, T. Tokano, E.P. Turtle, J.-E. Wahlund, J.H. Waite, K.H. Baines, J. Blamont, A.J. Coates, I. Dandouras, T. Krimigis, E. Lellouch, R.D. Lorenz, A. Morse, C.C. Porco, M. Hirtzig, J. Saur, T. Spilker, J.C. Zarnecki, E. Choi, N. Achilleos, R. Amils, P. Annan, D.H. Atkinson, Y. Bénilan, C. Bertucci, B. Bézard, G.L. Bjoraker, M. Blanc, L. Boireau, J. Bouman, M. Cabane, M.T. Capria, E. Chassefière, P. Coll, M. Combes, J.F. Cooper, A. Coradini, F. Crary, T. Cravens, I.A. Daglis, E. de Angelis, C. de Bergh, I. de Pater, C. Dunford, G. Durry, O. Dutuit, D. Fairbrother, F.M. Flasar, A.D. Fortes, R. Frampton, M. Fujimoto, M. Galand, O. Grasset, M. Grott, T. Haltigin, A. Herique, F. Hersant, H. Hussmann, W. Ip, R. Johnson, E. Kallio, S. Kempf, M. Knapmeyer, W. Kofman, R. Koop, T. Kostiuk, N. Krupp, M. Küppers, H. Lammer, L.-M. Lara, P. Lavvas, S. Le Mouélic, S. Lebonnois, S. Ledvina, J. Li, T.A. Livengood, R.M. Lopes, J.-J. Lopez-Moreno, D. Luz, P.R. Mahaffy, U. Mall, J. Martinez-Frias, B. Marty, T. McCord, C. Menor Salvan, A. Milillo, D.G. Mitchell, R. Modolo, O. Mousis, M. Nakamura, C.D. Neish, C.A. Nixon, D. Nna Mvondo, G. Orton, M. Paetzold, J. Pitman, S. Pogrebenko, W. Pollard, O. Prieto-Ballesteros, P. Rannou, K. Reh, L. Richter, F.T. Robb, R. Rodrigo, S. Rodriguez, P. Romani, M. Ruiz Bermejo, E.T. Sarris, P. Schenk, B. Schmitt, N. Schmitz, D. Schulze-Makuch, K. Schwingenschuh, A. Selig, B. Sicardy, L. Soderblom, L.J. Spilker, D. Stam, A. Steele, K. Stephan, D.F. Strobel, K. Szego, C. Szopa, R. Thissen, M.G. Tomasko, D. Toublanc, H. Vali, I. Vardavas, V. Vuitton, R.A. West, R. Yelle, E.F. Young, TandEM: Titan and Enceladus mission. Exp. Astron. 23(3), 893–946 (2008) ADSGoogle Scholar
  66. M.M. Cowee, N. Omidi, C.T. Russell, X. Blanco-Cano, R.L. Tokar, Determining ion production rates near Saturn’s extended neutral cloud from ion cyclotron wave amplitudes. J. Geophys. Res. 114, A04219 (2009) Google Scholar
  67. J. Cui, R.V. Yelle, K. Folk, Distribution and escape of molecular hydrogen in Titan’s thermosphere and exosphere. J. Geophys. Res. 113, E10004 (2010) ADSGoogle Scholar
  68. L. Davis Jr., E.J. Smith, New models of Saturn’s magnetic field using Pioneer 11 vector helium magnetometer data. J. Geophys. Res. 91(A2), 1373–1380 (1986) ADSGoogle Scholar
  69. L. Davis Jr., E.J. Smith, A model of Saturn’s magnetic field based on all available data. J. Geophys. Res. 95(A9), 15257–15261 (1990) ADSGoogle Scholar
  70. P.A. Delamere, F. Bagenal, Longitudinal plasma density variations at Saturn caused by hot electrons. Geophys. Res. Lett. 35, L03107 (2008) Google Scholar
  71. P.A. Delamere, F. Bagenal, V. Dols, L.C. Ray, Saturn’s neutral torus versus Jupiter’s plasma torus. Geophys. Res. Lett. 34, L09105 (2007) Google Scholar
  72. M.D. Desch, M.L. Kaiser, Voyager measurement of the rotation period of Saturn’s magnetic field. Geophys. Res. Lett. 8, 253–256 (1981) ADSGoogle Scholar
  73. M.D. Desch, H.O. Rucker, The relationship between Saturn kilometric radiation and the solar wind. J. Geophys. Res. 88(11), 8999–9006 (1983) ADSGoogle Scholar
  74. M.K. Dougherty, S. Kellock, D.J. Southwood, A. Balogh, E.J. Smith, B.T. Tsurutani, B. Gerlach, K.-H. Glassmeier, F. Gleim, C.T. Russell, G. Erdös, F.M. Neubauer, S.W.H. Cowley, The Cassini magnetic field investigation. Space Sci. Rev. 114(1–4), 331–383 (2004) ADSGoogle Scholar
  75. M.K. Dougherty, N. Achilleos, N. André, C.S. Arridge, A. Balogh, C. Bertucci, M.E. Burton, S.W.H. Cowley, G. Erdos, G. Giampieri, K.-H. Glassmeier, K.K. Khurana, J.S. Leisner, F.M. Neubauer, C.T. Russell, E.J. Smith, D.J. Southwood, B.T. Tsurutani, Cassini magnetometer observations during Saturn orbit insertion. Science 307, 1266–1270 (2005) ADSGoogle Scholar
  76. M.K. Dougherty, K.K. Khurana, F.M. Neubauer, C.T. Russell, J. Saur, J.S. Leisner, M.E. Burton, Identification of a dynamic atmosphere at enceladus with the Cassini magnetometer. Science 311(5766), 1406–1409 (2006) ADSGoogle Scholar
  77. J.W. Dungey, Electrodynamics of the outer atmosphere, in Proceedings of the Ionosphere Conference (The Physical Society of London, London, 1955) Google Scholar
  78. J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 48–49 (1961) ADSGoogle Scholar
  79. J.W. Dungey, The structure of the exosphere or adventures in velocity space. in The Earth’s Environment, ed. by C. DeWitt, J. Hieblot, A. Lebeau (Gordon and Breach, New York, 1963), pp. 505–550 Google Scholar
  80. S.A. Espinosa, D.J. Southwood, M.K. Dougherty, Reanalysis of Saturn’s magnetospheric field data view of spin-periodic perturbations. J. Geophys. Res. 108(2), 1085 (2003a) Google Scholar
  81. S.A. Espinosa, D.J. Southwood, M.K. Dougherty, How can Saturn impose its rotation period in a noncorotating magnetosphere? J. Geophys. Res. 108(2), 1086 (2003b) Google Scholar
  82. L.W. Esposito, J.E. Colwell, K. Larsen, W.E. McClintock, A.I.F. Stewart, J.T. Hallett, D.E. Shemansky, J.M. Ajello, C.J. Hansen, A.R. Hendrix, R.A. West, H.U. Keller, A. Korth, W.R. Pryor, R. Reulke, Y.L. Yung, Ultraviolet Imaging spectroscopy shows an active saturnian system. Science 307, 1251 (2005) ADSGoogle Scholar
  83. A. Eviatar, J.D. Richardson, Corotation of the Kronian magnetosphere. J. Geophys. Res. 91(A3), 3299–3303 (1986) ADSGoogle Scholar
  84. M.A. Fama, M.J. Loeffler, U. Raut, R.A. Baragiola, Radiation-induced amorphization of crystalline ice. Bull. Am. Astron. Soc. 40, 496 (2008) ADSGoogle Scholar
  85. A.J. Farmer, Saturn in hot water: viscous evolution of the Enceladus torus. Icarus 202(1), 280–286 (2009). doi:10.1016/j.icarus.2009.02.031 ADSGoogle Scholar
  86. A.J. Farmer, P. Goldreich, Spoke formation under moving plasma clouds. Icarus 179(2), 535–538 (2005) ADSGoogle Scholar
  87. K.M. Ferrière, N. André, A mixed magnetohydrodynamic-kinetic theory of low-frequency waves and instabilities in stratified, gyrotropic, two-component plasmas. J. Geophys. Res. 108(7) (2003). doi:10.1029/2003JA009883
  88. W. Fillius, C. McIlwain, Very energetic protons in Saturn’s radiation belt. J. Geophys. Res. 85(11), 5803–5811 (1980) ADSGoogle Scholar
  89. B.L. Fleshman, P.A. Delamere, F. Bagenal, A sensitivity study of the Enceladus torus. J. Geophys. Res. 115, E04007 (2010a). doi:10.1029/2009JE003372 Google Scholar
  90. B.L. Fleshman, P.A. Delamere, F. Bagenal, Modeling the Enceladus plume-plasma interaction. Geophys. Res. Lett. 37, L03202 (2010b). doi:10.1029/2009GL041613 Google Scholar
  91. M.P. Freeman, S.K. Morley, A minimal substorm model that explains the observed statistical distribution of times between substorms. Geophys. Res. Lett. 31, L12807 (2004). doi:10.1029/2004GL019989 ADSGoogle Scholar
  92. K. Fukazawa, S.F. Ogi, T. Ogino, R.J. Walker, Magnetospheric convection at Saturn as a function of IMF B-Z. Geophys. Res. Lett. 34, L01105 (2007). doi:10.1029/2006GL028373 Google Scholar
  93. P.H.M. Galopeau, P. Zarka, D. LeQuéau, Sourcelocation of Saturn’s kilometric radiation: the Kelvin–Helmholtz instability hypothesis. J. Geophys. Res. 100, 26397–26410 (1995) ADSGoogle Scholar
  94. G. Giampieri, M.K. Dougherty, Rotation rate of Saturn’s interior from magnetic field observations. Geophys. Res. Lett. 31, L16701 (2004). doi:10.1029/2004GL020194 ADSGoogle Scholar
  95. A. Glocer, T.I. Gombosi, G. Toth, K.C. Hansen, A.J. Ridley, N. Nagy, Polar wind outflow model: Saturn results. J. Geophys. Res. 112, A01304 (2007). doi:10.1029/2006JA011755 Google Scholar
  96. P. Goldreich, A.J. Farmer, Spontaneous axisymmetry breaking of the external magnetic field at Saturn. J. Geophys. Res. 112(5), A05225 (2007) Google Scholar
  97. T.I. Gombosi, T.P. Armstrong, C.S. Arridge, K.K. Khurana, S.M. Krimigis, N. Krupp, A.M. Persoon, M.F. Thomsen, Saturn’s magnetospheric configuration, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis (Springer, Berlin, 2009) Google Scholar
  98. A. Grocott, S.V. Badman, S.W.H. Cowley, S.E. Milan, J.D. Nichols, T.K. Yeoman, Magnetosonic Mach number dependence of the efficiency of reconnection between planetary and interplanetary magnetic fields. J. Geophys. Res. 114, A07219 (2009). doi:10.1029/2009JA014330 Google Scholar
  99. D. Grodent, A. Radioti, B. Bonfond, J.-C. Géarard, On the origin of Saturn’s outer auroral emission. J. Geophys. Res. 115, A08219 (2010). doi:10.1029/2009JA014901 Google Scholar
  100. D.A. Gurnett, W.S. Kurth, D.L. Kirchner, G.B. Hospodarsky, T.F. Averkamp, P. Zarka, A. Lecacheux, R. Manning, A. Roux, P. Canu, N. Cornilleau-Wehrlin, P. Galopeau, A. Meyer, R. Boström, G. Gustafsson, J.-E. Wahlund, L. Ahlen, H.O. Rucker, H.P. Ladreiter, W. Macher, L.J.C. Woolliscroft, H. Alleyne, M.L. Kaiser, M.D. Desch, W.M. Farrell, C.C. Harvey, P. Louarn, P.J. Kellogg, K. Goetz, A. Pedersen, The Cassini radio and plasma wave investigation. Space Sci. Rev. 114(1–4), 395–463 (2004) ADSGoogle Scholar
  101. D.A. Gurnett, A.M. Persoon, W.S. Kurth, J.B. Groene, T.F. Averkamp, M.K. Dougherty, D.J. Southwood, Science 316(5823), 442 (2007) ADSGoogle Scholar
  102. K.C. Hansen, A.J. Ridley, G.B. Hospodarsky, N. Achilleos, M.K. Dougherty, T.I. Gombosi, G. Toth, Global MHD simulations of Saturn’s magnetosphere at the time of Cassini approach. Geophys. Res. Lett. 32(14), L20S06 (2005) Google Scholar
  103. C.J. Hansen, L. Esposito, A.I.F. Stewart, J. Colwell, A. Hendrix, W. Pryor, D. Shemansky, R. West, Enceladus’ water vapor plume. Science 311(5766), 1422–1425 (2006) ADSGoogle Scholar
  104. T.W. Hill, Interchange instability of a rapidly rotating magnetosphere. Planet. Space Sci. 24(12), 1151–1154 (1976) ADSGoogle Scholar
  105. T.W. Hill, Inertial limit on corotation. J. Geophys. Res. 84(A11), 6554–6558 (1979) ADSGoogle Scholar
  106. T.W. Hill, A.M. Rymer, J.L. Burch, F.J. Crary, D.T. Young, M.F. Thomsen, D. Delapp, N. Andre, A.J. Coates, G.R. Lewis, Evidence for rotationally-driven plasma transport in Saturn’s magnetosphere. Geophys. Res. Lett. 32(14), L14S10 (2005) Google Scholar
  107. T.W. Hill, M.F. Thomsen, M.G. Henderson, R.L. Tokar, A.J. Coates, H.J. McAndrews, G.R. Lewis, D.G. Mitchell, C.M. Jackman, C.T. Russell, M.K. Dougherty, F.J. Crary, D.T. Young, Plasmoids in Saturn’s magnetotail. J. Geophys. Res. 113, A01214 (2008). doi:10.1029/2007JA012626 Google Scholar
  108. M. Horányi, Charged dust dynamics in the solar system. Annu. Rev. Astrophys. 34, 383–418 (1996) ADSGoogle Scholar
  109. D.E. Huddleston, C.T. Russell, G. Le, A. Szabo, Magnetopause structure and the role of reconnection at the outer planets. J. Geophys. Res. 102(A11), 24289–24302 (1997) ADSGoogle Scholar
  110. D.E. Huddleston, C.T. Russell, M.G. Kivelson, K.K. Khurana, L. Bennett, Location and shape of the jovian magnetopause and bow shock. J. Geophys. Res. 103(E9), 20075–20082 (1998). doi:10.1029/98JE00394 ADSGoogle Scholar
  111. W.-H. Ip, The new Titan’s hydrogen torus. Adv. Space Res. 13(10), 335–339 (1993) ADSGoogle Scholar
  112. W.-H. Ip, On the neutral cloud distribution in the Saturnian magnetosphere. Icarus 126(1), 42–57 (1997) ADSGoogle Scholar
  113. C.M. Jackman, C.S. Arridge, Solar cycle effects on the dynamics of Jupiter’s and Saturn’s magnetospheres. Sol. Phys. 274(1), 481–502 (2012). doi:10.1007/s11207-011-9748-z ADSGoogle Scholar
  114. C.M. Jackman, N. Achilleos, E.J. Bunce, S.W.H. Cowley, M.K. Dougherty, G.H. Jones, S.E. Milan, E.J. Smith, Interplanetary magnetic field at ∼9 AU during the declining phase of the solar cycle and its implications for Saturn’s magnetospheric dynamics. J. Geophys. Res. 109(1), A11203 (2004) ADSGoogle Scholar
  115. C.M. Jackman, N. Achilleos, E.J. Bunce, B. Cecconi, J.T. Clarke, S.W.H. Cowley, W.S. Kurth, P. Zarka, Interplanetary conditions and magnetospheric dynamics during the Cassini orbit insertion fly-through of Saturn’s magnetosphere. J. Geophys. Res. 110(10), A10212 (2005) ADSGoogle Scholar
  116. C.M. Jackman, C.T. Russell, D.J. Southwood, C.S. Arridge, N. Achilleos, M.K. Dougherty, Strong rapid dipolarizations in Saturn’s magnetotail: In situ evidence of reconnection. Geophys. Res. Lett. 34(11), L11203 (2007) ADSGoogle Scholar
  117. C.M. Jackman, C.S. Arridge, N. Krupp, E.J. Bunce, D.G. Mitchell, H.J. McAndrews, M.K. Dougherty, C.T. Russell, N. Achilleos, G.H. Jones, A.J. Coates, A multi-instrument view of tail reconnection at Saturn. J. Geophys. Res. 113(11), A11213 (2008) ADSGoogle Scholar
  118. C.M. Jackman, C.S. Arridge, H.J. McAndrews, M.G. Henderson, R.J. Wilson, Northward field excursions in Saturn’s magnetotail and their relationship to magnetospheric periodicities. Geophys. Res. Lett. 36(16), L16101 (2009a). doi:10.1029/2009GL039149 ADSGoogle Scholar
  119. C.M. Jackman, L. Lamy, M.P. Freeman, P. Zarka, B. Cecconi, W.S. Kurth, S.W.H. Cowley, M.K. Dougherty, On the character and distribution of lower-frequency radio emissions at Saturn, and their relationship to substorm-like events. J. Geophys. Res. 114, A08211 (2009b). doi:10.1029/2008JA013997 Google Scholar
  120. C.M. Jackman, C.S. Arridge, J.A. Slavin, S.E. Milan, L. Lamy, M.K. Dougherty, A.J. Coates, In situ observations of the effect of a solar wind compression on Saturn’s magnetotail. J. Geophys. Res. 115, A10240 (2010). doi:10.1029/2010JA015312 ADSGoogle Scholar
  121. R.E. Johnson, Energetic Charged Particle Interactions with Atmospheres and Surfaces (Springer, Berlin, 1990) Google Scholar
  122. R.E. Johnson, The magnetospheric plasma-driven evolution of satellite atmospheres. Astrophys. J. 609(2), L99–L102 (2004) ADSGoogle Scholar
  123. R.E. Johnson, J.G. Luhmann, R.L. Tokar, M. Bouhram, J.J. Berthelier, E.C. Sittler, J.F. Cooper, T.W. Hill, H.T. Smith, M. Michael, M. Liu, F.J. Crary, D.T. Young, Production, ionization and redistribution of O2 Saturn’s ring atmosphere. Icarus 180(2), 393–402 (2006) ADSGoogle Scholar
  124. R.E. Johnson, M.R. Combi, J.L. Fox, W.-H. Ip, F. Leblanc, M.A. McGrath, V.I. Shematovich, D.F. Strobel, J.H. Waite, Exospheres and atmospheric escape. Space Sci. Rev. 139, 355–397 (2008) ADSGoogle Scholar
  125. G.H. Jones, E. Roussos, N. Krupp, U. Beckmann, A.J. Coates, F. Crary, I. Dandouras, V. Dikarev, M.K. Dougherty, P. Garnier, C.J. Hansen, A.R. Hendrix, G.B. Hospodarsky, R.E. Johnson, S. Kempf, K.K. Khurana, S.M. Krimigis, H. Krüger, W.S. Kurth, A. Lagg, H.J. McAndrews, D.G. Mitchell, C. Paranicas, F. Postberg, C.T. Russell, J. Saur, M. Seiß, F. Spahn, R. Srama, D.F. Strobel, R. Tokar, J.-E. Wahlund, R.J. Wilson, J. Woch, D. Young, The dust halo of Saturn’s largest icy moon, Rhea. Science 319(5868), 1380 (2008) ADSGoogle Scholar
  126. S. Jurac, R.A. Baragiola, R.E. Johnson, E.C. Sittler, Charging of ice grains by low-energy plasmas: Application to Saturn’s E ring. J. Geophys. Res. 100(8), 14821–14832 (1995) ADSGoogle Scholar
  127. S. Jurac, R.E. Johnson, J.D. Richardson, C. Paranicas, Satellite sputtering in Saturn’s magnetosphere. Planet. Space Sci. 49, 319–326 (2001) ADSGoogle Scholar
  128. S. Jurac, M.A. McGrath, R.E. Johnson, J.D. Richardson, V.M. Vasyliunas, A. Eviatar, Saturn: Search for a missing water source. Geophys. Res. Lett. 29 (2002). doi:10.1029/2002GL015855
  129. S.J. Kanani, C.S. Arridge, G.H. Jones, A.N. Fazakerley, H.J. McAndrews, N. Sergis, S.M. Krimigis, M.K. Dougherty, A.J. Coates, D.T. Young, K.C. Hansen, N. Krupp, A new form of Saturn’s magnetopause using a dynamic pressure balance model, based on in-situ multi-instrument Cassini measurements. J. Geophys. Res. 115, A06207 (2010). doi:10.1029/2009JA014262 Google Scholar
  130. M. Kane, D.G. Mitchell, J.F. Carbary, S.M. Krimigis, F.J. Crary, Plasma convection in Saturn’s outer magnetosphere determined from ions detected by the Cassini INCA experiment. Geophys. Res. Lett. 35(4), L04102 (2008) Google Scholar
  131. S. Kellett, E.J. Bunce, A.J. Coates, S.W.H. Cowley, A.J. Coates, Thickness of Saturn’s ring current determined from north-south Cassini passes through the current layer. J. Geophys. Res. 114, A04209 (2009). doi:10.1029/2008JA013942 Google Scholar
  132. S. Kellett, C.S. Arridge, E.J. Bunce, A.J. Coates, S.W.H. Cowley, M.K. Dougherty, A.M. Persoon, N. Sergis, R.J. Wilson, Nature of the ring current in Saturn’s dayside magnetosphere. J. Geophys. Res. 115, A08201 (2010). doi:10.1029/2009JA015146 Google Scholar
  133. S. Kempf, R. Srama, N. Altobelli, S. Auer, V. Tschernjawski, J. Bradley, M. Burton, S. Helfert, T. Johnson, H. Krüger, G. Moragas-Klostermeyer, E. Grün, Cassini between Earth and asteroid belt: First in-situ charge measurements of interplanetary grains. Icarus 171(2), 317–335 (2004) ADSGoogle Scholar
  134. S. Kempf, U. Beckmann, R. Srama, M. Horanyi, S. Auer, E. Grün, The electrostatic potential of E ring particles. Planet. Space Sci. 54(9–10), 999–1006 (2006) ADSGoogle Scholar
  135. K.K. Khurana, C.S. Arridge, H. Schwarzl, M.K. Dougherty, A model of Saturn’s magnetospheric field based on latest Cassini observations. Eos. Trans. AGU 87(36), Jt. Assem. Suppl., P44A-01 (2006) Google Scholar
  136. K.K. Khurana, C.T. Russell, M.K. Dougherty, Magnetic portraits of Tethys and Rhea. Icarus 193(2), 465–474 (2008). doi:10.1016/j.icarus.2007.08.005 ADSGoogle Scholar
  137. K.K. Khurana, D.G. Mitchell, C.S. Arridge, M.K. Dougherty, C.T. Russell, C. Paranicas, N. Krupp, A.J. Coates, Sources of rotational signals in Saturn’s magnetosphere. J. Geophys. Res. 114(2), A02211 (2009) Google Scholar
  138. A. Kidder, R.M. Winglee, E.M. Harnett, Regulation of the centrifugal interchange cycle in Saturn’s inner magnetosphere. J. Geophys. Res. 114(2), A02205 (2009) Google Scholar
  139. M.G. Kivelson, C.T. Russell (eds.), Introduction to Space Physics (Cambridge University Press, Cambridge, 1995) Google Scholar
  140. S.M. Krimigis, D.G. Mitchell, D.C. Hamilton, S. Livi, J. Dandouras, S. Jaskulek, T.P. Armstrong, J.D. Boldt, A.F. Cheng, G. Gloeckler, J.R. Hayes, K.C. Ksieh, W.-H. Ip, E.P. Keath, E. Kirsch, N. Krupp, L.J. Lanzerottti, R. Lundgren, B.H. Mauk, R.W. McEntire, E.C. Roelof, C.E. Schlemm, B.E. Tossman, B. Wilken, D.J. Williams, Magnetosphere imaging instrument (MIMI) on the Cassini mission to Saturn/Titan. Space Sci. Rev. 114(1–4), 233–329 (2004) ADSGoogle Scholar
  141. S.M. Krimigis, N. Sergis, D.G. Mitchell, D.C. Hamilton, N. Krupp, A dynamic, rotating ring current around Saturn. Nature 450(7172), 1050–1053 (2007) ADSGoogle Scholar
  142. E.A. Kronberg, J. Woch, N. Krupp, A. Lagg, K.K. Khurana, K.-H. Glassmeier, Mass release at Jupiter: Substorm-like processes in the jovian magnetotail. J. Geophys. Res. 110, A03211 (2005). doi:10.1029/2004JA010777 Google Scholar
  143. E.A. Kronberg, K.-H. Glassmeier, J. Woch, N. Krupp, A. Lagg, M.K. Dougherty, A possible intrinsic mechanism for the quas-periodic dynamics of the jovian magnetosphere. J. Geophys. Res. 112, A05203 (2007). doi:10.1029/2006JA011994 Google Scholar
  144. N. Krupp, E. Roussos, A. Lagg, J. Woch, A.L. Müller, S.M. Krimigis, D.G. Mitchell, E.C. Roelof, C. Paranicas, J. Carbary, G.H. Jones, D.C. Hamilton, S. Livi, T.P. Armstrong, M.K. Dougherty, N. Sergis, Energetic particles in Saturn’s magnetosphere during the Cassini nominal mission (July 2004–July 2008). Planet. Space Sci. 57(14–15), 1754–1768 (2009). doi:10.1016/j.pss.2009.06.010 ADSGoogle Scholar
  145. I. Kupo, Y. Mekler, A. Eviatar, Detection of ionized sulfur in the jovian magnetosphere. Astrophys. J. 205, L51–L54 (1976) ADSGoogle Scholar
  146. W.S. Kurth, T.F. Averkamp, D.A. Gurnett, J.B. Groene, A. Lecacheux, An update to a saturnian longitude system based on kilometric radio emissions. J. Geophys. Res. 113(5), A05222 (2008) Google Scholar
  147. J.S. Leisner, C.T. Russell, K.K. Khurana, M.K. Dougherty, N. André, Warm flux tubes in the E-ring plasma torus: Initial Cassini magnetometer observations. Geophys. Res. Lett. 32(14), L14S08 (2005) Google Scholar
  148. J.S. Leisner, C.T. Russell, M.K. Dougherty, X. Blanco-Cano, R.J. Strangeway, C. Bertucci, Ion cyclotron waves in Saturn’s E ring: Initial Cassini observations. Geophys. Res. Lett. 33(11), L11101 (2006) ADSGoogle Scholar
  149. G.R. Lewis, N. André, C.S. Arridge, A.J. Coates, L.K. Gilbert, D.R. Linder, A.M. Rymer, Derivation of density and temperature from the Cassini-Huygens CAPS Electron Spectrometer. Planet. Space Sci. 56(7), 901–912 (2008) ADSGoogle Scholar
  150. G.R. Lewis, C.S. Arridge, D.R. Linder, L.K. Gilbert, D.O. Kataria, A.J. Coates, A. Persoon, G.A. Collinson, N. André, P. Schippers, J. Wahlund, M. Morooka, G.H. Jones, A.M. Rymer, D.T. Young, D.G. Mitchell, A. Lagg, S.A. Livi, The calibration of the Cassini-Huygens CAPS Electron spectrometer. Planet. Space Sci. 58(3), 427–436 (2009). doi:10.1016/j.pss.2009.11.008 ADSGoogle Scholar
  151. J.G. Luhmann, R.E. Johnson, R.L. Tokar, T. Cravens, A model of the ionosphere of Saturn’s toroidal ring atmosphere. Icarus 181(2), 465–474 (2006) ADSGoogle Scholar
  152. H.R. Martens, D.B. Reisenfeld, J.D. Williams, R.E. Johnson, H.T. Smith, Observations of molecular oxygen ions in Saturn’s inner magnetosphere. Geophys. Res. Lett. 35(20), L20103 (2008) ADSGoogle Scholar
  153. A. Masters, N. Achilleos, C. Bertucci, M.K. Dougherty, S.J. Kanani, C.S. Arridge, H.J. McAndrews, A.J. Coates, Surface waves on Saturn’s dawn flank magnetopause driven by the Kelvin–Helmholtz instability. Planet. Space Sci. 57(14–15), 1769–1778 (2009). doi:10.1016/j.pss.2009.02.010 ADSGoogle Scholar
  154. B.H. Mauk, S.M. Krimigis, R.P. Lepping, Particle and field stress balance within a planetary magnetosphere. J. Geophys. Res. 90, 8253–8264 (1985) ADSGoogle Scholar
  155. B.H. Mauk, J. Saur, D.G. Mitchell, E.C. Roelof, P.C. Brandt, T.P. Armstrong, D.C. Hamilton, S.M. Krimigis, S.A. Livi, J.W. Manweiler, C.P. Paranicas, Energetic particle injections in Saturn’s magnetosphere. Geophys. Res. Lett. 32(14), L14S05 (2005) Google Scholar
  156. B.H. Mauk, D.C. Hamilton, T.W. Hill, G.B. Hospodarsky, R.E. Johnson, C. Paranicas, E. Roussos, C.T. Russell, D.E. Shemansky, E.C. Sittler Jr., R.M. Thorne, Fundamental plasma processes in Saturn’s magnetosphere, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis (Springer, Berlin, 2009) Google Scholar
  157. S. Maurice, I.M. Engle, M. Blanc, M. Skubis, Geometry of Saturn’s magnetopause model. J. Geophys. Res. 101(12), 27053–27060 (1996a) ADSGoogle Scholar
  158. S. Maurice, E.C. Sittler, J. Cooper, B.H. Mauk, M. Blanc, R.S. Selenick, Comprehensive analysis of electron observations at Saturn: Voyager 1 and 2. J. Geophys. Res. 101(7), 15211–15232 (1996b) ADSGoogle Scholar
  159. H.J. McAndrews, Cassini observations of low energy electrons in and around Saturn’s magnetosphere. Ph.D. Thesis. University College London, UK (2007) Google Scholar
  160. H.J. McAndrews, C.J. Owen, M.F. Thomsen, B. Lavraud, A.J. Coates, M.K. Dougherty, D.T. Young, Evidence for reconnection at Saturn’s magnetopause. J. Geophys. Res. 113(4), A04210 (2008) Google Scholar
  161. H.J. McAndrews, M.F. Thomsen, C.S. Arridge, C.M. Jackman, R.J. Wilson, M.G. Henderson, R.L. Tokar, K.K. Khurana, E.C. Sittler, A.J. Coates, M.K. Dougherty, Plasma in Saturn’s nightside magnetosphere and the implications for global circulation. Planet. Space Sci. 57(14–15), 1714–1722 (2009). doi:10.1016/j.pss.2009.03.003 ADSGoogle Scholar
  162. R.L. McNutt, Force balance in outer planet magnetospheres, in Physics of Space Plasmas, Proceedings of the 1982-4 MIT Symposia, SPI Conference Proceedings and Reprint Series, vol. 5, ed. by J. Belcher, H. Bridge, T. Change, B. Coppi, J.R. Jasperse (Scientific Publishers, Cambridge, 1984), p. 179 Google Scholar
  163. H. Melin, D.E. Shemansky, X. Liu, The distribution of hydrogen and atomic oxygen in the magnetosphere of Saturn. Planet. Space Sci. 57(14–15), 1743–1753 (2009). doi:10.1016/j.pss.2009.04.014 ADSGoogle Scholar
  164. J.D. Menietti, J.B. Groene, T.F. Averkamp, G.G. Hospodarsky, W.S. Kurth, D.A. Gurnett, P. Zarka, Influence of saturnian moons on Saturn kilometric radiation. J. Geophys. Res. 112, A08211 (2007). doi:10.1029/2007JA012331 Google Scholar
  165. D.G. Mitchell, P.C. Brandt, E.C. Roelof, J. Dandouras, S.M. Krimigis, B.H. Mauk, C.P. Paranicas, N. Krupp, D.C. Hamilton, W.S. Kurth, P. Zarka, M.K. Doughert, E.J. Bunce, D.E. Shemansky, Energetic ion acceleration in Saturn’s magnetotail: Substorms at Saturn? Geophys. Res. Lett. 32, L20S01 (2005) Google Scholar
  166. D.G. Mitchell, S.M. Krimigis, C. Paranicas, P.C. Brandt, J.F. Carbary, E.C. Roelof, W.S. Kurth, D.A. Gurnett, J.T. Clarke, J.D. Nichols, J.-C. Gérard, D.C. Grodent, M.K. Dougherty, W.R. Pryor, Recurrent energization of plasma in the midnight-to-dawn quadrant of Saturn’s magnetosphere, and its relation to auroral UV and radio emissions. Planet. Space Sci. 57(14–15), 1732–1742 (2009). doi:10.1016/j.pss.2009.04.002 ADSGoogle Scholar
  167. G.E. Morfill, H. Fechtig, E. Gruen, C.K. Goertz, Some consequences of meteoroid impacts on Saturn’s rings. Icarus 55, 439–447 (1983) ADSGoogle Scholar
  168. M.W. Morooka, R. Modolo, J.-E. Wahlund, M. André, A.I. Eriksson, A.M. Persoon, D.A. Gurnett, W.S. Kurth, A.J. Coates, G.R. Lewis, K.K. Khurana, M.K. Dougherty, The electron density of Saturn’s magnetosphere. Ann. Geophys. 27, 2971–2979 (2009) ADSGoogle Scholar
  169. C. Paranicas, D.G. Mitchell, E.C. Roelof, P.C. Brandt, D.J. Williams, S.M. Krimigis, B.H. Mauk, Periodic intensity variations in global ENA images of Saturn. Geophys. Res. Lett. 32, L21101 (2005). doi:10.1029/2005GL023656 ADSGoogle Scholar
  170. C. Paranicas, D.G. Mitchell, E.C. Roelof, B.H. Mauk, S.M. Krimigis, P.C. Brandt, M. Kusterer, F.S. Turner, J. Vandegriff, N. Krupp, Energetic electrons injected into Saturn’s neutral gas cloud. Geophys. Res. Lett. 34(2), L02109 (2007) Google Scholar
  171. C. Paranicas, D.G. Mitchell, S.M. Krimigis, D.C. Hamilton, E. Roussos, N. Krupp, G.H. Jones, R.E. Johnson, J.F. Cooper, T.P. Armstrong, Sources and losses of energetic protons in Saturn’s magnetosphere. Icarus 197(2), 519–525 (2008) ADSGoogle Scholar
  172. C. Paranicas, D.G. Mitchell, S.M. Krimigis, J.F. Carbary, P.C. Brandt, F.S. Turner, E. Roussos, N. Krupp, M.G. Kivelson, K.K. Khurana, J.F. Cooper, T.P. Armstrong, M. Burton, Asymmetries in Saturn’s radiation belts. J. Geophys. Res. 115, A07216 (2010). doi:10.1029/2009JA014971 Google Scholar
  173. P. Perrault, S.-I. Akasofu, A study of geomagnetic storms. Geophys. J. R. Astron. Soc. 54, 547 (1978) ADSGoogle Scholar
  174. A.M. Persoon, D.A. Gurnett, W.S. Kurth, J.B. Groene, A simple scale height model of the electron density in Saturn’s plasma disk. Geophys. Res. Lett. 33(18), L18106 (2006) ADSGoogle Scholar
  175. A.M. Persoon, D.A. Gurnett, O. Santolik, W.S. Kurth, J.B. Faden, J.B. Groene, G. Lewis, A.J. Coates, R.J. Wilson, R.L. Tokar, J.-E. Wahlund, M. Moncuquet, A diffusive equilibrium model for the plasma density in Saturn’s magnetosphere. J. Geophys. Res. 114, A04211 (2009). doi:10.1029/2008JA013912 Google Scholar
  176. D.H. Pontius Jr., Implications of variable mass loading in the Io torus: The jovian flywheel. J. Geophys. Res. 100, 19531 (1995) ADSGoogle Scholar
  177. D.H. Pontius Jr., T.W. Hill, Departure from corotation of the Io plasma torus—Local plasma production. Geophys. Res. Lett. 9, 1321–1324 (1982). doi:10.1029/GL009i012p01321 ADSGoogle Scholar
  178. D.H. Pontius Jr., T.W. Hill, Plasma mass loading from the extended neutral gas torus of Enceladus as inferred from the observed plasma corotation lag. Geophys. Res. Lett. 36, L23103 (2009). doi:10.1029/2009GL041030 ADSGoogle Scholar
  179. C. Porco, P. Helfenstein, P.C. Thomas, A.P. Ingersoll, J. Wisdom, R. West, G. Neukum, T. Denk, R. Wagner, T. Roatsch, S. Kieffer, E. Turtle, A. McEwen, T.V. Johnson, J. Rathbun, J. Veverka, D. Wilson, J. Perry, J. Spitale, A. Brahic, J.A. Burns, A.D. DelGenio, L. Dones, C.D. Murray, S. Squyres, Cassini observes the active south pole of Enceladus. Science 311(5766), 1393–1401 (2006) ADSGoogle Scholar
  180. F. Postberg, S. Kempf, J. Schmidt, N. Brilliantov, A. Beinsen, B. Abel, U. Buck, R. Srama, Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459(7250), 1098–1101 (2009). doi:10.1038/nature08046 ADSGoogle Scholar
  181. G. Provan, D.J. Andrews, C.S. Arridge, A.J. Coates, S.W.H. Cowley, S.E. Milan, M.K. Dougherty, D.M. Wright, Polarisation and phase of planetary-period magnetic field oscillations on high-latitude field lines in Saturn’s magnetosphere. J. Geophys. Res. 114(2), A02225 (2009) Google Scholar
  182. J.D. Richardson, Thermal ions at Saturn—Plasma parameters and implications. J. Geophys. Res. 91(2), 1381–1389 (1986) ADSGoogle Scholar
  183. J.D. Richardson, An extended plasma model for Saturn. Geophys. Res. Lett. 22(10), 1177–1180 (1995) ADSGoogle Scholar
  184. J.D. Richardson, Thermal plasma and neutral gas in Saturn’s magnetosphere. Rev. Geophys. 36, 501 (1998) ADSGoogle Scholar
  185. E. Roussos, Interactions of weakly or non-magnetized bodies with solar system plasmas: Mars and the moons of Saturn. Ph.D. Thesis, Max-Planck Institute fuer Sonnensystemforschung, Lindau-Katlenburg, Germany (2008) Google Scholar
  186. E. Roussos, N. Krupp, T.P. Armstrong, C. Paranicas, D.G. Mitchell, S.M. Krimigis, G.H. Jones, K. Dialynas, N. Sergis, D.C. Hamilton, Discovery of a transient radiation belt at Saturn. Geophys. Res. Lett. 35(22), L22106 (2008) ADSGoogle Scholar
  187. C.T. Russell, J.G. Luhmann, G. Lu, Nonlinear response of the polar ionosphere to large values of the interplanetary electric field. J. Geophys. Res. 106(A9), 18495–18504 (2001) ADSGoogle Scholar
  188. C.T. Russell, J.S. Leisner, C.S. Arridge, M.K. Dougherty, X. Blanco-Cano, Nature of magnetic fluctuations in Saturn’s middle magnetosphere. J. Geophys. Res. 111(12), A12205 (2006) ADSGoogle Scholar
  189. C.T. Russell, C.M. Jackman, H.Y. Wei, C. Bertucci, M.K. Dougherty, Titan’s influence on saturnian substorm occurrence. Geophys. Res. Lett. 35(12), L12105 (2008) ADSGoogle Scholar
  190. A.M. Rymer, B.H. Mauk, T.W. Hill, C. Paranicas, N. Andre, E.C. Sittler Jr., D.G. Mitchell, H.T. Smith, R.E. Johnson, A.J. Coates, D.T. Young, S.J. Bolton, M.F. Thomsen, M.K. Dougherty, Electron sources in Saturn’s magnetosphere. J. Geophys. Res. 112(2), A02201 (2007) Google Scholar
  191. A.M. Rymer, B.H. Mauk, T.W. Hill, C. Paranicas, D.G. Mitchell, A.J. Coates, D.T. Young, Electron circulation in Saturn’s magnetosphere. J. Geophys. Res. 113(1), A01201 (2008) Google Scholar
  192. A.M. Rymer, H.T. Smith, A. Wellbrock, A.J. Coates, D.T. Young, Discrete classification and electron energy spectra of Titan’s varied magnetospheric environment. Geophys. Res. Lett. 36, L15109 (2009). doi:10.1029/2009GL039427 ADSGoogle Scholar
  193. J. Saur, B.H. Mauk, A. Kaßner, F.M. Neubauer, A model for the azimuthal plasma velocity in Saturn’s magnetosphere. J. Geophys. Res. 109, A05217 (2004). doi:10.1029/2003JA010207 Google Scholar
  194. J. Saur, F.M. Neubauer, N. Schilling, Hemisphere coupling in Enceladus’ asymmetric plasma interaction. J. Geophys. Res. 112, A11209 (2007). doi:10.1029/2007JA012479 ADSGoogle Scholar
  195. P. Schippers, M. Blanc, N. André, I. Dandouras, G.R. Lewis, L.K. Gilbert, A. Persoon, N. Krupp, D.A. Gurnett, A.J. Coates, S.M. Krimigis, D.T. Young, M.K. Dougherty, Multi-instrument analysis of electron populations in Saturn’s magnetosphere. J. Geophys. Res. 113(A7), A07208 (2008) Google Scholar
  196. P. Schippers, N. André, R.E. Johnson, M. Blanc, I. Dandouras, A.J. Coates, S.M. Krimigis, D.T. Young, Identification of photoelectrons energy peaks in Saturn’s inner neutral torus. J. Geophys. Res. 114(12), A12212 (2009) ADSGoogle Scholar
  197. J. Schmidt, N. Brilliantov, F. Spahn, S. Kempf, Slow dust in Enceladus’ plume from condensation and wall collisions in tiger stripe fractures. Nature 451(7179), 685–688 (2008) ADSGoogle Scholar
  198. N.M. Schneider, M.H. Burger, E.L. Schaller, M.E. Brown, R.E. Johnson, J.S. Kargel, M.K. Dougherty, N. Achilleos, No sodium in the vapour plumes of Enceladus. Nature 459(7250), 1102–1104 (2009). doi:10.1038/nature08070 ADSGoogle Scholar
  199. L. Scurry, C.T. Russell, Proxy studies of energy transfer in the magnetosphere. J. Geophys. Res. 96, 9541–9548 (1991) ADSGoogle Scholar
  200. P.K. Seidelmann, V.K. Abalakin, M. Bursa, M.E. Davies, C. De Bergh, J.H. Lieske, J. Oberst, J.L. Simon, E.M. Standish, P. Stooke, P.C. Thomas, Report of the IAU/IAG working group on cartographic coordinates and rotational elements of the planets and satellites: 2000. Celest. Mech. Dyn. Astron. 82, 83–110 (2002) ADSGoogle Scholar
  201. N. Sergis, S.M. Krimigis, D.G. Mitchell, D.C. Hamilton, N. Krupp, B.M. Mauk, E.C. Roelof, M.K. Dougherty, Ring current at Saturn: Energetic particle pressure in Saturn’s equatorial magnetosphere measured with Cassini/MIMI. Geophys. Res. Lett. 34(9), L09102 (2007) Google Scholar
  202. N. Sergis, S.M. Krimigis, D.G. Mitchell, D.C. Hamilton, N. Krupp, B.M. Mauk, E.C. Roelof, M.K. Dougherty, Energetic particle pressure in Saturn’s magnetosphere measured with the Magnetospheric Imaging Instrument on Cassini. J. Geophys. Res. 114(2), A02214 (2009) Google Scholar
  203. N. Sergis, S.M. Krimigis, E.C. Roelof, C.S. Arridge, A.M. Rymer, D.G. Mitchell, D.C. Hamilton, N. Krupp, M.F. Thomsen, M.K. Dougherty, A.J. Coates, D.T. Young, Particle pressure, inertial force, and ring current density profiles in the magnetosphere of Saturn, based on Cassini measurements. Geophys. Res. Lett. 37, L02102 (2010) Google Scholar
  204. D.E. Shemansky, D.T. Hall, The distribution of atomic hydrogen in the magnetosphere of Saturn. J. Geophys. Res. 97(4), 4143–4161 (1992) ADSGoogle Scholar
  205. D.E. Shemansky, P. Matheson, D.T. Hall, H.-Y. Hu, T.M. Tripp, Detection of the hydroxyl radical in the Saturn magnetosphere. Nature 363, 329–331 (1993) ADSGoogle Scholar
  206. M.R. Showalter, J.N. Cuzzi, S.M. Larson, Structure and particle properties of Saturn’s E Ring. Icarus 94, 451–473 (1991) ADSGoogle Scholar
  207. J.H. Shue, J.K. Chao, H.C. Fu, C.T. Russell, P. Song, K.K. Khurana, H.J. Singer, A new functional form to study the solar wind control of the magnetopause size and shape. J. Geophys. Res. 102(A5), 9497–9512 (1997) ADSGoogle Scholar
  208. S. Simon, A. Wennmacher, F.M. Neubauer, C.L. Bertucci, H. Kriegel, C.T. Russell, M.K. Dougherty, Dynamics of Saturn’s magnetodisk near Titan’s orbit: Comparison of Cassini magnetometer observations from real and virtual Titan flybys. Planet. Space Sci. 58, 1625–1635 (2010). doi:10.1016/j.pss.2010.08.006 ADSGoogle Scholar
  209. E.C. Sittler, K.W. Ogilvie, J.D. Scudder, Survey of low-energy plasma electrons in Saturn’s magnetosphere: Voyagers 1 and 2. J. Geophys. Res. 88, 8847 (1983) ADSGoogle Scholar
  210. E.C. Sittler, M.F. Thomsen, R.E. Johnson, R.E. Hartle, M. Burger, D. Chornay, M.D. Shappirio, D. Simpson, H.T. Smith, A.J. Coates, A.M. Rymer, D.J. McComas, D.T. Young, D. Reisenfeld, M. Dougherty, N. André, Cassini observations of Saturn’s inner plasmasphere: Saturn orbit insertion results. Planet. Space Sci. 54(12), 1197–1210 (2006) ADSGoogle Scholar
  211. E.C. Sittler, M.F. Thomsen, R.E. Johnson, R.E. Hartle, M. Burger, D. Chornay, M.D. Shappirio, D. Simpson, H.T. Smith, A.J. Coates, A.M. Rymer, D.J. McComas, D.T. Young, D. Reisenfeld, M. Dougherty, N. André, Erratum to “Cassini observations of Saturn’s inner plasmasphere: Saturn orbit insertion results”. Planet. Space Sci. 55(14), 2218–2220 (2007) ADSGoogle Scholar
  212. E.C. Sittler, N. André, M. Blanc, M. Burger, R.E. Johnson, A. Coates, A. Rymer, D. Reisenfeld, M.F. Thomsen, A. Persoon, M. Dougherty, H. Smith, R. Baragiola, R.E. Hartle, D. Chornay, M.D. Shappirio, D. Simpson, D. McComas, D.T. Young, Ion neutral sources and sinks within Saturn’s inner magnetosphere: Cassini results. Planetary and Space Science 54(1) (2008). doi:10.1016/j.pss.2007.06.006
  213. J.A. Slavin, E.J. Smith, P.R. Gazis, J.D. Mihalov, A Pioneer-Voyager study of the solar wind interaction with Saturn. Geophys. Res. Lett. 10(1), 9–12 (1983) ADSGoogle Scholar
  214. J.A. Slavin, E.J. Smith, J.R. Spreiter, S.S. Stahara, Solar wind flow about the outer planets: gas dynamic modelling of the Jupiter and Saturn bow shocks. J. Geophys. Res. 90(7), 6275–6286 (1985) ADSGoogle Scholar
  215. C.G.A. Smith, A saturnian cam current system driven by asymmetric thermospheric heating. Mon. Not. R. Astron. Soc. 410, 2315–2328 (2010). doi:10.1111/j.1365-2966.2010.17602.x ADSGoogle Scholar
  216. E.J. Smith, B.T. Tsurutani, Saturn’s magnetosphere—Observations of ion-cyclotron waves near the Dione L-shell. J. Geophys. Res. 88(10), 7831–7836 (1983) ADSGoogle Scholar
  217. E.J. Smith, L. Davis Jr., D.E. Jones, P.J. Coleman Jr., D.S. Colburn, P. Dyal, C.P. Sonett, A.M.A. Frandsen, The planetary magnetic field and magnetosphere of Jupiter: Pioneer 10. J. Geophys. Res. 79, 3501–3513 (1974) ADSGoogle Scholar
  218. E.J. Smith, L. Davis Jr., D.E. Jones, P.J. Coleman Jr., D.S. Colburn, P. Dyal, C.P. Sonett, Saturn’s magnetosphere and its interaction with the solar wind. J. Geophys. Res. 85(11), 5655–5674 (1980) ADSGoogle Scholar
  219. H.T. Smith, R.E. Johnson, V.I. Shematovich, Titan’s atomic and molecular nitrogen tori. Geophys. Res. Lett. 31, L16804 (2004). doi:10.1029/2004GL020580 ADSGoogle Scholar
  220. H.T. Smith, M. Shappirio, E.C. Sittler, D. Reisenfeld, R.E. Johnson, R.A. Baragiola, F.J. Crary, D.J. McComas, D.T. Young, Discovery of nitrogen in Saturn’s inner magnetosphere. Geophys. Res. Lett. 32, L14S03 (2005). doi:10.1029/2005GL022654 Google Scholar
  221. H.T. Smith, R.E. Johnson, E.C. Sittler, M. Shappirio, D. Reisenfeld, O.J. Tucker, M. Burger, F.J. Crary, D.J. McComas, D.T. Young Enceladus, The likely dominant nitrogen source in Saturn’s magnetosphere. Icarus 188(2), 356–366 (2007) ADSGoogle Scholar
  222. H.T. Smith, M. Shappirio, R.E. Johnson, D. Reisenfeld, E.C. Sittler, F.J. Crary, D.J. McComas, D.T. Young Enceladus, A potential source of ammonia products and molecular nitrogen for Saturn’s magnetosphere. J. Geophys. Res. 113(11), A11206 (2008) ADSGoogle Scholar
  223. H.T. Smith, D.G. Mitchell, R.E. Johnson, C.P. Paranicas, Investigation of energetic proton penetration in Titan’s atmosphere using the Cassini INCA instrument. Planet. Space Sci. 57(13), 1538–1546 (2009). doi:10.1016/j.pss.2009.03.013 ADSGoogle Scholar
  224. H.T. Smith, R.E. Johnson, M.E. Perry, D.G. Mitchell, R.L. McNutt, D.T. Young, Enceladus plume variability and the neutral gas densities in Saturn’s magnetosphere. J. Geophys. Res. 115, A10252 (2010). doi:10.1029/2009JA015184 ADSGoogle Scholar
  225. D.J. Southwood, M.G. Kivelson, Saturnian magnetospheric dynamics: Elucidation of a camshaft model. J. Geophys. Res. 112(12), A12222 (2007) ADSGoogle Scholar
  226. D.J. Southwood, M.G. Kivelson, The source of Saturn’s periodic radio emission. J. Geophys. Res. 114, A09201 (2009). doi:10.1029/2008JA013800 Google Scholar
  227. F. Spahn, J. Schmidt, N. Albers, M. Hoerning, M. Makuch, M. Seiss, S. Kempf, R. Srama, V. Dikarev, S. Helfert, G. Moragas-Klostermeyer, A.V. Krivov, M. Sremcevi, A.J. Tuzzolino, T. Economou, E. Gruen, Cassini dust measurements at Enceladus and implications for the origin of the E ring. Science 311(5766), 1416–1418 (2006) ADSGoogle Scholar
  228. R. Srama, T.J. Ahrens, N. Altobelli, S. Auer, J.G. Bradley, M. Burton, V.V. Dikarev, T. Economou, H. Fechtig, M. Görlich, M. Grande, A. Graps, E. Grün, O. Havnes, S. Helfert, M. Horanyi, E. Igenbergs, E.K. Jessberger, T.V. Johnson, S. Kempf, A.V. Krivov, H. Krüger, A. Mocker-Ahlreep, G. Moragas-Klostermeyer, P. Lamy, M. Landgraf, D. Linkert, G. Linkert, F. Lura, J.A.M. McDonnell, D. Möhlmann, G.E. Morfill, M. Müller, M. Roy, G. Schäfer, G. Schlotzhauer, G.H. Schwehm, F. Spahn, M. Stübig, J. Svestka, V. Tschernjawski, A.J. Tuzzolino, R. Wäsch, H.A. Zook, The Cassini cosmic dust analyser. Space Sci. Rev. 114(1–4), 465–518 (2004) ADSGoogle Scholar
  229. S.S. Stahara, J.R. Spreiter, R. Rachiele, J.A. Slavin, A three-dimensional gasdynamic model for solar wind flow past nonaxisymmetric magnetospheres: application to Jupiter and Saturn. J. Geophys. Res. 94(10), 13353–13365 (1989) ADSGoogle Scholar
  230. T. Stallard, H. Melin, S.W.H. Cowley, S. Miller, M.B. Lystrup, Location and magnetospheric mapping of Saturn’s mid-latitude infrared auroral oval. Astrophys. J. Lett. 722, L85–L89 (2010). doi:10.1088/2041-8205/722/1/L85 ADSGoogle Scholar
  231. A.J. Steffl, P.A. Delamere, F. Bagenal, Cassini UVIS observations of the Io plasma torus IV. Modeling temporal and azimuthal variability. Icarus 194, 153–165 (2008) ADSGoogle Scholar
  232. M.G. Sterenborg, J. Bloxham, Can Cassini magnetic field measurements be used to find the rotation period of Saturn’s interior. Geophys. Res. Lett. 37, L11201 (2010). doi:10.1029/2010GL043250 ADSGoogle Scholar
  233. D.F. Strobel, Titan’s hydrodynamically escaping atmosphere: Escape rates and the structure of the exobase region. Icarus 202(2), 632–641 (2008) ADSGoogle Scholar
  234. B.D. Teolis, G.H. Jones, P.F. Miles, R.L. Tokar, B.A. Magee, J.H. Waite, E. Roussos, D.T. Young, F.J. Crary, A.J. Coates, R.E. Johnson, W.-L. Tseng, R.A. Baragiola, Cassini finds an oxygen-carbon dioxide atmosphere at Saturn’s icy moon Rhea. Science 330(6012), 1813 (2010). doi:10.1126/science.1198366 ADSGoogle Scholar
  235. M.F. Thomsen, D.B. Reisenfeld, D.M. Delapp, R.L. Tokar, D.T. Young, F.J. Crary, E.C. Sittler, M.A. McGraw, J.D. Williams, Survey of ion plasma parameters in Saturn’s magnetosphere. J. Geophys. Res. 115, A10220 (2010). doi:10.1029/2010JA015267 ADSGoogle Scholar
  236. R.L. Tokar, R.E. Johnson, M.F. Thomsen, D.M. Delapp, R.A. Baragiola, M.F. Francis, D.B. Reisenfeld, B.A. Fish, D.T. Young, F.J. Crary, A.J. Coates, D.A. Gurnett, W.S. Kurth, Cassini observations of the thermal plasma in the vicinity of Saturn’s main rings and the F and G rings. Geophys. Res. Lett. 32(14), L14S04 (2005) Google Scholar
  237. R.L. Tokar, R.E. Johnson, T.W. Hill, D.H. Pontius, W.S. Kurth, F.J. Crary, D.T. Young, M.F. Thomsen, D.B. Reisenfeld, A.J. Coates, G.R. Lewis, E.C. Sittler, D.A. Gurnett, The interaction of the atmosphere of Enceladus with Saturn’s plasma. Science 311, 5766 (2006) Google Scholar
  238. R.L. Tokar, R.J. Wilson, R.E. Johnson, M.G. Henderson, M.F. Thomsen, M.M. Cowee, E.C. Sittler, D.T. Young, F.J. Crary, H.J. McAndrews, H.T. Smith, Cassini detection of water-group pick-up ions in the Enceladus torus. Geophys. Res. Lett. 35(14), L14202 (2008) ADSGoogle Scholar
  239. W.-L. Tseng, W.-H. Ip, R.E. Johnson, T.A. Cassidy, M.K. Elrod, The structure and time variability of the ring atmosphere and ionosphere. Icarus 206(2), 382–389 (2010). doi:10.1016/j.icarus.2009.05.019 ADSGoogle Scholar
  240. W.-L. Tseng, R.E. Johnson, M.F. Thomsen, T.A. Cassidy, M.K. Elrod, Neutral H2 and \(\mathrm{H}_{2}^{+}\) ions in the saturnian magnetosphere. J. Geophys. Res. 116, A03209 (2011). doi:10.1029/2010JA016145 Google Scholar
  241. J.A. van Allen, M.F. Thomsen, B.A. Randall, R.L. Rairden, C.L. Grosskreutz, Saturn’s magnetosphere, rings, and inner satellites. Science 207, 415–421 (1980) ADSGoogle Scholar
  242. V.M. Vasyliunas, Plasma distribution and flow, in Physics of the Jovian Magnetosphere, ed. by A.J. Dessler. Cambridge Planetary Science Series (1983) Google Scholar
  243. J.E. Wahlund, R. Boström, G. Gustafsson, D.A. Gurnett, W.S. Kurth, T. Averkamp, G.B. Hospodarsky, A.M. Persoon, P. Canu, A. Pedersen, M.D. Desch, A.I. Eriksson, R. Gill, M.W. Morooka, M. André, The inner magnetosphere of Saturn: Cassini RPWS cold plasma results from the first encounter. Geophys. Res. Lett. 32(20), L20S09 (2005) Google Scholar
  244. J.E. Wahlund, M. André, A.I.E. Eriksson, M. Lundberg, M.W. Morooka, M. Shafiq, T.F. Averkamp, D.A. Gurnett, G.B. Hospodarsky, W.S. Kurth, K.S. Jacobsen, A. Pedersen, W. Farrell, S. Ratynskaia, N. Piskunov, Detection of dusty plasma near the E-ring of Saturn. Planet. Space Sci. 57(14–15), 1795–1806 (2009). doi:10.1016/j.pss.2009.03.011 ADSGoogle Scholar
  245. J.H. Waite, T.E. Cravens, W.H. Ip, W.T. Kasprzak, J.G. Luhmann, R.L. Mc-Nutt, H.B. Niemann, R.V. Yelle, I. Mueller-Wodarg, S.A. Ledvina, S. Scherer, Oxygen ions observed near Saturn’s a-ring. Science 307(5713), 1260–1262 (2005) ADSGoogle Scholar
  246. J.H. Waite, M.R. Combi, W.-H. Ip, T.E. Cravens, R.L. McNutt, W. Kasprzak, R. Yelle, J. Luhmann, H. Niemann, D. Gell, B. Magee, G. Fletcher, J. Lunine, W.-L. Tseng, Cassini ion neutral mass spectrometer enceladus plume composition and structure. Science 311(5766), 1419–1422 (2006) ADSGoogle Scholar
  247. J.H. Waite Jr., W.S. Lewis, B.A. Magee, J.I. Lunine, W.B. McKinnon, C.R. Glein, O. Mousis, D.T. Young, T. Brockwell, J. Westlake, M.-J. Nguyen, B.D. Teolis, H.B. Niemann, R.L. McNutt, M. Perry, W.-H. Ip, Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature 460(7254), 487–490 (2009). doi:10.1038/nature08153 ADSGoogle Scholar
  248. H.-Y. Wei, C.T. Russell, A. Wellbrock, M.K. Dougherty, A.J. Coates, Plasma environment at Titan’s orbit with Titan present and absent. Geophys. Res. Lett. 36, L23202 (2009). doi:10.1029/2009GL041048 ADSGoogle Scholar
  249. M.S. Westley, R.A. Baragiola, R.E. Johnson, G.A. Barrata, Ultraviolet photodesorption from water ice. Planet. Space Sci. 43, 1311–1315 (1995) ADSGoogle Scholar
  250. R.J. Wilson, R.L. Tokar, M.G. Henderson, T.W. Hill, M.F. Thomsen, D.H. Pontius, Cassini plasma spectrometer thermal ion measurements in Saturn’s inner magnetosphere. J. Geophys. Res. 113(12), A12218 (2008) ADSGoogle Scholar
  251. R.J. Wilson, R.L. Tokar, M.G. Henderson, Thermal ion flow in Saturn’s inner magnetosphere measured by the Cassini plasma spectrometer: A signature of the Enceladus torus? Geophys. Res. Lett. 36(23), L23104 (2009) ADSGoogle Scholar
  252. A.A. Wolf, Touring the saturnian system. Space Sci. Rev. 104(1), 101–128 (2002) ADSGoogle Scholar
  253. H. Wu, T.W. Hill, R.A. Wolf, R.W. Spiro, Numerical simulation of fine structure in the Io plasma torus produced by the centrifugal interchange instability. J. Geophys. Res. 112(2), A02206 (2007) Google Scholar
  254. V.V. Yaroshenko, S. Ratynskaia, J. Olson, N. Brenning, J.-E. Wahlund, M. Morooka, W.S. Kurth, D.A. Gurnett, G.E. Morfill, Characteristics of charged dust inferred from the Cassini RPWS plasma measurements in the vicinity of Enceladus. Planet. Space Sci. 57(14–15), 1807–1812 (2009). doi:10.1016/j.pss.2009.03.002 ADSGoogle Scholar
  255. R.V. Yelle, J. Cui, I.C.F. Müller-Wodarg, Methane escape from Titan’s atmosphere. J. Geophys. Res. 113, E10003 (2008). doi:10.1029/2007JE003031 ADSGoogle Scholar
  256. D.T. Young, J.J. Berthelier, M. Blanc, J.L. Burch, A.J. Coates, R. Goldstein, M. Grande, T.W. Hill, R.E. Johnson, V. Kelha, D.J. McComas, E.C. Sittler, K.R. Svenes, K. Szegö, P. Tanskanen, K. Ahola, D. Anderson, S. Bakshi, R.A. Baragiola, B.L. Barraclough, R.K. Black, S. Bolton, T. Booker, R. Bowman, P. Casey, F.J. Crary, D. Delapp, G. Dirks, N. Eaker, H. Funsten, J.D. Furman, J.T. Gosling, H. Hannula, C. Holmlund, H. Huomo, J.M. Illiano, P. Jensen, M.A. Johnson, D.R. Linder, T. Luntama, S. Maurice, K.P. McCabe, K. Mursula, B.T. Narheim, J.E. Nordholt, A. Preece, J. Rudzki, A. Ruitberg, K. Smith, S. Szalai, M.F. Thomsen, K. Viherkanto, J. Vilppola, T. Vollmer, T.E. Wahl, M. Wüest, T. Ylikorpi, C. Zinsmeyer, Cassini plasma spectrometer investigation. Space Sci. Rev. 114(1–4), 1–112 (2004) ADSGoogle Scholar
  257. D.T. Young, J.J. Berthelier, M. Blanc, J.L. Burch, S. Bolton, A.J. Coates, F.J. Crary, R. Goldstein, M. Grande, T.W. Hill, R.E. Johnson, R.A. Baragiola, V. Kelha, D.J. McComas, K. Mursula, E.C. Sittler, K.R. Svenes, K. Szego, P. Tanskanene, M.F. Thomsen, S. Baksji, B.L. Barraclough, Z. Bebesi, D. Delapp, M.W. Dunlop, J.T. Gosling, J.D. Furman, L.K. Gilbert, D. Glenn, C. Holmlund, J.-M. Illiano, G.R. Lewis, D.R. Linder, S. Maurice, H.J. McAndrews, B.T. Narheim, E. Pallier, D. Reisenfeld, A.M. Rymer, H.T. Smith, R.L. Tokar, J. Vilppola, C. Zinsmeyer, Composition and dynamics of plasma in Saturn’s magnetosphere. Science 307(5713), 1262–1266 (2005) ADSGoogle Scholar
  258. P. Zarka, L. Lamy, B. Cecconi, R. Prangé, H.O. Rucker, Modulation of Saturn’s radio clock by solar wind speed. Nature 450(7167), 265–267 (2007) ADSGoogle Scholar
  259. B. Zieger, K.C. Hansen, Statistical validation of a solar wind propagation model from 1 to 10 AU. J. Geophys. Res. 113, A08107 (2008) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • C. S. Arridge
    • 1
    • 2
  • N. André
    • 3
    • 4
  • H. J. McAndrews
    • 5
  • E. J. Bunce
    • 6
  • M. H. Burger
    • 7
  • K. C. Hansen
    • 8
  • H.-W. Hsu
    • 9
  • R. E. Johnson
    • 10
  • G. H. Jones
    • 1
    • 2
  • S. Kempf
    • 9
  • K. K. Khurana
    • 11
  • N. Krupp
    • 12
  • W. S. Kurth
    • 13
  • J. S. Leisner
    • 11
    • 13
  • C. Paranicas
    • 14
  • E. Roussos
    • 12
  • C. T. Russell
    • 11
  • P. Schippers
    • 13
    • 15
  • E. C. Sittler
    • 7
  • H. T. Smith
    • 14
  • M. F. Thomsen
    • 5
  • M. K. Dougherty
    • 16
  1. 1.Mullard Space Science LaboratoryUniversity College LondonDorkingUK
  2. 2.The Centre for Planetary Sciences at UCL/BirkbeckLondonUK
  3. 3.CNRSInstitut de Recherche en Astrophysique et PlanétologieToulouse Cedex 4France
  4. 4.UPS-OMP, Institut de Recherche en Astrophysique et PlanétologieUniversité de ToulouseToulouseFrance
  5. 5.ISR-1, Space and Atmospheric Sciences GroupLANLLos AlamosUSA
  6. 6.Department of Physics and AstronomyUniversity of LeicesterLeicesterUK
  7. 7.NASA/Goddard Space Flight CenterGreenbeltUSA
  8. 8.Center for Space Environment Modeling, Department of Atmospheric, Oceanic and Space SciencesUniversity of MichiganAnn ArborUSA
  9. 9.Max Planck Institute Nuclear PhysicsHeidelbergGermany
  10. 10.Engineering Physics Program and Astronomy DepartmentUniversity of VirginiaCharlottesvilleUSA
  11. 11.Institute of Geophysics and Planetary PhysicsUniversity of CaliforniaLos AngelesUSA
  12. 12.Max-Planck Institut fuer SonnensystemforschungKatlenburg-LindauGermany
  13. 13.Department of Physics and AstronomyUniversity of IowaIowa CityUSA
  14. 14.Applied Physics LaboratoryJohns Hopkins UniversityLaurelUSA
  15. 15.Centre d’Etude Spatiale des RayonnementsToulouseFrance
  16. 16.The Blackett LaboratoryImperial CollegeLondonUK

Personalised recommendations