Space Science Reviews

, Volume 162, Issue 1–4, pp 113–171 | Cite as

The Induced Magnetospheres of Mars, Venus, and Titan

  • C. BertucciEmail author
  • F. Duru
  • N. Edberg
  • M. Fraenz
  • C. Martinecz
  • K. Szego
  • O. Vaisberg


This article summarizes and aims at comparing the main features of the induced magnetospheres of Mars, Venus and Titan. All three objects form a well-defined induced magnetosphere (IM) and magnetotail as a consequence of the interaction of an external wind of plasma with the ionosphere and the exosphere of these objects. In all three, photoionization seems to be the most important ionization process. In all three, the IM displays a clear outer boundary characterized by an enhancement of magnetic field draping and massloading, along with a change in the plasma composition, a decrease in the plasma temperature, a deflection of the external flow, and, at least for Mars and Titan, an increase of the total density. Also, their magnetotail geometries follow the orientation of the upstream magnetic field and flow velocity under quasi-steady conditions. Exceptions to this are fossil fields observed at Titan and the near Mars regions where crustal fields dominate the magnetic topology. Magnetotails also concentrate the escaping plasma flux from these three objects and similar acceleration mechanisms are thought to be at work. In the case of Mars and Titan, global reconfiguration of the magnetic field topology (reconnection with the crustal sources and exits into Saturn’s magnetosheath, respectively) may lead to important losses of plasma. Finally, an ionospheric boundary related to local photoelectron signals may be, in the absence of other sources of pressure (crustal fields) a signature of the ultimate boundary to the external flow.


Induced magnetospheres Mars Venus Titan Boundaries Draping Massloading 



Authors thank the International Space Science Institute (ISSI) for supporting this work. CB is supported by the National Science and Technology Research Council (CONICET) and the Agency for the Promotion of Science and Technology of Argentina.

NJTE was supported by the Swedish Institute of Space Physics through a grant from the Swedish Science Council (Vetenskapsrådet).


  1. N. Achilleos, C.S. Arridge, C. Bertucci, C.M. Jackman, M.K. Dougherty, K.K. Khurana, C.T. Russell, Large-scale dynamics of Saturn’s magnetopause: observations by Cassini. J. Geophys. Res. 113, A11209 (2008). doi: 10.1029/2008JA013265 ADSGoogle Scholar
  2. M.H. Acuña et al., Mars Observer magnetic fields investigation. J. Geophys. Res. 97(E5), 7799–7814 (1992) ADSGoogle Scholar
  3. M.H. Acuña et al., Magnetic field and plasma observations at Mars: Initial results of the Mars Global Surveyor mission. Science 279, 1676–1680 (1998) ADSGoogle Scholar
  4. K. Ågren et al., On magnetospheric electron impact ionization and dynamics in Titan’s ram-side and polar ionosphere, a Cassini case study. Ann. Geophys. 25, 2359 (2007) ADSGoogle Scholar
  5. A. Albee et al., Overview of the Mars Global Surveyor mission. J. Geophys. Res. 106(E10), 23291–23316 (2001) ADSGoogle Scholar
  6. H. Alfven, On the theory of comet tails. Tellus 9, 92 (1957) ADSGoogle Scholar
  7. C.S. Arridge, N. Achilleos, M.K. Dougherty, K.K. Khurana, C.T. Russell, Modeling the size and shape of Saturn’s magnetopause with variable dynamic pressure. J. Geophys. Res. 111, A11227 (2006). doi: 10.1029/2005JA011574 ADSGoogle Scholar
  8. C.S. Arridge, C.T. Russell, K.K. Khurana, N. Achilleos, S.W.H. Cowley, M.K. Dougherty, D.J. Southwood, E.J. Bunce, Saturn’s magnetodisc current sheet. J. Geophys. Res. 113, A04214 (2008a). doi: 10.1029/2007JA012540 Google Scholar
  9. C.S. Arridge, N. Andre, N. Achilleos, K.K. Khurana, C.L. Bertucci, L.K. Gilbert, G.R. Lewis, A.J. Coates, M.K. Dougherty, Thermal electron periodicities at 20RS in Saturn’s magnetosphere. Geophys. Res. Lett. 35, L15107 (2008b). doi: 10.1029/2008GL034132 ADSGoogle Scholar
  10. H.U. Auster et al., ROMAP: Rosetta magnetometer and plasma monitor. Space Sci. Rev. 128(1), 221–240 (2007) ADSGoogle Scholar
  11. H. Backes et al., Titan’s magnetic field signature during the first Cassini encounter. Science 308, 992 (2005) ADSGoogle Scholar
  12. S. Barabash et al., The analyzer of space plasmas and energetic atoms (ASPERA-3) for the Mars Express Mission. Space Sci. Rev. (2006). doi: 10.1007/s11214-006-9124-8 Google Scholar
  13. S. Barabash et al., The analyser of space plasmas and energetic atoms (ASPERA-4) for the Venus express mission. Planet. Space Sci. 55, 1772–1792 (2007) ADSGoogle Scholar
  14. C. Beghin et al., New insights on Titan’s plasma-driven Schumann resonance inferred from Huygens and Cassini data. Planet. Space Sci. 57(14–15), 1872–1888 (2009) ADSGoogle Scholar
  15. C. Bertucci, Characteristics and variability of Titan’s magnetic environment. Philos. Trans. R. Soc. Lond. A 367, 789–798 (2009). doi: 10.1098/rsta.2008.02502009 ADSGoogle Scholar
  16. C. Bertucci et al., Magnetic field draping enhancement at the Martian magnetic pileup boundary from Mars global surveyor observations. Geophys. Res. Lett. 30(2), 1099 (2003a). doi: 10.1029/2002GL015713 ADSGoogle Scholar
  17. C. Bertucci et al., Magnetic field draping enhancement at Venus: Evidence for a magnetic pileup boundary. Geophys. Res. Lett. 30(17), 1876 (2003b). doi: 10.1029/2003GL017271 ADSGoogle Scholar
  18. C. Bertucci et al., MGS MAG/ER ER observations at the magnetic pileup boundary of Mars: draping enhancement and low frequency waves. Adv. Space Res. 33(11), 1938–1944 (2004) ADSGoogle Scholar
  19. C. Bertucci et al., Structure of the magnetic pileup boundary at Mars and Venus. J. Geophys. Res. 110, A01209 (2005a). doi: 10.1029/2004JA010592 Google Scholar
  20. C. Bertucci et al., Interaction of the solar wind with Mars from Mars Global Surveyor MAG/ER observations. Journal of Atmospheric and Terrestrial Physics 67(17–18), 1797–1808 (2005b) ADSGoogle Scholar
  21. C. Bertucci et al., Titan’s interaction with its plasma environment. American Geophysical Union, Fall Meeting 2005, abstract #P52A-02 (2005c) Google Scholar
  22. C. Bertucci, F.M. Neubauer, K. Szego, J.-E. Wahlund, A.J. Coates, M.K. Dougherty, D.T. Young, W.S. Kurth, Structure of Titan’s mid-range magnetic tail: Cassini magnetometer observations during the T9 flyby. Geophys. Res. Lett. 34, L24S02 (2007). doi: 10.1029/2007GL030865 Google Scholar
  23. C. Bertucci et al., The magnetic memory of Titan’s ionized atmosphere. Science 321(5895), 1475 (2008) ADSGoogle Scholar
  24. C. Bertucci et al., The variability of Titan’s magnetic environment. Planet. Space Sci., 1813–1820 (2009) Google Scholar
  25. L.H. Brace et al., The ionotail of Venus—Its configuration and evidence for ion escape. J. Geophys. Res. 92(1), 15–26 (1987) ADSGoogle Scholar
  26. L.H. Brace et al., The dynamic behavior of the Venus ionosphere in response to solar wind interactions. J. Geophys. Res. 85(A13), 7663–7678 (1980) ADSGoogle Scholar
  27. D.A. Brain et al., Observations of low-frequency electromagnetic plasma waves upstream from the Martian shock. J. Geophys. Res. 107(A6), 1076 (2002). doi: 10.1029/2000JA000416 Google Scholar
  28. D.A. Brain et al., Martian magnetic morphology: Contributions from the solar wind and crust. J. Geophys. Res. 108(A12), 1424 (2003). doi: 10.1029/2002JA009482 Google Scholar
  29. D.A. Brain et al., Variability of the altitude of the Martian sheath. Geophys. Res. Lett. 32, L18203 (2005). doi: 10.1029/2005GL023126 ADSGoogle Scholar
  30. D.A. Brain et al., Episodic detachment of Martian crustal magnetic fields leading to bulk atmospheric plasma escape. Geophys. Res. Lett. 37(14), L14108 (2010a) ADSGoogle Scholar
  31. D.A. Brain et al., A comparison of global models for the solar wind interaction with Mars. Icarus 206, 139–151 (2010b) ADSGoogle Scholar
  32. J.C. Cain et al., An n=90 internal potential function of the martian crustal magnetic field. J. Geophys. Res. 108(E2), 5008 (2003). doi: 10.1029/2000JE001487 Google Scholar
  33. L. Gan, T.E. Cravens, M. Horanyi, Electrons in the ionopause boundary layer of Venus. J. Geophys. Res. 95(1), 19023–19035 (1990) ADSGoogle Scholar
  34. J.Y. Chaufray, J.L. Bertaux, F. Leblanc, E. Quémerais, Observation of the hydrogen corona with SPICAM on Mars Express. Icarus 195(2), 598–613 (2008) ADSGoogle Scholar
  35. A. Chicarro et al., Mars express: a European mission to the red planet, in Mars Express, The Scientific Payload, SP-1240, ed. by A. Wilson (ESA Publication Division, Noordwijk, 2004), pp. 3–16 Google Scholar
  36. A.J. Coates et al., Ionospheric electrons in Titan’s tail: Plasma structure during the Cassini T9 encounter. Geophys. Res. Lett. 34(24), L24S05 (2007) Google Scholar
  37. A.J. Coates et al., Ionospheric photoelectrons at Venus: initial observations by ASPERA-4 ELS. Planet. Space Sci. 56(6), 802–806 (2008) ADSMathSciNetGoogle Scholar
  38. A.J. Coates et al., Ionospheric photoelectrons: comparing Venus, Earth, Mars and Titan planetary and space science. Planet. Space Sci. 59(10), 1019–1027 (2011) ADSMathSciNetGoogle Scholar
  39. J.E.P. Connerney, M.H. Acuña, N.F. Ness, G. Kletetschka, D.L. Mitchell, R.P. Lin, H. Rème, Proc. Natl. Acad. Sci. USA 102(42), 14970–14975 (2005) ADSGoogle Scholar
  40. T.E. Cravens et al., Model calculations of the dayside ionosphere of Venus: energetics. J. Geophys. Res. 85, 7778–7786 (1980) ADSGoogle Scholar
  41. T.E. Cravens, R.V. Yelle, J.-E. Wahlund, D.E. Shemansky, A.F. Nagy, Composition and structure of the ionosphere and thermosphere, in Titan From Cassini-Huygens, chap. 11, p. 259. ed. by R.H. Brown, J.-P. Lebreton, J.H. Waite (Springer, Dordrecht, 2010b). ISBN:978-1-4020-9214-5 Google Scholar
  42. D.H. Crider et al., Evidence of electron impact ionization in the magnetic pileup boundary of Mars. Geophys. Res. Lett. 27(1), 45–48 (2000) ADSGoogle Scholar
  43. D.H. Crider et al., Observations of the latitude dependence of the location of the martian magnetic pileup boundary. Geophys. Res. Lett. 29(8), 1170 (2002) doi: 10.1029/2001GL013860 ADSGoogle Scholar
  44. D.H. Crider et al., Mars global surveyor observations of solar wind magnetic field draping around Mars. Space Sci. Rev. 111(1), 203–221 (2004) ADSGoogle Scholar
  45. Sh. Dolginov et al., The magnetic field of Mars according to the data from the Mars 3 and Mars 5. J. Geophys. Res. 81(19), 3353–3362 (1976) ADSGoogle Scholar
  46. Sh.Sh. Dolginov, E.M. Dubinin, Ye.G. Yeroshenko, P.L. Israilevich, I.M. Podgorny, S.I. Shkol’nikova, On the configuration of the field in the magnetic tail of Venus. Cosm. Res. 19, 624 (1981) Google Scholar
  47. M.K. Dougherty et al., The Cassini magnetic field investigation. Space Sci. Rev. 114, 331–383 (2004). doi: 10.1007/s11214-004-1432-2 ADSGoogle Scholar
  48. J. Du, T.L. Zhang, C. Wang, M. Wolwerk, M. Delva, W. Baumjohann, Magnetosheath fluctuations at Venus for two extreme orientations of the interplanetary magnetic field. Geophys. Res. Lett. 36(9), L09102 (2009) Google Scholar
  49. E. Dubinin et al., Cold ions at the Martian bow shock—PHOBOS observations. J. Geophys. Res. 98(A4), 5617–5623 (1993a) ADSMathSciNetGoogle Scholar
  50. E. Dubinin et al., Ion acceleration in the Martian tail: phobos observations. J. Geophys. Res. 98(A3), 3991–3997 (1993b) ADSGoogle Scholar
  51. E. Dubinin et al., Plasma morphology at Mars. ASPERA 3 observations. Space Sci. Rev. (2006a). doi: 10.1007/s11214-006-9039-4 Google Scholar
  52. E. Dubinin et al., Electric fields within the Martian magnetosphere and ion extraction: ASPERA-3 observations. Icarus 182, 337–342 (2006b) ADSGoogle Scholar
  53. E. Dubinin et al., Solar wind plasma protrusion into the Martian magnetosphere: ASPERA-3 observations. Icarus 182(2006), 343–349 (2006c) ADSGoogle Scholar
  54. E. Dubinin et al., Nonlinear 1-D stationary flows in multi-ion plasmas—sonic and critical loci—solitary and “oscillatory” waves. Ann. Geophys. 24(11), 3041–3057 (2006d) ADSGoogle Scholar
  55. E. Dubinin et al., Structure and dynamics of the solar wind/ionosphere interface on Mars: MEX-ASPERA-3 and MEX-MARSIS observations. Geophys. Res. Lett. 35, 11103 (2008a) ADSGoogle Scholar
  56. E.M. Dubinin et al., Access of solar wind electrons into the Martian magnetosphere. Ann. Geophys. 26(11), 3511–3524 (2008b) ADSGoogle Scholar
  57. F. Duru et al., Magnetically controlled structures in the ionosphere of Mars. J. Geophys. Res. 111, A11204 (2006). doi: 10.1029/2006JA011975 Google Scholar
  58. F. Duru et al., Transient density gradients in the Martian ionosphere similar to the ionopause at Venus. J. Geophys. Res. 114(A12), A12310 (2009) (JGRA Homepage) ADSGoogle Scholar
  59. F. Duru et al., A plasma flow velocity boundary at Mars from the disappearance of electron plasma oscillations. Icarus 206, 74–82 (2010) ADSGoogle Scholar
  60. J.P. Eastwood, D.A. Brain, J.S. Halekas, J.F. Drake, T.D. Phan, M. Øieroset, D.L. Mitchell, R.P. Lin, M. Acuña, Evidence for collisionless magnetic reconnection at Mars. Geophys. Res. Lett. 35(2), L02106 (2008) Google Scholar
  61. N.J.T. Edberg et al., Statistical analysis of the location of the Martian magnetic pileup boundary and bow shock and the influence of crustal magnetic fields J. Geophys. Res. 113(A8), A08206 (2008) Google Scholar
  62. N.J.T. Edberg et al., Simultaneous measurements of Martian plasma boundaries by Rosetta and Mars Express. Planet. Space Sci. 57(8–9), 1085–1096 (2009a) ADSGoogle Scholar
  63. N.J.T. Edberg, D.A. Brain, M. Lester, S.W.H. Cowley, R. Modolo, M. Fränz, S. Barabash, Plasma boundary variability at Mars as observed by Mars Global Surveyor and Mars Express. Ann. Geophys. 27(9), 3537–3550 (2009b) ADSGoogle Scholar
  64. N.J.T. Edberg, M. Lester, S.W.H. Cowley, D.A. Brain, M. Fränz, S. Barabash, Magnetosonic Mach number effect of the position of the bow shock at Mars in comparison to Venus. J. Geophys. Res. 115, A07203 (2010). doi: 10.1029/2009JA014998 Google Scholar
  65. R.C. Elphic et al., Observations of the dayside ionopause and ionosphere of Venus. J. Geophys. Res. 85, 7679 (1980) ADSGoogle Scholar
  66. R.C. Elphic et al., The Venus ionopause current sheet: thickness length scale and controlling factors. J. Geophys. Res. 86(A13), 11430–11438 (1981) ADSGoogle Scholar
  67. J.R. Espley et al., Observations of low-frequency magnetic oscillations in the Martian magnetosheath, magnetic pileup region, and tail. J. Geophys. Res. 109(A7), A07213 (2004) Google Scholar
  68. A. Fedorov et al., Structure of the Martian Wake. Icarus 182, 329–336 (2006) ADSGoogle Scholar
  69. A. Fedorov et al., Comparative analysis of Venus and Mars magnetotails. Planet. Space Sci. 56, 812–817 (2008) ADSGoogle Scholar
  70. R.A. Frahm et al., Location of atmospheric photoelectron energy peaks within the Mars environment. Space Sci. Rev. 126, 389 (2006) ADSGoogle Scholar
  71. R.A. Frahm et al., Estimation of the escape of photoelectrons from Mars in 2004 liberated by the ionization of carbon dioxide and atomic oxygen. Icarus 206(1), 50–63 (2010) ADSMathSciNetGoogle Scholar
  72. M. Fränz, E. Dubinin, E. Roussos, J. Woch, J.D. Winningham, R. Frahm, A.J. Coates, A. Fedorov, S. Barabash, R. Lundin, Plasma moments in the environment of Mars. Mars Express ASPERA-3 observations. Space Sci. Rev. (2006a). doi: 10.1007/s11214-006-9115-9 Google Scholar
  73. M. Fränz et al., Plasma intrusion above Mars crustal fields—Mars Express ASPERA-3 observations. Icarus (2006b). doi: 10.1016/j.icarus.2005.11.016 Google Scholar
  74. J.L. Fox, A. Dalgarno, Ionization, luminosity, and heating of the upper atmosphere of Mars. J. Geophys. Res. 84, 7315–7333 (1979) ADSGoogle Scholar
  75. P. Garnier, Titan’s ionosphere in the magnetosheath: Cassini RPWS results during the T32 flyby. Ann. Geophys. 27(11), 4257–4272 (2009) ADSMathSciNetGoogle Scholar
  76. R. Grard et al., First measurements of plasma waves near Mars. Nature 341(19), 607–609 (1989) ADSGoogle Scholar
  77. K.I. Gringauz, V.V. Bezrukikh, T.K. Breus, T. Gombosi, A.P. Remizov, M.I. Verigin, G.I. Volkov, Plasma observations near Venus onboard Venera 9 and Venera 10 satellites by means of wide angle plasma detectors, in Physics of Solar Planetary Environment, ed. by D.J. Williams (AGU, Boulder, 1976), pp. 918–932 Google Scholar
  78. D.A. Gurnett, A. Bhattacharjee, Introduction to Plasma Physics with Space and Laboratory Applications (Cambridge University Press, Cambridge, 2005) Google Scholar
  79. D.A. Gurnett et al., The Cassini radio and plasma wave investigation. Space Sci. Rev. 114, 395–463 (2004) ADSGoogle Scholar
  80. D.A. Gurnett et al., Radar soundings of the ionosphere of Mars. Science 310, 1929–1933 (2005) ADSGoogle Scholar
  81. J.S. Halekas et al., Current sheets at low altitudes in the Martian magnetotail. Geophys. Res. Lett. 33(13), L13101 (2006) ADSGoogle Scholar
  82. J.S. Halekas, D.A. Brain, R.P. Lin, J.G. Luhmann, D.L. Mitchell, Distribution and variability of accelerated electrons at Mars. Adv. Space Res. 41(9), 1347–1352 (2008) ADSGoogle Scholar
  83. R.E. Hartle et al., Titan’s ion exosphere observed from Voyager 1. J. Geophys. Res. 87, 1383–1394 (1982) ADSGoogle Scholar
  84. R. Hartle et al., Initial interpretation of Titan plasma interaction as observed by the Cassini plasma spectrometer: comparisons with Voyager 1. Planet. Space Sci. 54(12), 1211–1224 (2006) ADSGoogle Scholar
  85. A. Hasegawa, Plasma Instabilities and Non Linear Effects, Phys. and in Chem. Space, vol. 8 (Springer, New York, 1975) Google Scholar
  86. M.M. Hoppe, C.T. Russell, Particle acceleration at planetary bow shock waves. Nature 295, 41–42 (1982) ADSGoogle Scholar
  87. K.K. Khurana et al., Sources of rotational signals in Saturn’s magnetosphere. J. Geophys. Res. 114(A2), A02211 (2009) MathSciNetGoogle Scholar
  88. T. Knetter, F.M. Neubauer, T. Horbury, A. Balogh, Four-point discontinuity observations using Cluster magnetic field data: a statistical survey. J. Geophys. Res. 109(A6), A06102 (2004) Google Scholar
  89. W.C. Knudsen, K.L. Miller, K. Spenner, Improved Venus ionopause altitude calculation and comparison with measurement. J. Geophys. Res. 87, 2246–2254 (1982) ADSGoogle Scholar
  90. W.C. Knudsen et al., Retarding potential analyzer for the Pioneer-Venus Orbiter Mission. Space Sci. Instrum. 4, 351–372 (1979) ADSGoogle Scholar
  91. W.C. Knudsen et al., Suprathermal electron energy distribution within the dayside venus ionosphere. J. Geophys. Res. 85(A13), 7754–7758 (1980). doi: 10.1029/JA085iA13p07754 ADSGoogle Scholar
  92. W.C. Knudsen et al., Solar cycle changes in the ionization sources of the nightside Venus ionosphere. J. Geophys. Res. 92, 13391 (1987) ADSGoogle Scholar
  93. W.C. Knudsen, Solar cycle changes in the morphology of the Venus ionosphere. J. Geophys. Res. 93, 8756 (1988) ADSGoogle Scholar
  94. W.S. Kurth et al., An update to a Saturnian longitude system based on kilometric radio emissions. J. Geophys. Res. 113, A05222 (2008). doi: 10.1029/2007JA012861 Google Scholar
  95. B. Lembège, P. Savoini, Formation of reflected electron bursts by the nonstationarity and nonuniformity of a collisionless shock front. J. Geophys. Res. 107(A3), 1037 (2002). doi: 10.1029/2001JA900128 Google Scholar
  96. J.G. Luhmann, A model of the ionospheric tail rays of Venus. J. Geophys. Res. 98(A10), 17615–17622 (1993) ADSGoogle Scholar
  97. J.G. Luhmann et al., Magnetic field fluctuations in the Venus magnetosheath. Geophys. Res. Lett. 10, 655–658 (1983) ADSGoogle Scholar
  98. R. Lundin et al., On the momentum transfer of the solar wind to the Martian topside ionosphere. Geophys. Res. Lett. 18, 1059–1062 (1991) ADSGoogle Scholar
  99. R. Lundin, E.M. Dubinin, Phobos-2 results on the ionospheric plasma escape from Mars. Adv. Space Res. 12(9), 255–263 (1992) ADSGoogle Scholar
  100. R. Lundin et al., Solar wind-induced atmospheric erosion at Mars: first results from ASPERA-3 on Mars Express. Science 305(5692), 1933–1936 (2004) ADSGoogle Scholar
  101. R. Lundin, S. Barabash, M. Holmstrom, H. Nilsson, M. Yamauchi, E.M. Dubinin, M. Fraenz, Atmospheric origin of cold ion escape from Mars. Geophys. Res. Lett. 36, L17202 (2009). doi: 10.1029/2009GL039341 ADSGoogle Scholar
  102. Y.J. Ma et al., Time-dependent global MHD simulations of Cassini T32 flyby: From magnetosphere to magnetosheath. J. Geophys. Res. 114, A03204 (2009). doi: 10.1029/2008JA013676 Google Scholar
  103. G.P. Mantas, W.B. Hanson, Photoelectron fluxes in the Martian ionosphere. J. Geophys. Res. 84, 369–385 (1979) ADSGoogle Scholar
  104. C. Martinecz, The Venus plasma environment: a comparison of Venus Express ASPERA-4 measurements with 3D hybrid simulations. Ph.D. thesis, Uni. Braunschweig (2008) Google Scholar
  105. C. Martinecz et al., Location of the bow shock and ion composition boundaries at Venus-initial determinations from Venus Express ASPERA-4. Planet. Space Sci. 56, 780–784 (2008). doi: 10.1016/j.pss.2007.07.007 ADSGoogle Scholar
  106. C. Martinecz, A. Boesswetter, M. Fränz, E. Roussos, J. Woch, N. Krupp, E. Dubinin, U. Motschmann, S. Wiehle, S. Simon, S. Barabash, R. Lundin, T.L. Zhang, H. Lammer, H. Lichtenegger, Y. Kulikov, The plasma environment of Venus: comparison of Venus Express ASPERA-4 measurements with 3D hybrid simulations. J. Geophys. Res. 114, E00B30 (2009). doi: 10.1029/2008JE003174; Correction: J. Geophys. Res. 114, E00B98 (2009). doi: 10.1029/2009JE003377 Google Scholar
  107. C. Mazelle, H. Reme, G. Belmont et al., Ultra low frequency waves at the magnetic pile-up boundary of comet P/Halley. Adv. Space Res. 11(9), 73–77 (1991) ADSGoogle Scholar
  108. C. Mazelle et al., Bow shock and upstream phenomena at Mars. Space Sci. Rev. 111(1), 115–181 (2004) ADSGoogle Scholar
  109. H.J. McAndrews et al., Plasma in Saturn’s nightside magnetosphere and the implications for global circulation. Planet. Space Sci. 57(14–15), 1714–1722 (2009) ADSGoogle Scholar
  110. D.J. McComas, H.E. Spence, C.T. Russell, M.A. Saunders, The average magnetic field draping and consistent plasma properties of the Venus magnetotail. J. Geophys. Res. 91, 7939–7953 (1986) ADSGoogle Scholar
  111. P.T. McCormick et al., On the energy deposition of photoelectrons in the atmosphere of Venus. J. Geophys. Res. 81, 5196–5200 (1976) ADSGoogle Scholar
  112. D.L. Mitchell, Probing Mars’ crustal magnetic field and ionosphere with the MGS Electron Reflectometer. J. Geophys. Res. 106(E10), 23419–23428 (2001) ADSGoogle Scholar
  113. R. Modolo, G.M. Chanteur, A global hybrid model for Titan’s interaction with the Kronian plasma: Application to the Cassini Ta flyby. J. Geophys. Res. 113, A01317 (2008). doi: 10.1029/2007JA012453 Google Scholar
  114. R. Modolo et al., Simulated solar wind plasma interaction with the Martian exosphere: influence of the solar EUV flux on the bow shock and the magnetic pile-up boundary. Ann. Geophys. 24(12), 3403–3410 (2006) ADSGoogle Scholar
  115. S.L. Moses, F.V. Coroniti, F.L. Scarf, Expectations for the microphysics of the Mars-solar wind interaction. Geophys. Res. Lett. 15(5), 429–432 (1988). doi: 10.1029/GL015i005p00429 ADSGoogle Scholar
  116. A.F. Nagy, D. Winterhalter, K. Sauer, T.E. Cravens, S. Brecht, C. Mazelle, D. Crider, E. Kallio, A. Zakharov, E. Dubinin, M. Verigin, G. Kotova, W.I. Axford, C. Bertucci, J.G. Trotignon, The plasma environment of Mars. Space Sci. Rev. 111, 33–114 (2004) ADSGoogle Scholar
  117. N.F. Ness, M.H. Acuna, K.W. Behannon, The induced magnetosphere of Titan. J. Geophys. Res. 87(1), 1369–1381 (1982) ADSGoogle Scholar
  118. F.M. Neubauer et al., Titan’s magnetospheric interaction, in Saturn, ed. by T. Gehrels, M.S. Matthews (University of Arizona Press, Tucson, 1984), pp. 760–787 Google Scholar
  119. F.M. Neubauer et al., Titan’s near magnetotail from magnetic field and plasma observations and modelling: Cassini flybys TA, TB and T3. J. Geophys. Res. 111, A10220 (2006). doi: 10.1029/2006JA011676 ADSGoogle Scholar
  120. H. Pérez-de-Tejada, Distribution of plasma and magnetic fluxes in the Venus near wake. J. Geophys. Res. 91, 8039 (1986) ADSGoogle Scholar
  121. J.L. Phillips, D.J. McComas, The magnetosheath and magnetotail of Venus. Space Sci. Rev. 55, 1–80 (1991) ADSGoogle Scholar
  122. G. Picardi et al., Mars Express: a European mission to the red planet. ESA SP SP-1240, 51 (2004) ADSGoogle Scholar
  123. J. Raeder et al., Macroscopic perturbations of the IMF by P/Halley as seen by the Giotto magnetometer. Astron. Astrophys. 187, 61–64 (1987) ADSGoogle Scholar
  124. H. Rosenbauer et al., The relationship between the magnetic field in the Martian magnetotail and upstream solar wind parameters. J. Geophys. Res. 99(A9), 17,199–17,204 (1994) ADSGoogle Scholar
  125. L. Rosenqvist et al., Titan ionospheric conductivities from Cassini measurements. Planet. Space Sci. 57(14–15), 1828–1833 (2009) ADSGoogle Scholar
  126. C.T. Russell, The magnetic field of Mars—Mars 3 evidence re-examined. Geophys. Res. Lett. 5, 81–84 (1978a) ADSGoogle Scholar
  127. C.T. Russell, The magnetic field of Mars—Mars 5 evidence re-examined. Geophys. Res. Lett. 5, 85–88 (1978b) ADSGoogle Scholar
  128. C.T. Russell et al., Initial Pioneer-Venus magnetic field results: dayside observations. Science 203, 745–748 (1979) ADSGoogle Scholar
  129. C.T. Russell et al., Pioneer-Venus flux gate magnetometer. IEEE Trans. Geosci. Electron. GE-18, 32–35 (1980) ADSGoogle Scholar
  130. C.T. Russell, O. Vaisberg, The interaction of the solar wind with Venus, in Venus, ed. by D.M. Hunton, L. Colin, T.M. Donahue, V.I. Moroz (University of Arizona Press, Tucson, 1983), pp. 873–940 Google Scholar
  131. C.T. Russell, E. Chou, J.G. Luhmann, P. Gazis, L.H. Brace, W.R. Hoegy, Solar and interplanetary control of the location of the Venus bow shock. J. Geophys. Res. 93, 5461–5469 (1988) ADSGoogle Scholar
  132. C.T. Russell, J.G. Luhmann, R.J. Strangeway, The solar wind interaction with Venus through the eyes of the Pioneer Venus Orbiter. Planet. Space Sci. 54, 1482–1495 (2006a) ADSGoogle Scholar
  133. C.T. Russell, S.S. Mayerberger, X. Blanco-Cano, Proton cyclotron waves at Mars and Venus. Adv. Space Res. 38, 745–751 (2006b) ADSGoogle Scholar
  134. A.M. Rymer et al., Discrete classification and electron energy spectra of Titan’s varied magnetospheric environment. Geophys. Res. Lett. 36, L15109 (2009). doi: 10.1029/2009GL039427 ADSGoogle Scholar
  135. M.A. Saunders, C.T. Russell, Average dimension and magnetic structure of the distant Venus magnetotail. J. Geophys. Res. 91, 5589–5604 (1986) ADSGoogle Scholar
  136. K. Sauer, T. Roatsch, U. Motschmann, K. Schwingenschuh, R. Lundin, H. Rosenbauer, S. Livi, Observations of plasma boundaries and phenomena around Mars with Phobos 2. J. Geophys. Res. 97, 6227–6233 (1992) ADSGoogle Scholar
  137. R.W. Schunk, A.F. Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry (Cambridge University Press, Cambridge, 2000) Google Scholar
  138. K. Schwingenschuh, W. Riedler, T.-L. Zhang, H. Lichtenegger, H. Rosenbauer, S. Livi, G. Gevai, K. Gringauz, M. Verigin, E. Eroshenko, The Martian magnetic field environment—induced or dominated by an intrinsic magnetic field? Adv. Space Res. 12(9), 213–219 (1992) ADSGoogle Scholar
  139. S. Simon et al., Titan’s highly dynamic magnetic environment a systematic survey of Cassini magnetometer observations from flybys TA–T62. Planet. Space Sci. 58(10), 1230–1251 (2010a) ADSGoogle Scholar
  140. S. Simon et al., Dynamics of Saturn’s magnetodisk near Titan’s orbit Comparison of Cassini magnetometer observations from real and virtual Titan flybys. Planet. Space Sci. 58(12), 1625–1635 (2010b) ADSGoogle Scholar
  141. S. Simon, U. Motschmann, G. Kleindienst, K.-H. Glassmeier, C. Bertucci, M.K. Dougherty, Titan’s magnetic field signature during the Cassini T34 flyby: comparison between hybrid simulations and MAG data. Geophys. Res. Lett. 35, L04107 (2008). doi: 10.1029/2007GL033056 Google Scholar
  142. S. Simon et al., Titan’s plasma environment during a magnetosheath excursion:Real-time scenarios for Cassini’s T32 flyby from a hybrid simulation. Ann. Geophys. 27, 669–685 (2009) ADSGoogle Scholar
  143. E. Sittler, R.E. Hartle, C. Bertucci, A. Coates, T. Cravens, I. Dandouras, D. Shemansky, Energy deposition processes, in Titan from Cassini-Huygens, ed. by R. Brown, J.P. Lebreton, H. Waite (Springer, Dordrecht, 2010a), pp. 393–453. ISBN978-1-4020-9214-5 Google Scholar
  144. E.C. Sittler et al., Saturn’s magnetospheric interaction with Titan as defined by Cassini encounters T9 and T18: New results. Planet. Space Sci. 58(3), 327–350 (2010b) ADSGoogle Scholar
  145. J.A. Slavin, R.C. Elphic, C.T. Russell, F.L. Scarf, J.H. Wolfe, J.D. Mihalov, D.S. Intriligator, L.H. Brace, H.A. Taylor, R.E. Daniell, The solar wind interaction with Venus—Pioneer Venus observations of bow shock location and structure. J. Geophys. Res. 85, 7625–7641 (1980) ADSGoogle Scholar
  146. J.A. Slavin, R.E. Holzer, Solar wind flow about the terrestrial planets. I—Modeling bow shock position and shape. J. Geophys. Res. 86(11), 11401–11418 (1981) ADSGoogle Scholar
  147. J.A. Slavin, R.E. Holzer, J.R. Spreiter, S.S. Stahara, Planetary Mach cones—theory and observation. J. Geophys. Res. 89, 2708–2714 (1984) ADSGoogle Scholar
  148. J.A. Slavin et al., The solar wind interaction with Mars: Mariner 4, Mars 2, Mars 3, Mars 5 and Phobos 2 observations of bow shock position and shape. J. Geophys. Res. 96, 11235–11241 (1991) ADSGoogle Scholar
  149. K. Szego et al., Physics of mass loaded plasmas. Space Sci. Rev. 94(3/4), 429–671 (2000) 2000 ADSGoogle Scholar
  150. B.U.Ö. Sonnerup, M. Scheible, Minimum and maximum variance analysis, in Analysis Methods for Multi-Spacecraft Data, ed. by G. Paschmann, P. Daly. ISSI Scientific Reports Series, ESA/ISSI, vol. 1 (1998), pp. 185–220. ISBN1608-280X Google Scholar
  151. K. Spenner, W.C. Knudsen, K.L. Miller, V. Novak, C.T. Russell, R.C. Elphic, Observation of the Venus mantle, the boundary region between solar wind and ionosphere. J. Geophys. Res. 85, 7655–7662 (1980) ADSGoogle Scholar
  152. K. Spenner et al., Photoelectron fluxes in the Venus dayside ionosphere. J. Geophys. Res. 102, 2577–2583 (1997) ADSGoogle Scholar
  153. K. Szego, Z. Bebesi, C. Bertucci, A.J. Coates, F. Crary, G. Erdos, R. Hartle, E.C. Sittler, D.T. Young, Charged particle environment of Titan during the T9 flyby. Geophys. Res. Lett. 34(24), L24S03 (2007) Google Scholar
  154. M. Tátrallyay et al., Magnetic field overshoots in the Martian bow shock. J. Geophys. Res. 102(A2), 2157–2164 (1997) ADSGoogle Scholar
  155. J.G. Trotignon et al., Position and shape of the martian bow shock: the Phobos 2 plasma wave system observations. Planet. Space Sci. 41, 189–198 (1993) ADSGoogle Scholar
  156. J.-G. Trotignon, E. Dubinin, R. Grard, S. Barabash, R. Lundin, Martian planetopause as seen by the plasma wave system onboard Phobos 2. J. Geophys. Res. 101(A11), 24965–24977 (1996) ADSGoogle Scholar
  157. J.G. Trotignon, C. Mazelle, C. Bertucci, M.H. Acuña, Martian shock and magnetic pile-up boundary positions and shapes determined from the Phobos 2 and Mars Global Surveyor data sets. Planet. Space Sci. 54, 357–369 (2006) ADSGoogle Scholar
  158. B. Tsurutani, G.S. Lakhina, E.J. Smith et al., Mirror mode structures and ELF plasma waves in the Giacobini–Zinner magnetosheath. Nonlinear Process. Geophys. 6, 229–234 (1999) ADSGoogle Scholar
  159. O.L. Vaisberg, Mars-plasma environment, in Physics of Solar Planetary Environment, ed. by D.J. Williams (AGU, Boulder, 1976), pp. 854–871 Google Scholar
  160. O.L. Vaisberg, A.V. Bogdanov, Flow of the solar wind around Mars and Venus—general principles. Cosm. Res. 12, 253–257 (1974) ADSGoogle Scholar
  161. O.L. Vaisberg, S.A. Romanov, V.N. Smirnov, I.P. Karpinsky, B.I. Khazanov, B.V. Polenov, A.V. Bogdanov, N.M. Antonov, Ion flux parameters in the solar wind-venus interaction region, in Physics of Solar Planetary Environment, ed. by D.J. Williams (AGU, Boulder, 1976), pp. 904–917 Google Scholar
  162. O.L. Vaisberg, L.M. Zeleny, Formation of the plasma mantle in the Venusian magnetosphere. Icarus 58, 412–430 (1984) ADSGoogle Scholar
  163. O.L. Vaisberg, A.V. Bogdanov, N.F. Borodin, A.A. Zertzalov, B.V. Polenov, S.A. Romanov, Solar plasma interaction with Mars: preliminary results. Icarus 18, 59–63 (1973) ADSGoogle Scholar
  164. O. Vaisberg, A. Fedorov, F. Dunjushkin, A. Kozhukhovsky, V. Smirnov, L. Avanov, C.T. Russell, J.G. Luhmann, Ion populations in the tail of Venus. Adv. Space Res. 16(4), 105–118 (1995) ADSGoogle Scholar
  165. S. Vennerstrom, N. Olsen, M. Purucker, M.H. Acuña, J.C. Cain, The magnetic field in the pile-up region at Mars, and its variation with the solar wind. Geophys. Res. Lett. 30(7), 1369 (2003). doi: 10.1029/2003GL016883 ADSGoogle Scholar
  166. M.I. Verigin, K.I. Gringauz, T. Gombosi, T.K. Breus, V.V. Bezrukikh, A.P. Remizov, G.I. Volkov, Plasma near Venus from the Venera 9 and 10 wide-angle analyzer data. J. Geophys. Res. 83, 3721–3728 (1978) ADSGoogle Scholar
  167. D. Vignes et al., The solar wind interaction with Mars: locations and shapes of the Bow Shock and the magnetic pile-up boundary from the observations of the MAG/ER experiment onboard Mars Global Surveyor. Geophys. Res. Lett. 27, 49–52 (2000). doi: 10.1029/1999GL010703 ADSGoogle Scholar
  168. D. Vignes, M.H. Acuña, J.E.P. Connerney, D.H. Crider, H. Rème, C. Mazelle, Factors controlling the location of the Bow Shock at Mars. Geophys. Res. Lett. 29(9), 1328 (2002). doi: 10.1029/2001GL014513 ADSGoogle Scholar
  169. M. Volwerk et al., Mirror-mode-like structures in Venus’ induced magnetosphere. J. Geophys. Res. 113(15), E0B016 (2008) Google Scholar
  170. M. Volwerk, M. Delva, Y. Futaana, A. Retinò, Z. Vörös, T.L. Zhang, W. Baumjohann, S. Barabash, Substorm activity in Venus’s magnetotail. Ann. Geophys. 27(6), 2321–2330 (2009) ADSGoogle Scholar
  171. Z. Vörös et al., Intermittent turbulence, noisy fluctuations, and wavy structures in the Venusian magnetosheath. J. Geophys. Res. 113(A12), E00B21 (2008) Google Scholar
  172. J.E. Wahlund et al., Cassini measurements of cold plasma in the ionosphere of titan. Science 308(5724), 986–989 (2005) ADSGoogle Scholar
  173. H.Y. Wei, C.T. Russell, Proton cyclotron waves at Mars: exosphere structure and evidence for a fast neutral disk. Geophys. Res. Lett. 33(23), L23103 (2006) ADSGoogle Scholar
  174. H.Y. Wei et al., Cold ionospheric plasma in Titan’s magnetotail. Geophys.Res. Lett. 34, L24S06 (2007). doi: 10.1029/2007GL030701 Google Scholar
  175. H.Y. Wei et al., Comparative study of ion cyclotron waves at Mars, Venus and Earth. Planet. Space Sci. 59(10), 1039–1047 (2011). doi: 10.1016/j.pss.2010.01.004 ADSGoogle Scholar
  176. D.A. Wolf, F.M. Neubauer, Titan’s highly variable plasma environment. J. Geophys. Res. 87, 881–885 (1982) ADSGoogle Scholar
  177. Y. Yeroshenko et al., The magnetotail of Mars—PHOBOS observations. Geophys. Res. Lett. 17, 885–888 (1990) ADSGoogle Scholar
  178. D.T. Young et al., Cassini plasma spectrometer investigation. Space Sci. Rev. 114, 1–112 (2004) ADSGoogle Scholar
  179. L.M. Zelenyi, O.L. Vaisberg, Venusian interaction with the solar wind plasma flow as a limiting case of the cometary type interaction, in Advances of Space Plasma Physics, ed. by B. Buti (World Scientific, Singapore, 1985), pp. 59–76 Google Scholar
  180. T.-L. Zhang, J.G. Luhmann, C.T. Russell, The solar cycle dependence of the location and shape of the Venus bow shock. J. Geophys. Res. 95, 14961–14967 (1990) ADSGoogle Scholar
  181. T.L. Zhang, J.G. Luhmann, C.T. Russell, The magnetic barrier at Venus. J. Geophys. Res. 96(11), 11145–11153 (1991) ADSGoogle Scholar
  182. T.-L. Zhang et al., The flaring of the Martian magnetotail observed by the PHOBOS 2 spacecraft. Geophys. Res. Lett. 21(12), 1121–1124 (1994) ADSGoogle Scholar
  183. T.L. Zhang, K.K. Khurana, C.T. Russell, M.G. Kivelson, R. Nakamura, W. Baumjohann, On the Venus bow shock compressibility. Adv. Space Res. 33, 1920–1923 (2004) ADSGoogle Scholar
  184. T.L. Zhang et al., Magnetic field investigation of the Venus plasma environment: expected new results from Venus Express. Planet. Space Sci. 54, 1336–1343 (2006) ADSGoogle Scholar
  185. T.L. Zhang et al., Initial Venus Express magnetic field observations of the Venus bow shock location at solar minimum. Planet. Space Sci. 56, 785–789 (2008a) ADSGoogle Scholar
  186. T.L. Zhang et al., Induced magnetosphere and its outer boundary at Venus. J. Geophys. Res. 113, E00B20 (2008b). doi: 10.1029/2008JE003215 Google Scholar
  187. T.L. Zhang et al., Disappearing induced magnetosphere at Venus: Implications for close-in exoplanets. Geophys. Res. Lett. 36(20), L20203 (2009) ADSGoogle Scholar
  188. T.L. Zhang, W. Baumjohann, J. Du, R. Nakamura, R. Jarvinen, E. Kallio, A.M. Du, M. Balikhin, J.G. Luhmann, C.T. Russell, Hemispheric asymmetry of the magnetic field wrapping pattern in the Venusian magnetotail. Geophys. Res. Lett. 37(14), L14202 (2010) ADSGoogle Scholar
  189. B.J. Zwan, R.A. Wolf, Depletion of solar wind plasma near a planetary boundary. J. Geophys. Res. 81, 1636–1648 (1976) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • C. Bertucci
    • 1
    Email author
  • F. Duru
    • 2
  • N. Edberg
    • 3
  • M. Fraenz
    • 4
  • C. Martinecz
    • 4
  • K. Szego
    • 5
  • O. Vaisberg
    • 6
  1. 1.Institute for Astronomy and Space Physics (IAFE)CONICET/UBABuenos AiresArgentina
  2. 2.Department of AstronomyThe Unversity of IowaIowa CityUSA
  3. 3.Swedish Space Science InstituteUppsalaSweden
  4. 4.Max Planck Institute for Solar System ResearchKlatenburg-LindauGermany
  5. 5.KFKI-RMKIBudapestHungary
  6. 6.Space Research InstituteRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations