Advertisement

Space Science Reviews

, Volume 162, Issue 1–4, pp 25–83 | Cite as

Upstream of Saturn and Titan

  • C. S. Arridge
  • N. André
  • C. L. Bertucci
  • P. Garnier
  • C. M. Jackman
  • Z. Németh
  • A. M. Rymer
  • N. Sergis
  • K. Szego
  • A. J. Coates
  • F. J. Crary
Article

Abstract

The formation of Titan’s induced magnetosphere is a unique and important example in the solar system of a plasma-moon interaction where the moon has a substantial atmosphere. The field and particle conditions upstream of Titan are important in controlling the interaction and also play a strong role in modulating the chemistry of the ionosphere. In this paper we review Titan’s plasma interaction to identify important upstream parameters and review the physics of Saturn’s magnetosphere near Titan’s orbit to highlight how these upstream parameters may vary. We discuss the conditions upstream of Saturn in the solar wind and the conditions found in Saturn’s magnetosheath. Statistical work on Titan’s upstream magnetospheric fields and particles are discussed. Finally, various classification schemes are presented and combined into a single list of Cassini Titan encounter classes which is also used to highlight differences between these classification schemes.

Keywords

Titan Induced magnetosphere Saturn Plasma interaction 

Notes

Acknowledgements

The authors thank the staff at the International Space Science Institute for their hospitality. CSA wishes to thank A. Wellbrock and H.T. Smith for useful discussions and assistance. The authors would like to thank N. Krupp for use of MIMI-LEMMS data, M. Kusterer (JHU/APL) for assistance with the data reduction, M. Dougherty for the use of MAG data, and S.M. Krimigis for MIMI data. We are grateful to Cassini/MIMI and Cassini/CAPS colleagues for comments that improved this study. We thank the many individuals at JPL, NASA, ESA and numerous PI and Co-I institutions who have contributed to making the Cassini project an outstanding success. CSA was supported by an STFC post-doctoral fellowship under grant ST/G007462/1, AMR was supported by NASA-JPL contract NAS5-97271 between the NASA Goddard Space Flight Center and Johns Hopkins University for the MIMI investigation and by NASA-JPL contract 1243218 for the CAPS program at the Southwest Research Institute. Work at JHU/APL was supported by NASA and by subcontracts at the UMD and the Academy of Athens. The German contribution of MIMI/LEMMS was financed by the Bundesministerium für Bildung und Forschung through the Deutsches Zentrum für Luft und Raumfahrt and by the Max-Planck-Gesellschaft. The French co-authors acknowledge support from the French space agency CNES. The authors acknowledge the support of EUROPLANET RI project (Grant agreement no.: 228319) funded by EU; and also the support of the International Space Science Institute (Bern). CAPS operations at Mullard Space Science Laboratory, UCL, and MAG operations at Imperial College London are supported in the UK by the Science and Technology Facilities Council and the European Space Agency.

References

  1. N. Achilleos, C. Bertucci, C.T. Russell, G.B. Hospodarsky, A.M. Rymer, C.S. Arridge, M.E. Burton, M.K. Dougherty, S. Hendricks, E.J. Smith, B.T. Tsurutani, Orientation, location, and velocity of Saturn’s bow shock: initial results from the Cassini spacecraft. J. Geophys. Res. 111, A03201 (2006). doi: 10.1029/2005JA011297 CrossRefGoogle Scholar
  2. N. Achilleos, C.S. Arridge, C. Bertucci, C.M. Jackman, M.K. Dougherty, K.K. Khurana, C.T. Russell, F.J. Crary, D.T. Young, Large-scale dynamics of Saturn’s magnetopause: observations by Cassini. J. Geophys. Res. 113, A11209 (2008). doi: 10.1029/2008JA013265 ADSCrossRefGoogle Scholar
  3. M.H. Acuña, J.E.P. Connerney, P. Wasilewski, R.P. Lin, K.A. Anderson, C.W. Carlson, J. McFadden, D.W. Curtis, D. Mitchell, H. Reme, C. Mazelle, J.A. Sauvaud, C. d’Uston, A. Cros, J.L. Medale, S.J. Bauer, P. Cloutier, M. Mayhew, D. Winterhalter, N.F. Ness, Magnetic field and plasma observations at Mars: initial results of the Mars Global Surveyor mission. Science 29(5357), 1676–1680 (1998). doi: 10.1126/science.279.5357.1676 ADSGoogle Scholar
  4. N. André, A.M. Persoon, J. Goldstein, P. Louarn, G.R. Lewis, A.M. Rymer, A.J. Coates, W.S. Kurth, E.C. Sittler, M.F. Thomsen, F.J. Crary, M.K. Dougherty, D.A. Gurnett, D.T. Young, Magnetic signatures of plasma-depleted flux tubes in the Saturnian inner magnetosphere. Geophys. Res. Lett. 34, L14108 (2007). doi: 10.1029/2007GL030374 ADSCrossRefGoogle Scholar
  5. N. André, M. Blanc, S. Maurice, P. Schippers, E. Pallier, T.I. Gombosi, K.C. Hansen, D.T. Young, F.J. Crary, S. Bolton, E.C. Sittler, H.T. Smith, R.E. Johnson, R.A. Baragiola, A.J. Coates, A.M. Rymer, M.K. Dougherty, N. Achilleos, C.S. Arridge, S.M. Krimigis, D.G. Mitchell, N. Krupp, D.C. Hamilton, I. Dandouras, D.A. Gurnett, W.S. Kurth, P. Louarn, R. Srama, S. Kempf, H.J. Waite, L.W. Esposito, J.T. Clarke, Identification of Saturn’s magnetospheric regions and associated plasma processes: synopsis of Cassini observations during orbit insertion. Rev. Geophys. 46, RG4008 (2008). doi: 10.1029/2007RG000238 ADSCrossRefGoogle Scholar
  6. D.J. Andrews, E.J. Bunce, S.W.H. Cowley, M.K. Dougherty, G. Provan, D.J. Southwood, Planetary period oscillations in Saturn’s magnetosphere: phase relation of equatorial magnetic field oscillations and Saturn kilometric radiation modulation. J. Geophys. Res. 113, A09205 (2008). doi: 10.1029/2007JA012937 CrossRefGoogle Scholar
  7. C.S. Arridge, N. Achilleos, M.K. Dougherty, K.K. Khurana, C.T. Russell, Modeling the size and shape of Saturn’s magnetopause with variable dynamic pressure. J. Geophys. Res. 111, A11227 (2006). doi: 10.1029/2005JA011574 ADSCrossRefGoogle Scholar
  8. C.S. Arridge, N. André, N. Achilleos, K.K. Khurana, C.L. Bertucci, L.K. Gilbert, G.R. Lewis, A.J. Coates, M.K. Dougherty, Thermal electron periodicities at 20 R S in Saturn’s magnetosphere. Geophys. Res. Lett. 35, L15107 (2008a). doi: 10.1029/2008GL034132 ADSCrossRefGoogle Scholar
  9. C.S. Arridge, K.K. Khurana, C.T. Russell, D.J. Southwood, N. Achilleos, M.K. Dougherty, A.J. Coates, H.K. Leinweber, Warping of Saturn’s magnetospheric and magnetotail current sheets. J. Geophys. Res. 113, A08217 (2008b). doi: 10.1029/2007JA012963 CrossRefGoogle Scholar
  10. C.S. Arridge, C.T. Russell, K.K. Khurana, N. Achilleos, S.W.H. Cowley, M.K. Dougherty, D.J. Southwood, E.J. Bunce, Saturn’s magnetodisc current sheet. J. Geophys. Res. 113, A04214 (2008c). doi: 10.1029/2007JA012540 CrossRefGoogle Scholar
  11. C.S. Arridge, L.K. Gilbert, G.R. Lewis, E.C. Sittler, G.H. Jones, D.O. Kataria, A.J. Coates, D.T. Young, The effect of spacecraft radiation sources on electron moments from the Cassini CAPS electron spectrometer. Planet. Space Sci. 57(7), 854–869 (2009a). doi: 10.1016/j.pss.2009.02.011 ADSCrossRefGoogle Scholar
  12. C.S. Arridge, H.J. McAndrews, C.M. Jackman, C. Forsyth, A.P. Walsh, E.C. Sittler, L.K. Gilbert, G.R. Lewis, C.T. Russell, A.J. Coates, M.K. Dougherty, G.A. Collinson, A. Wellbrock, D.T. Young, Plasma electrons in Saturn’s magnetotail: structure, distribution and energisation. Planet. Space Sci. 57(14–15), 2032–2047 (2009b). doi: 10.1016/j.pss.2009.09.007 ADSCrossRefGoogle Scholar
  13. C.S. Arridge, N. Achilleos, P. Guio, Electric field variability and classifications of Titan’s magnetoplasma environment. Ann. Geophys. 29, 1253–1258 (2011a). doi: 10.5194/angeo-29-1253-2011 ADSCrossRefGoogle Scholar
  14. C.S. Arridge, N. André, K.K. Khurana, C.T. Russell, S.W.H. Cowley, G. Provan, D.J. Andrews, C.M. Jackman, A.J. Coates, E.C. Sittler, M.K. Dougherty, D.T. Young, Periodic motion of Saturn’s nightside plasma sheet. J. Geophys. Res. 116, A11205 (2011b). doi: 10.1029/2011JA016827 ADSCrossRefGoogle Scholar
  15. C.S. Arridge, N. André, H.J. McAndrews, E.J. Bunce, M.H. Burger, K.C. Hansen, H.-W. Hsu, R.E. Johnson, G.H. Jones, S. Kempf, K.K. Khurana, N. Krupp, W.S. Kurth, J.S. Leisner, C. Paranicas, E. Roussos, C.T. Russell, P. Schippers, E.C. Sittler, H.T. Smith, M.F. Thomsen, M.K. Dougherty, Mapping magnetospheric equatorial regions at Saturn from Cassini prime mission observations, Space Sci. Rev., accepted manuscript (2011c) Google Scholar
  16. C.S. Arridge et al., A statistical analysis of plasma parameters near Titan’s orbit, manuscript to be submitted to J. Geophys. Res. (2011d) Google Scholar
  17. H. Backes, F.M. Neubauer, M.K. Dougherty, N. Achilleos, N. André, C.S. Arridge, C. Bertucci, G.H. Jones, K.K. Khurana, C.T. Russell, A. Wennmacher, Titan’s magnetic field signature during the first Cassini encounter. Science 308, 992 (2005). doi: 10.1126/science.1109763 ADSCrossRefGoogle Scholar
  18. K.W. Behannon, R.P. Lepping, N.F. Ness, Structure and dynamics of Saturn’s outer magnetosphere and boundary regions. J. Geophys. Res. 88, 8791 (1983) ADSCrossRefGoogle Scholar
  19. C. Bertucci, C. Mazelle, D.H. Crider, D. Vignes, M.H. Acuña, D.L. Mitchell, R.P. Lin, J.E.P. Connerney, H. Rème, P.A. Cloutier, N.F. Ness, D. Winterhalter, Magnetic field draping enhancement at the Martian magnetic pileup boundary from Mars global surveyor observations. Geophys. Res. Lett. 30(2), 1099 (2003a). doi: 10.1029/2002GL015713 ADSCrossRefGoogle Scholar
  20. C. Bertucci, C. Mazelle, J.A. Slavin, C.T. Russell, M.H. Acuña, Magnetic field draping enhancement at Venus: evidence for a magnetic pileup boundary. Geophys. Res. Lett. 30(17), 1876 (2003b). doi: 10.1029/2002GL015713 ADSCrossRefGoogle Scholar
  21. C. Bertucci, N. Achilleos, M.K. Dougherty, R. Modolo, A.J. Coates, K. Szego, A. Masters, Y. Ma, F.M. Neubauer, P. Garnier, J.-E. Wahlund, D.T. Young, The magnetic memory of Titan’s ionized atmosphere. Science 321(5895), 1475 (2008). doi: 10.1126/science.1159780 ADSCrossRefGoogle Scholar
  22. C. Bertucci, B. Sinclair, N. Achilleos, P. Hunt, M.K. Dougherty, C.S. Arridge, The variability of Titan’s magnetic environment. Planet. Space Sci. 57(14–15), 1813–1820 (2009). doi: 10.1016/j.pss.2009.02.009 ADSCrossRefGoogle Scholar
  23. M. Blanc, S. Bolton, J. Bradley, M.E. Burton, T.E. Cravens, I. Dandouras, M.K. Dougherty, M.C. Festou, J. Feynman, R.E. Johnson, T.G. Gombosi, W.S. Kurth, P.C. Liewer, B.H. Mauk, S. Maurice, D. Mitchell, F.M. Neubauer, J.D. Richardson, D.E. Shemansky, E.C. Sittler, B.T. Tsurutani, P. Zarka, L.W. Esposito, E. Grün, D.A. Gurnett, A.J. Kliore, S.M. Krimigis, D.J. Southwood, J.H. Waite, D.T. Young, Magnetospheric and plasma science with Cassini-Huygens. Space Sci. Rev. 104(1), 253–346 (2002) ADSCrossRefGoogle Scholar
  24. J.L. Burch, A.D. DeJong, J. Goldstein, D.T. Young, Periodicity in Saturn’s magnetosphere: plasma cam. Geophys. Res. Lett. 36, L14203 (2009). doi: 10.1029/2009GL039043 ADSCrossRefGoogle Scholar
  25. M.E. Burton, M.K. Dougherty, C.T. Russell, Saturn’s internal planetary magnetic field. Geophys. Res. Lett. 37, L24105 (2011). doi: 10.1029/2010GL045148 ADSCrossRefGoogle Scholar
  26. C.L. Cai, I. Dandouras, H. Rème, J.B. Cao, G.C. Zhou, C. Shen, G.K. Parks, D. Fontaine, Magnetosheath excursion and the relevant transport process at the magnetopause. Ann. Geophys. 27(8), 2997–3005 (2009). doi: 10.5194/angeo-27-2997-2009 ADSCrossRefGoogle Scholar
  27. J.F. Carbary, D.G. Mitchell, S.M. Krimigis, D.C. Hamilton, N. Krupp, Charged particle periodicities in Saturn’s outer magnetosphere. J. Geophys. Res. 112, A06246 (2007). doi: 10.1029/2007JA012351 CrossRefGoogle Scholar
  28. J.F. Carbary, D.G. Mitchell, P. Brandt, E.C. Roelof, S.M. Krimigis, Periodic tilting of Saturn’s plasma sheet. Geophys. Res. Lett. 35, L24101 (2008a). doi: 10.1029/2008GL036339 ADSCrossRefGoogle Scholar
  29. J.F. Carbary, D.G. Mitchell, P. Brandt, E.C. Roelof, S.M. Krimigis, Statistical morphology of ENA emissions at Saturn. J. Geophys. Res. 113, A05210 (2008b). doi: 10.1029/2007JA012873 CrossRefGoogle Scholar
  30. K.E. Clarke, N. André, D.J. Andrews, A.J. Coates, S.W.H. Cowley, M.K. Dougherty, G.R. Lewis, H.J. McAndrews, J.D. Nichols, T.R. Robinson, D.M. Wright, Cassini observations of planetary-period oscillations of Saturn’s magnetopause. Geophys. Res. Lett. 33, L23104 (2006). doi: 10.1029/2006GL0278212006 ADSCrossRefGoogle Scholar
  31. K.E. Clarke, D.J. Andrews, C.S. Arridge, A.J. Coates, S.W.H. Cowley, Magnetopause oscillations near the planetary period at Saturn: occurrence, phase, and amplitude. J. Geophys. Res. 115, A08209 (2010a). doi: 10.1029/2009JA014745 CrossRefGoogle Scholar
  32. K.E. Clarke, D.J. Andrews, A.J. Coates, S.W.H. Cowley, A. Masters, Magnetospheric period oscillations of Saturn’s bow shock. J. Geophys. Res. 115, A05202 (2010b). doi: 10.1029/2009JA015164 CrossRefGoogle Scholar
  33. A.J. Coates, F.J. Crary, G.R. Lewis, D.T. Young, J.H. Waite, E.C. Sittler, Discovery of heavy negative ions in Titan’s ionosphere. Geophys. Res. Lett. 34, L22103 (2007). doi: 10.1029/2007GL030978 ADSCrossRefGoogle Scholar
  34. T.E. Cravens, I.P. Robertson, S.A. Ledvina, D. Mitchell, S.M. Krimigis, J.H. Waite, Energetic ion precipitation at Titan. Geophys. Res. Lett. 35, L03103 (2008). doi: 10.1029/2007GL032451 CrossRefGoogle Scholar
  35. M. Desch, Radio emission signature of Saturn immersions in Jupiter’s magnetic tail. J. Geophys. Res. 88, 6904 (1983) ADSCrossRefGoogle Scholar
  36. K. Dialynas, S.M. Krimigis, D.G. Mitchell, D.C. Hamilton, N. Krupp, P.C. Brandt, Energetic ion spectral characteristics in the Saturnian magnetosphere using Cassini/MIMI measurements. J. Geophys. Res. 114, A01212 (2009). doi: 10.1029/2008JA013761 CrossRefGoogle Scholar
  37. P. Garnier, The exosphere of Titan and its interaction with the kronian magnetosphere, with the use of MIMI data onboard Cassini. Ph.D. thesis, Universite Toulouse III, 2007 Google Scholar
  38. P. Garnier, J.-E. Wahlund, L. Rosenqvist, R. Modolo, K. Ågren, N. Sergis, P. Canu, M. Andre, D.A. Gurnett, W.S. Kurth, S.M. Krimigis, A. Coates, M. Dougherty, J.H. Waite, Titan’s ionosphere in the magnetosheath: Cassini RPWS results during the T32 flyby. Ann. Geophys. 27, 4257–4272 (2009). doi: 10.5194/angeo-27-4257-2009 ADSCrossRefGoogle Scholar
  39. P. Garnier, I. Dandouras, D. Toublanc, E.C. Roelof, P.C. Brandt, D.G. Mitchell, S.M. Krimigis, N. Krupp, D.C. Hamilton, J.-E. Wahlund, Statistical analysis of the energetic ion and ENA data for the Titan environment. Planet. Space Sci. 58(14–15), 1811–1822 (2010). doi: 10.1016/j.pss.2010.08.009 ADSCrossRefGoogle Scholar
  40. T.I. Gombosi, T.P. Armstrong, C.S. Arridge, K.K. Khurana, S.M. Krimigis, N. Krupp, A.M. Persoon, M.F. Thomsen, Saturn’s magnetospheric configuration, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis (Springer, Berlin, 2009), pp. 203–255. doi:10.1007/978-1-4020-9217-6_9 CrossRefGoogle Scholar
  41. J.T. Gosling, V.J. Pizzo, Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci. Rev. 89, 21 (1999) ADSCrossRefGoogle Scholar
  42. D.A. Gurnett, A.M. Persoon, W.S. Kurth, J.B. Groene, T.F. Averkamp, M.K. Dougherty, D.J. Southwood, The variable rotation period of the inner region of Saturn’s plasma disk. Science 316(5823), 442 (2007). doi: 10.1126/science.1138562 ADSCrossRefGoogle Scholar
  43. R.E. Hartle, E.C. Sittler Jr., F.M. Neubauer, R.E. Johnson, H.T. Smith, F. Crary, D.J. McComas, D.T. Young, A.J. Coates, D. Simpson, S. Bolton, D. Reisenfeld, K. Szego, J.J. Berthelier, A. Rymer, J. Vilppola, J.T. Steinberg, N. André, Initial interpretation of Titan plasma interaction as observed by the Cassini plasma spectrometer: comparisons with Voyager 1. Planet. Space Sci. 54, 1211–1224 (2006). doi: 10.1016/j.pss.2006.05.029 ADSCrossRefGoogle Scholar
  44. T.W. Hill, F.C. Michel, Heavy ions from the Galilean satellites and the centrifugal distortion of the Jovian magnetosphere. J. Geophys. Res. 81, 4561–4565 (1976). doi: 10.1029/JA081i025p04561 ADSCrossRefGoogle Scholar
  45. A.J. Hundhausen, J.T. Gosling, Solar wind structure at large heliocentric distances; an interpretation of Pioneer 10 observations. J. Geophys. Res. 81, 1436 (1976) ADSCrossRefGoogle Scholar
  46. D.M. Hunten, M.G. Tomasko, F.M. Flasar, R.E. Samuelson, D.F. Strobel, D.J. Stevenson, Titan, in Saturn, ed. by T. Gehrels, M.S. Matthews (University of Arizona Press, Tucson, 1984), pp. 671–759 Google Scholar
  47. P.L. Israelevich, F.M. Neubauer, A.I. Ershkovich, The induced magnetosphere of comet Halley: interplanetary magnetic field during Giotto encounter. J. Geophys. Res. 99, 6575–6583 (1994). doi: 10.1029/93JA03199 ADSCrossRefGoogle Scholar
  48. C.M. Jackman, N. Achilleos, E.J. Bunce, S.W.H. Cowley, M.K. Dougherty, G.H. Jones, S.E. Milan, E.J. Smith, Interplanetary magnetic field at ∼9 AU during the declining phase of the solar cycle and its implications for Saturn’s magnetospheric dynamics. J. Geophys. Res. 109, A11203 (2004). doi: 10.1029/2004JA010614 ADSCrossRefGoogle Scholar
  49. C.M. Jackman, R.J. Forsyth, M.K. Dougherty, The overall configuration of the interplanetary magnetic field upstream of Saturn as revealed by Cassini observations. J. Geophys. Res. 113, A08114 (2008). doi: 10.1029/2008JA013083 CrossRefGoogle Scholar
  50. C.M. Jackman, C.S. Arridge, H.J. McAndrews, M.G. Henderson, R.J. Wilson, Northward field excursions in Saturn’s magnetotail and their relationship to magnetospheric periodicities. Geophys. Res. Lett. 36, L16101 (2009). doi: 10.1029/2009GL039149 ADSCrossRefGoogle Scholar
  51. C.M. Jackman, C.S. Arridge, Solar cycle effects on the dynamics of Jupiter’s and Saturn’s magnetospheres. Sol. Phys. (2011). doi: 10.1007/s11207-011-9748-z Google Scholar
  52. R.E. Johnson, M.R. Combi, J.L. Fox, W.-H. Ip, F. Leblanc, M.A. McGrath, V.I. Shematovich, D.F. Strobl, J.H. Waite Jr., Exospheres and atmospheric escape. Space Sci. Rev. 139, 355–397 (2008). doi: 10.1007/s11214-008-9415-3 ADSCrossRefGoogle Scholar
  53. R.E. Johnson, O.J. Tucker, M. Michael, E.C. Sittler, H.T. Smith, D.T. Young, J.H. Waite, Mass loss processes in Titan’s upper atmosphere, in Titan from Cassini-Huygens, ed. by R.H. Brown, J.-P. Lebreton, J. Hunter Waite (Springer, Berlin, 2009), pp. 373–391. Chapter 15 CrossRefGoogle Scholar
  54. S.J. Kanani, C.S. Arridge, G.H. Jones, A.N. Fazakerley, H.J. McAndrews, N. Sergis, S.M. Krimigis, M.K. Dougherty, A.J. Coates, D.T. Young, K.C. Hansen, N. Krupp, A new form of Saturn’s magnetopause using a dynamic pressure balance model, based on in-situ, multi instrument Cassini measurements. J. Geophys. Res. 115, A06207 (2010). doi: 10.1029/2009JA014262 CrossRefGoogle Scholar
  55. M. Kane, D.G. Mitchell, J.F. Carbary, S.M. Krimigis, F.J. Crary, Plasma convection in Saturn’s outer magnetosphere determined from ions detected by the Cassini INCA experiment. Geophys. Res. Lett. 35, L04102 (2009). doi: 10.1029/2007GL032342 CrossRefGoogle Scholar
  56. S. Kellett, E.J. Bunce, A.J. Coates, S.W.H. Cowley, Thickness of Saturn’s ring current determined from north-south Cassini passes through the current layer. J. Geophys. Res. 114, A04209 (2009). doi: 10.1029/2008JA013942 CrossRefGoogle Scholar
  57. K.K. Khurana, M.G. Kivelson, D.J. Stevenson, G. Schubert, C.T. Russell, R.J. Walker, C. Polanskey, Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395(6704), 777–780 (1998) ADSCrossRefGoogle Scholar
  58. K.K. Khurana, D.G. Mitchell, C.S. Arridge, M.K. Dougherty, C.T. Russell, C. Paranicas, N. Krupp, A.J. Coates, Sources of rotational signals in Saturn’s magnetosphere. J. Geophys. Res. 114, A02211 (2009). doi: 10.1029/2008JA013312 CrossRefGoogle Scholar
  59. A.J. Kliore, A.F. Nagy, E.A. Marouf, R.G. French, M.F. Flasar, N.J. Rappaport, A. Anabttawi, S.W. Asmar, D.S. Kahann, E. Barbinis, G.L. Goltz, D.U. Fleischman, D.J. Rochblatt, First results from the Cassini radio occultations of the Titan ionosphere. J. Geophys. Res. 113, A09317 (2008). doi: 10.1029/2007JA012965 CrossRefGoogle Scholar
  60. S.M. Krimigis, T.P. Armstrong, W.I. Axford, C.O. Bostrom, G. Gloekler, E.P. Keath, L.J. Lanzerotti, J.F. Carbary, D.C. Hamilton, E.C. Roelof, Low-energy charged particles in Saturn’s magnetosphere: results from Voyager 1. Science 212, 225–231 (1981) ADSCrossRefGoogle Scholar
  61. S.M. Krimigis, J.F. Carbary, E.P. Keath, T.P. Armstrong, L.J. Lanzerotti, G. Gloeckler, General characteristics of hot plasma and energetic particles in the Saturnian magnetosphere: results from the Voyager spacecraft. J. Geophys. Res. 88(A11), 8871–8892 (1983) ADSCrossRefGoogle Scholar
  62. S.M. Krimigis, N. Sergis, D.G. Mitchell, D.C. Hamilton, N. Krupp, A dynamic, rotating ring current around Saturn. Nature 450(7172), 1050–1053 (2007). doi: 10.1038/nature06425 ADSCrossRefGoogle Scholar
  63. N. Krupp, E. Roussos, A. Lagg, J. Woch, A.L. Müller, S.M. Krimigis, D.G. Mitchell, E.C. Roelof, C. Paranicas, J. Carbary, G.H. Jones, D.C. Hamilton, S. Livi, T.P. Armstrong, M.K. Dougherty, N. Sergis, Energetic particles in Saturn’s magnetosphere during the Cassini nominal mission (July 2004–July 2008). Planet. Space Sci. 57(14–15), 1754–1768 (2009). doi: 10.1016/j.pss.2009.06.010 ADSCrossRefGoogle Scholar
  64. H. Kunow, Solar wind: Corotating interaction region, in Encyclopedia of Astronomy and Astrophysics, vol. 4 (Institute of Physics, Bristol, 2001), p. 2825 Google Scholar
  65. W.S. Kurth, T.F. Averkamp, D.A. Gurnett, J.B. Groene, A. Lecacheux, An update to a Saturnian longitude system based on kilometric radio emissions. J. Geophys. Res. 113(5), A05222 (2008). doi: 10.1029/2007JA012861 CrossRefGoogle Scholar
  66. S.A. Ledvina, Y.-J. Ma, E. Kallio, Modeling and simulating flowing plasmas and related phenomena. Space Sci. Rev. 139(1–4), 143–189 (2008). doi: 10.1007/s11214-008-9384-6 ADSCrossRefGoogle Scholar
  67. R.P. Lepping, M.D. Desch, E.C. Sittler Jr., K.W. Behannon, L.W. Klein, J.D. Sullivan, W.S. Kurth, Structure and other properties of Jupiter’s distant magnetotail. J. Geophys. Res. 88, 8801–8815 (1983) ADSCrossRefGoogle Scholar
  68. G.R. Lewis, N. André, C.S. Arridge, A.J. Coates, L.K. Gilbert, D.R. Linder, A.M. Rymer, Derivation of density and temperature from the Cassini-Huygens CAPS electron spectrometer. Planet. Space Sci. 56, 901–912 (2008). doi: 10.1016/j.pss.2007.12.017 ADSCrossRefGoogle Scholar
  69. J.G. Luhmann, T.-L. Zhang, S.M. Petrinec, C.T. Russell, P. Gazis, A. Barnes, Solar cycle 21 effects on the interplanetary magnetic field and related parameters at 0.7 and 1.0 AU. J. Geophys. Res. 98(A4), 5559–5572 (1993). doi: 10.1029/92JA02235 ADSCrossRefGoogle Scholar
  70. N. Luna, M. Michael, M.B. Shah, R.E. Johnson, C.J. Latimer, J.W. McConkey, Dissociation of N2 in capture and ionization collisions with fast H+ and N+ ions and modeling of positive ion formation in the Titan atmosphere. J. Geophys. Res. 108, 5033 (2003). doi: 10.1029/2002JE001950 CrossRefGoogle Scholar
  71. E.T. Lundberg, K.C. Hansen, T.I. Gombosi, G. Toth, Statistical study of the probability of Titan being in the solar wind or in Saturn’s magnetosheath. Eos Trans. AGU 86(52), Fall Meet. Suppl., abstract P43A-0957 (2005) Google Scholar
  72. Y.-J. Ma, A.F. Nagy, Ion escape fluxes from Mars. Geophys. Res. Lett. 34, L08201 (2007). doi: 10.1029/2006GL029208 CrossRefGoogle Scholar
  73. Y. Ma, A.F. Nagy, T.E. Cravens, I.V. Sokolov, K.C. Hansen, J.-E. Wahlund, F.J. Crary, A.J. Coates, M.K. Dougherty, Comparisons between MHD model calculations and observations of Cassini flybys of Titan. J. Geophys. Res. 111, A05207 (2006). doi: 10.1029/2005JA011481 CrossRefGoogle Scholar
  74. Y.-J. Ma, C.T. Russell, A.F. Nagy, G. Toth, C. Bertucci, M.K. Dougherty, F.M. Neubauer, A. Wellbrock, A.J. Coates, P. Garnier, J.-E. Wahlund, T.E. Cravens, F.J. Crary, Time-dependent global MHD simulations of Cassini T32 flyby: from magnetosphere to magnetosheath. J. Geophys. Res. 114, A03204 (2009). doi: 10.1029/2008JA013676 CrossRefGoogle Scholar
  75. C.G. MacLennan, L.J. Lanzerotti, Low-energy particles at the bow shock, magnetopause, and outer magnetosphere of Saturn. J. Geophys. Res. 88, 8817–8830 (1983) ADSCrossRefGoogle Scholar
  76. A. Masters, N. Achilleos, M.K. Dougherty, J.A. Slavin, G.B. Hospodarsky, C.S. Arridge, A.J. Coates, An empirical model of Saturn’s bow shock: Cassini observations of shock location and shape. J. Geophys. Res. 113, A10210 (2008). doi: 10.1029/2008JA013276 ADSCrossRefGoogle Scholar
  77. S. Maurice, M. Blanc, R. Prangé, E.C. Sittler, The magnetic-field-aligned polarization electric field and its effects on particle distribution in the magnetospheres of Jupiter and Saturn. Planet. Space Sci. 45(11), 1449–1465 (1997) ADSCrossRefGoogle Scholar
  78. H.J. McAndrews, M.F. Thomsen, C.S. Arridge, C.M. Jackman, R.J. Wilson, M.G. Henderson, R.L. Tokar, K.K. Khurana, E.C. Sittler, A.J. Coates, M.K. Dougherty, Plasma in Saturn’s nightside magnetosphere and the implications for global circulation. Planet. Space Sci. 57(14–15), 1714–1722 (2009). doi: 10.1016/j.pss.2009.03.003 ADSCrossRefGoogle Scholar
  79. D.G. Mitchell, S.M. Krimigis, C. Paranicas, P.C. Brandt, J.F. Carbary, E.C. Roelof, W.S. Kurth, D.A. Gurnett, J.T. Clarke, J.D. Nichols, J.C. Gérard, D.C. Grodent, M.K. Dougherty, W.R. Pryor, Recurrent energization of plasma in the midnight-to-dawn quadrant of Saturn’s magnetosphere and its relationship to auroral UV and radio emissions. Planet. Space Sci. 57(14–15), 1732–1742 (2009). doi: 10.1016/j.pss.2009.04.002 ADSCrossRefGoogle Scholar
  80. M.W. Morooka, R. Modolo, J.-E. Wahlund, M. André, A.I. Eriksson, A.M. Persoon, D.A. Gurnett, W.S. Kurth, A.J. Coates, G.R. Lewis, K.K. Khurana, M. Dougherty, The electron density of Saturn’s magnetosphere. Ann. Geophys. 27(7), 2971–2991 (2009). doi: 10.5194/angeo-27-2971-2009 ADSCrossRefGoogle Scholar
  81. Z. Németh, K. Szego, Z. Bebesi, G. Erdős, L. Foldy, A. Rymer, E.C. Sittler, A.J. Coates, A. Wellbrock, Ion distributions of different Kronian plasma regions. J. Geophys. Res. 116, A09212 (2011). doi: 10.1029/2011JA016585 CrossRefGoogle Scholar
  82. N.F. Ness, M.H. Acuna, K.W. Behannon, The induced magnetosphere of Titan. J. Geophys. Res. 87, 1369–1381 (1982). doi: 10.1029/JA087iA03p01369 ADSCrossRefGoogle Scholar
  83. F.M. Neubauer, D. Gurnett, J.D. Scudder, R.E. Hartle, Titan’s magnetospheric interaction, in Saturn, ed. by T. Gehrels, M.S. Matthews (University of Arizona Press, Tucson, 1984) Google Scholar
  84. F.M. Neubauer, H. Backes, M.K. Dougherty, A. Wennmacher, C.T. Russell, A. Coates, D. Young, N. Achilleos, N. André, C.S. Arridge, C. Bertucci, G.H. Jones, K.K. Khurana, T. Knetter, A. Law, G.R. Lewis, J. Saur, Titan’s near magnetotail from magnetic field and electron plasma observations and modeling: Cassini flybys TA, TB, and T3. J. Geophys. Res. 111, A10220 (2006). doi: 10.1029/2006JA011676 ADSCrossRefGoogle Scholar
  85. E.N. Parker, Dynamics of the interplanetary magnetic field. Astrophys. J. 128, 664 (1958) ADSCrossRefGoogle Scholar
  86. H. Persson, Electric field parallel to the magnetic field in a low-density plasma. Phys. Fluids 9, 1090 (1966). doi: 10.1063/1.1761807 ADSCrossRefGoogle Scholar
  87. W.G. Pilipp, K.-H. Muehlhaeuser, H. Miggenrieder, H. Rosenbauer, R. Schwenn, Large-scale variations of thermal electron parameters in the solar wind between 0.3 and 1 AU. J. Geophys. Res. 95, 6305–6329 (1990). doi: 10.1029/JA095iA05p06305 ADSCrossRefGoogle Scholar
  88. J.D. Richardson, The magnetosheaths of the outer planets. Planet. Space Sci. 50(5–6), 503–517 (2002). doi: 10.1016/S0032-0633(02)00029-6 ADSCrossRefGoogle Scholar
  89. C.T. Russell, C.M. Jackman, H.-Y. Wei, C. Bertucci, M.K. Dougherty, Titan’s influence on Saturnian substorm occurrence. Geophys. Res. Lett. 35, L12105 (2008). doi: 10.1029/2008GL034080 ADSCrossRefGoogle Scholar
  90. A.M. Rymer, B.H. Mauk, T.W. Hill, C. Paranicas, N. André, E.C. Sittler Jr., D.G. Mitchell, H.T. Smith, R.E. Johnson, A.J. Coates, D.T. Young, S.J. Bolton, M.F. Thomsen, M.K. Dougherty, Electron sources in Saturn’s magnetosphere. J. Geophys. Res. 112, A02201 (2007). doi: 10.1029/2006JA012017 CrossRefGoogle Scholar
  91. A.M. Rymer, H.T. Smith, A. Wellbrock, A.J. Coates, D.T. Young, Discrete classification and electron energy spectra of Titan’s varied magnetospheric environment. Geophys. Res. Lett. 36, L15109 (2009). doi: 10.1029/2009GL039427 ADSCrossRefGoogle Scholar
  92. J. Saur, F.M. Neubauer, K.-H. Glassmeier, Induced magnetic fields in solar system bodies. Space Sci. Rev. 152(1–4), 391–421 (2009). doi: 10.1007/s11214-009-9581-y ADSGoogle Scholar
  93. N. Sergis, S.M. Krimigis, D.G. Mitchell, D.C. Hamilton, N. Krupp, B.M. Mauk, E.C. Roelof, M. Dougherty, Ring current at Saturn: energetic particle pressure in Saturn’s equatorial magnetosphere measured with Cassini/MIMI. Geophys. Res. Lett. 34, L09102 (2007). doi: 10.1029/2006GL029223 CrossRefGoogle Scholar
  94. N. Sergis, S.M. Krimigis, D.G. Mitchell, D.C. Hamilton, N. Krupp, B.H. Mauk, E.C. Roelof, M.K. Dougherty, Energetic particle pressure in Saturn’s magnetosphere measured with the magnetospheric imaging instrument on Cassini. J. Geophys. Res. 114, A02214 (2009). doi: 10.1029/2008JA013774 CrossRefGoogle Scholar
  95. N. Sergis, S.M. Krimigis, E.C. Roelof, C.S. Arridge, A.M. Rymer, D.G. Mitchell, D.C. Hamilton, N. Krupp, M.F. Thomsen, M.K. Dougherty, A.J. Coates, D.T. Young, Particle pressure, inertial force, and ring current density profiles in the magnetosphere of Saturn, based on Cassini measurements. Geophys. Res. Lett. 37, L02102 (2010). doi: 10.1029/2009GL041920 CrossRefGoogle Scholar
  96. N. Sergis, C.S. Arridge, S.M. Krimigis, D.G. Mitchell, A.M. Rymer, D.C. Hamilton, N. Krupp, M.K. Dougherty, A.J. Coates, Dynamics and seasonal variations in Saturn’s magnetospheric plasma sheet, as measured by Cassini. J. Geophys. Res. 116, A04203 (2011). doi: 10.1029/2010JA016180 CrossRefGoogle Scholar
  97. I. Sillanpää, D.T. Young, F. Crary, M. Thomsen, D. Reisenfeld, J.-E. Wahlund, C. Bertucci, E. Kallio, R. Jarvinen, P. Janhunen, Cassini plasma spectrometer and hybrid model study on Titan’s interaction: effect of oxygen ions. J. Geophys. Res. 116, A07223 (2011). doi: 10.1029/2011JA016443 CrossRefGoogle Scholar
  98. S. Simon, G. Kleindienst, A. Boesswetter, T. Bagdonat, U. Mtschmann, K.-H. Glassmeier, J. Schuele, C. Bertucci, M.K. Dougherty, Hybrid simulation of Titan’s magnetic field signature during the Cassini T9 flyby. Geophys. Res. Lett. 34(24), L24S08 (2007). doi: 10.1029/2007GL029967 CrossRefGoogle Scholar
  99. S. Simon, U. Motschmann, K.-H. Glassmeier, Influence of non-stationary electromagnetic field conditions on ion pick-up at Titan: 3-D multispecies hybrid simulations. Ann. Geophys. 26(3), 599–617 (2008). doi: 10.5194/angeo-26-599-2008 ADSCrossRefGoogle Scholar
  100. S. Simon, U. Motschmann, Titan’s induced magnetosphere under non-ideal upstream conditions: 3D multi-species hybrid simulations. Planet. Space Sci. 57(14–15), 2001–2015 (2009). doi: 10.1016/j.pss.2009.08.010 ADSCrossRefGoogle Scholar
  101. S. Simon, F.M. Neubauer, C.L. Bertucci, H. Kriegel, J. Saur, C.T. Russell, M.K. Dougherty, Titan’s highly dynamic magnetic environment: a systematic survey of Cassini magnetometer observations from flybys TA–T62. Planet. Space Sci. 58(10), 1230–1251 (2010a). doi: 10.1016/j.pss.2010.04.021 ADSCrossRefGoogle Scholar
  102. S. Simon, A. Wennmacher, F.M. Neubauer, C.L. Bertucci, H. Kriegel, C.T. Russell, M.K. Dougherty, Dynamics of Saturn’s magnetodisk near Titan’s orbit: comparison of Cassini magnetometer observations from real and virtual Titan flybys. Planet. Space Sci. 58(12), 1625–1635 (2010b). doi: 10.1016/j.pss.2010.08.006 ADSCrossRefGoogle Scholar
  103. E.C. Sittler, N. André, M. Blanc, M. Burger, R.E. Johnson, A.J. Coates, A. Rymer, D. Reisenfeld, M.F. Thomsen, A. Persoon, M. Dougherty, H.T. Smith, R.A. Baragiola, R.E. Hartle, D. Chornay, M.D. Shappirio, D. Simpson, D.J. McComas, D.T. Young, Ion and neutral sources and sinks within Saturn’s inner magnetosphere: Cassini results. Planet. Space Sci. 56(1), 3–19 (2008). doi: 10.1016/j.pss.2007.06.006 ADSCrossRefGoogle Scholar
  104. E.C. Sittler, R.E. Hartle, C. Bertucci, A. Coates, T. Cravens, I. Dandouras, D. Shemansky, Energy deposition processes in Titan’s upper atmosphere and its induced magnetosphere, in Titan from Cassini-Huygens, ed. by R.H. Brown, J.-P. Lebreton, J. Hunter Waite (Springer, Berlin, 2009), pp. 393–453. Chapter 16 CrossRefGoogle Scholar
  105. J.A. Slavin, R.E. Holzer, Solar wind flow about the terrestrial planets. I—modeling bow shock position and shape. J. Geophys. Res. 86, 11401–11418 (1981). doi: 10.1029/JA086iA13p11401 ADSCrossRefGoogle Scholar
  106. J.A. Slavin, E.J. Smith, J.R. Spreiter, S.S. Stahara, Solar wind flow about the outer planets—gas dynamic modeling of the Jupiter and Saturn bow shocks. J. Geophys. Res. 90, 6275–6286 (1985). doi: 10.1029/JA090iA07p06275 ADSCrossRefGoogle Scholar
  107. H.T. Smith, M. Shappirio, R.E. Johnson, D. Reisenfeld, E.C. Sittler, F.J. Crary, D.J. McComas, D.T. Young, Enceladus, a potential source of ammonia products and molecular nitrogen for Saturn’s magnetosphere. J. Geophys. Res. 113, A11206 (2008). doi: 10.1029/2008JA013352 ADSCrossRefGoogle Scholar
  108. H.T. Smith, D.G. Mitchell, R.E. Johnson, C. Paranicas, Investigation of energetic proton penetration in Titan’s atmosphere using the Cassini INCA instrument. Planet. Space Sci. 57(13), 1539–1546 (2009). doi: 10.1016/j.pss.2009.03.013 ADSCrossRefGoogle Scholar
  109. D.J. Southwood, M.G. Kivelson, Saturnian magnetospheric dynamics: elucidation of a camshaft model. J. Geophys. Res. 112, A12222 (2007). doi: 10.1029/2007JA012254 ADSCrossRefGoogle Scholar
  110. D.F. Strobel, S.K. Atreya, B. Bézard, F. Ferri, F.M. Flasar, M. Fulchignomi, E. Lellouch, I. Müller-Wodarg, Atmospheric structure and composition, in Titan from Cassini-Huygens, ed. by R.H. Brown, J.-P. Lebreton, J. Hunter Waite (Springer, Berlin, 2009), pp. 235–258. Chapter 10 CrossRefGoogle Scholar
  111. K. Szego, K.-H. Glassmeier, R. Bingham, A. Bogdanov, C. Fischer, G. Haerendel, A. Brinca, T. Cravens, E. Dubinin, K. Sauer, L. Fisk, T. Gombosi, N. Schwadron, P. Isenberg, M. Lee, C. Mazelle, E. Möbius, U. Motschmann, V.D. Vitali, B. Tsurutani, G. Zank, Physics of mass loaded plasmas. Space Sci. Rev. 94(3/4), 429–671 (2000) ADSCrossRefGoogle Scholar
  112. K. Szego, Z. Bebesi, C. Bertucci, A.J. Coates, F. Crary, G. Erdös, R. Hartle, E.C. Sittler, D.T. Young, Charged particle environment of Titan during the T9 flyby. Geophys. Res. Lett. 34, L24S03 (2007). doi: 10.1029/2007GL030677 CrossRefGoogle Scholar
  113. K. Szego, Z. Nemeth, G. Erdos, L. Foldy, M.F. Thomsen, D.M. Delapp, The plasma environment of Titan: the magnetodisk of Saturn near the encounters as derived from ion densities measured by the Cassini/CAPS plasma spectrometer. J. Geophys. Res. 116, A10219 (2011). doi: 10.1029/2011JA016629 ADSCrossRefGoogle Scholar
  114. M.F. Thomsen, D.B. Reisenfeld, D.M. Delapp, R.L. Tokar, D.T. Young, F.J. Crary, E.C. Sittler, M.A. McGraw, J.D. Williams, Survey of ion plasma parameters in Saturn’s magnetosphere. J. Geophys. Res. 115, A10220 (2010). doi: 10.1029/2010JA015267 ADSCrossRefGoogle Scholar
  115. V.M. Vasyliūnas, A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 73, 2839 (1968) ADSCrossRefGoogle Scholar
  116. V.M. Vasyliūnas, Plasma distribution and flow, in Physics of the Jovian Magnetosphere. Cambridge Planetary Science Series, ed. by A.J. Dessler (Cambridge University Press, Cambridge, 1983), Google Scholar
  117. J.-E. Wahlund, R. Boström, G. Gustafsson, D.A. Gurnett, W.S. Kurth, A. Pedersen, T.F. Averkamp, G.B. Hospodarsky, A.M. Persoon, P. Canu, F.M. Neubauer, M.K. Dougherty, A.I. Eriksson, M.W. Morooka, R. Gill, M. André, L. Eliasson, I. Müller-Wodarg, Cassini measurements of cold plasma in the ionosphere of Titan. Science 308(5724), 986–989 (2005). doi: 10.1126/science.1109807 ADSCrossRefGoogle Scholar
  118. J.H. Waite, D.T. Young T.E. Cravens, A.J. Coates, F.J. Crary, B. Magee, J. Westlake, The process of tholin formation in Titan’s upper atmosphere. Science 316(5826), 870–875 (2007). doi: 10.1126/science.1139727 ADSCrossRefGoogle Scholar
  119. J.H. Waite, D.T. Young, J. Westlake, J.L. Lunine, C.P. McKay, W.S. Lewis, High-altitude production of Titan’s aerosols, in Titan from Cassini-Huygens, ed. by R.H. Brown, J.-P. Lebreton, J.H. Waite (Springer, Berlin, 2009), pp. 201–214. Chapter 8 CrossRefGoogle Scholar
  120. H.Y. Wei, C.T. Russell, A. Wellbrock, M.K. Dougherty, A.J. Coates, Plasma environment at Titan’s orbit with Titan present and absent. Geophys. Res. Lett. 36, L23202 (2009). doi: 10.1029/2009GL041048 ADSCrossRefGoogle Scholar
  121. H.Y. Wei, C.T. Russell, M.K. Dougherty, F.M. Neubauer, Y.J. Ma, Upper limits on Titan’s magnetic moment and implications for its interior. J. Geophys. Res. 115, E10007 (2010). doi: 10.1029/2009JE003538 ADSCrossRefGoogle Scholar
  122. J.H. Westlake, J.M. Bell, J.H. Waite Jr., R.E. Johnson, J.G. Luhmann, K.E. Mandt, B.A. Magee, A.M. Rymer, Titan’s thermospheric response to various plasma environments. J. Geophys. Res. 116, A03318 (2011). doi: 10.1029/2010JA016251 CrossRefGoogle Scholar
  123. R.J. Wilson, R.L. Tokar, M.G. Henderson, T.W. Hill, M.F. Thomsen, D.H. Pontius Jr., Cassini plasma spectrometer thermal ion measurements in Saturn’s inner magnetosphere. J. Geophys. Res. 113, A12218 (2008). doi: 10.1029/2008JA013486 ADSCrossRefGoogle Scholar
  124. R.M. Winglee, D. Snowden, A. Kidder, Modification of Titan’s ion tail and the kronian magnetosphere: coupled magnetospheric simulations. J. Geophys. Res. 114, A05215 (2009). doi: 10.1029/2008JA013343 CrossRefGoogle Scholar
  125. D.A. Wolf, F.M. Neubauer, Titan’s highly variable plasma environment. J. Geophys. Res. 87, 881–885 (1982) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • C. S. Arridge
    • 1
    • 2
  • N. André
    • 4
    • 3
  • C. L. Bertucci
    • 5
  • P. Garnier
    • 6
  • C. M. Jackman
    • 7
  • Z. Németh
    • 8
  • A. M. Rymer
    • 9
  • N. Sergis
    • 10
  • K. Szego
    • 8
  • A. J. Coates
    • 1
    • 2
  • F. J. Crary
    • 11
  1. 1.Mullard Space Science LaboratoryUniversity College LondonDorkingUK
  2. 2.The Centre for Planetary Sciences at UCL/BirkbeckLondonUK
  3. 3.CNRSInstitut de Recherche en Astrophysique et PlanétologieToulouse Cedex 4France
  4. 4.UPS-OMP, Institut de Recherche en Astrophysique et PlanétologieUniversité de ToulouseToulouseFrance
  5. 5.Instituto de Astronomía y Física del EspacioCiudad Autónoma de Buenos AiresArgentina
  6. 6.Swedish Institute of Space PhysicsUppsalaSweden
  7. 7.Space and Atmospheric Physics Group, The Blackett LaboratoryImperial College LondonLondonUK
  8. 8.KFKI Research Institute for Particle and Nuclear PhysicsBudapestHungary
  9. 9.Johns Hopkins University Applied Physics LaboratoryLaurelUSA
  10. 10.Office of Space ResearchAcademy of AthensAthensGreece
  11. 11.Southwest Research InstituteSan AntonioUSA

Personalised recommendations