Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A Review of the Effects of Non-migrating Atmospheric Tides on the Earth’s Low-Latitude Ionosphere

Abstract

Solar thermal tides are planetary-scale waves in the neutral atmosphere with periods that are harmonics of 24 hours. In the thermosphere, they can achieve significant amplitude and can be the dominant source of variation in the atmosphere. Through their modification of the neutral atmosphere, they can also significantly modify the ionosphere, especially at low-latitudes where the dynamics of the Earth’s ionosphere is determined to a large extent by the neutral atmosphere. Much recent work has focused on characterizing and understanding the impact of one sub-group of tides, known as non-migrating tides, on the ionosphere. Whereas migrating tides are responsible for creating strong day-night variations in the ionosphere, non-migrating tides create longitudinal variations in the ionosphere, the signature of which can only be detected with distributed networks of ground-based observations or spacecraft. The present work reviews the recent observations and modeling efforts that have helped to characterize and explain this longitudinal variability. Emphasis is placed on the characteristics of tides throughout the thermosphere, their impacts on the chemical composition of the thermosphere, and impacts on the ionosphere.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. R.A. Akmaev, T.J. Fuller-Rowell, F. Wu, J.M. Forbes, X. Zhang, A.F. Anghel, M.D. Iredell, S. Moorthi, H. Juang, Tidal variability in the lower thermosphere: comparison of Whole Atmosphere Model (WAM) simulations with observations from TIMED. Geophys. Res. Lett. 35, L03810 (2008). doi:10.1029/2007GL032584

  2. P. Alken, Modeling equatorial ionospheric currents and electric fields from satellite magnetic field measurements. Ph.D. thesis, University of Colorado at Boulder (2009)

  3. E.V. Appleton, Two anomalies in the ionosphere. Nature 157, 691 (1946). doi:10.1038/157691a0

  4. E.N. Bramley, M. Young, Winds and electromagnetic drifts in the equatorial F2-region. J. Atmos. Terr. Phys. 30, 99–111 (1968). doi:10.1016/0021-9169(68)90044-5

  5. A.G. Burns, T.L. Killeen, G.R. Carignan, R.G. Roble, Large enhancements in the O/N2 ratio in the evening sector of the winter hemisphere during geomagnetic storms. J. Geophys. Res. 100, 14,661–14,672 (1995). doi:10.1029/94JA03235

  6. R.A. Challinor, D. Eccles, Longitudinal variations of the mid-latitude ionosphere produced by neutral-air winds-I. Neutral-air winds and ionospheric drifts in the northern and southern hemispheres. J. Atmos. Terr. Phys. 33, 363 (1971)

  7. D. Eccles, J.W. King, P. Rothwell, Longitudinal variations of the mid-latitude ionosphere produced by neutral-air winds-II. Comparisons of the calculated variations of electron concentration with data obtained from the Ariel I and Ariel III satellites. J. Atmos. Terr. Phys. 33, 371 (1971)

  8. S.L. England, A. Dobbin, M.J. Harris, N.F. Arnold, A.D. Aylward, A study into the effects of gravity wave activity on the diurnal tide and airglow emissions in the equatorial mesosphere and lower thermosphere using the Coupled Middle Atmosphere and Thermosphere (CMAT) general circulation model. J. Atmos. Sol.-Terr. Phys. 68, 293–308 (2006a). doi:10.1016/j.jastp.2005.05.006

  9. S.L. England, T.J. Immel, E. Sagawa, S.B. Henderson, M.E. Hagan, S.B. Mende, H.U. Frey, C.M. Swenson, L.J. Paxton, Effect of atmospheric tides on the morphology of the quiet time, postsunset equatorial ionospheric anomaly. J. Geophys. Res. 111(A10) (2006b). doi:10.1029/2006JA011795

  10. S.L. England, S. Maus, T.J. Immel, S.B. Mende, Longitudinal variation of the E-region electric fields caused by atmospheric tides. Geophys. Res. Lett. 33 (2006c). doi:10.1029/2006GL027465

  11. S.L. England, X. Zhang, T.J. Immel, J. Forbes, R. DeMajistre, The effect of non-migrating tides on the morphology of the equatorial ionospheric anomaly: seasonal variability. Earth Planets Space 61, 493–503 (2009)

  12. S.L. England, T.J. Immel, J.D. Huba, M.E. Hagan, A. Maute, R. DeMajistre, Modeling of multiple effects of atmospheric tides on the ionosphere: an examination of possible coupling mechanisms responsible for the longitudinal structure of the equatorial ionosphere. J. Geophys. Res., Space Phys. 115, A05308 (2010). doi:10.1029/2009JA014894

  13. T. Fang, H. Kil, G. Millward, A.D. Richmond, J. Liu, S. Oh, Causal link of the wave-4 structures in plasma density and vertical plasma drift in the low-latitude ionosphere. J. Geophys. Res., Space Phys. 114, A10315 (2009). doi:10.1029/2009JA014460

  14. J.M. Forbes, The equatorial electrojet. Rev. Geophys. Space Phys. 19, 469–504 (1981)

  15. J.M. Forbes, X. Zhang, S. Palo, J. Russell, C.J. Mertens, M. Mlynczak, Tidal variability in the ionospheric dynamo region. J. Geophys. Res., Space Phys. 113, 2310 (2008). doi:10.1029/2007JA012737

  16. M.E. Hagan, J.M. Forbes, Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res.-Atmos. 107, 4754 (2002). doi:10.1029/2001JD001236

  17. M. Hagan, J. Forbes, Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res. 108(A2), 1062 (2003). doi:10.1029/2002JA009, 466

  18. M.E. Hagan, A. Maute, R.G. Roble, A.D. Richmond, T.J. Immel, S.L. England, Connections between deep tropical clouds and the Earth’s ionosphere. Geophys. Res. Lett. 34, 20,109 (2007). doi:10.1029/2007GL030142

  19. M.E. Hagan, A. Maute, R.G. Roble, Tropospheric tidal effects on the middle and upper atmosphere. J. Geophys. Res., Space Phys. 114, 1302 (2009). doi:10.1029/2008JA013637

  20. W.B. Hanson, R.J. Moffett, Ionization transport effects in the equatorial F region. J. Geophys. Res. 71, 5559 (1966)

  21. M.J. Harris, N.F. Arnold, A.D. Aylward, A study into the effect of the diurnal tide on the structure of the background mesosphere and thermosphere using the new coupled middle atmosphere and thermosphere (CMAT) general circulation model. Ann. Geophys. 20, 225–235 (2002). doi:10.5194/angeo-20-225-2002

  22. W.A. Hartman, R.A. Heelis, Longitudinal variations in the equatorial vertical drift in the topside ionosphere. J. Geophys. Res., Space Phys. 112, 3305 (2007). doi:10.1029/2006JA011773

  23. K. Häusler, H. Lühr, M. Hagan, A. Maute, R. Roble, Comparison of CHAMP and TIME-GCM nonmigrating tidal signals in the thermospheric zonal wind. J. Geophys. Res., Space Phys. 115, (2010). doi:10.1029/2009JD012394

  24. M. He, L. Liu, W. Wan, J. Lei, B. Zhao, Longitudinal modulation of the O/N2 column density retrieved from TIMED/GUVI measurement. Geophys. Res. Lett. 37, L20108 (2010). doi:10.1029/2010GL045105

  25. R.A. Heelis, Electrodynamics in the low and middle latitude ionosphere: a tutorial. J. Atmos. Sol.-Terr. Phys. 66, 825–838 (2004). doi:10.1016/j.jastp.2004.01.034

  26. S.B. Henderson, C.M. Swenson, J.H. Gunther, A.B. Christensen, L.J. Paxton, Method for characterization of the equatorial anomaly using image subspace analysis of Global Ultraviolet Imager data. J. Geophys. Res. 110(A9) (2005). doi:10.1029/2004JA010830

  27. S.S. Hong, P.H. Wang, On the thermal excitation of atmospheric tides. Bull. Geophys. Natl. Cent. Univ. Taiwan 19, 56–83 (1980)

  28. T.J. Immel, E. Sagawa, S.L. England, S.B. Henderson, M.E. Hagan, S.B. Mende, H.U. Frey, C.M. Swenson, L.J. Paxton, Control of equatorial ionospheric morphology by atmospheric tides. Geophys. Res. Lett. 33 (2006). doi:10.1029/2006GL026161

  29. T.J. Immel, S.L. England, X. Zhang, J. Forbes, R. DeMajistre, Upward propagating tidal effects across the E- and F-regions of the ionosphere. Earth Planets Space 61, 505–512 (2009)

  30. H. Jin, Y. Miyoshi, H. Fujiwara, H. Shinagawa, Electrodynamics of the formation of ionospheric wave number 4 longitudinal structure. J. Geophys. Res., Space Phys. 113, 9307 (2008). doi:10.1029/2008JA013301

  31. S. Kato, Horizontal wind-systems in the ionospheric E region deduced from the dynamo theory of the geomagnetic S q variation. Part II. Rotating Earth. J. Geomagn. Geolectr. 8, 24–37 (1956)

  32. S. Kato, Horizontal wind-systems in the ionospheric E region deduced from the dynamo theory of the geomagnetic S q variation. Part IV. J. Geomagn. Geolectr. 9, 107–115 (1957)

  33. S. Kato, T. Tsuda, F. Watanabe, Thermal excitation of non-migrating tides. J. Atmos. Terr. Phys. 44(2), 131–146 (1982). doi:10.1016/0021-9169(82)90116-7

  34. H. Kil, S.J. Oh, M.C. Kelley, L.J. Paxton, S.L. England, E. Talaat, K.W. Min, S.Y. Su, Longitudinal structure of the vertical E × B drift and ion density seen from ROCSAT-1. Geophys. Res. Lett. 34, 14,110 (2007). doi:10.1029/2007GL030018

  35. H. Kil, E.R. Talaat, S.J. Oh, L.J. Paxton, S.L. England, S.Y. Su, Wave structures of the plasma density and vertical E×B drift in low-latitude F region. J. Geophys. Res., Space Phys. 113, 9312 (2008). doi:10.1029/2008JA013106

  36. H. Kil, L.J. Paxton, W.K. Lee, Z. Ren, S. Oh, Y. Kwak, Is DE2 the source of the ionospheric wave number 3 longitudinal structure? J. Geophys. Res., Space Phys. 115, A11319 (2010). doi:10.1029/2010JA015979

  37. C. Kurz, V. Grewe, Lightning and thunderstorms, Part I: Observational data and model results. Meteorol. Z. 11, 379–393 (2002). doi:10.1127/0941-2948/2002/0011-0379

  38. C.H. Lin, C.C. Hsiao, J.Y. Liu, C.H. Liu, Longitudinal structure of the equatorial ionosphere: time evolution of the four-peaked EIA structure. J. Geophys. Res., Space Phys. 112, 12,305 (2007). doi:10.1029/2007JA012455

  39. H. Liu, M. Yamamoto, H. Lühr, Wave-4 pattern of the equatorial mass density anomaly: a thermospheric signature of tropical deep convection. Geophys. Res. Lett. 36, L18104 (2009) doi:10.1029/2009GL039865

  40. G. Liu, T.J. Immel, S.L. England, K.K. Kumar, G. Ramkumar, Temporal modulation of the four-peaked longitudinal structure of the equatorial ionosphere by the 2 day planetary wave. J. Geophys. Res., Space Phys. 115, A12338 (2010a). doi:10.1029/2010JA016071

  41. G. Liu, T.J. Immel, S.L. England, K.K. Kumar, G. Ramkumar, Temporal modulations of the longitudinal structure in F2 peak height in the equatorial ionosphere as observed by COSMIC. J. Geophys. Res., Space Phys. 115, A04303 (2010b). doi:10.1029/2009JA014829

  42. H. Liu, B.T. Foster, M.E. Hagan, J.M. McInerney, A. Maute, L. Qian, A.D. Richmond, R.G. Roble, S.C. Solomon, R.R. Garcia, D. Kinnison, D.R. Marsh, A.K. Smith, J. Richter, F. Sassi, J. Oberheide, Thermosphere extension of the Whole Atmosphere Community Climate Model. J. Geophys. Res., Space Phys. 115, A12302 (2010c). doi:10.1029/2010JA015586

  43. H. Lühr, K. Häusler, C. Stolle, Longitudinal variation of F region electron density and thermospheric zonal wind caused by atmospheric tides. Geophys. Res. Lett. 34, 16,102 (2007). doi:10.1029/2007GL030639

  44. H. Lühr, M. Rother, K. Häusler, P. Alken, S. Maus, The influence of nonmigrating tides on the longitudinal variation of the equatorial electrojet. J. Geophys. Res., Space Phys. 113(A12), A08313 (2008). doi:10.1029/2008JA013064

  45. A.J. Lyon, L. Thomas, The F2-region equatorial anomaly in the African, American and East Asian sectors during sunspot maximum. J. Atmos. Terr. Phys. 25, 373–386 (1963). doi:10.1016/0021-9169(63)90170-3

  46. S.E. McDonald, K.F. Dymond, M.E. Summers, Hemispheric asymmetries in the longitudinal structure of the low-latitude nighttime ionosphere. J. Geophys. Res., Space Phys. 113, A08308 (2008) doi:10.1029/2007JA012876

  47. G.H. Millward, I.C.F. Müller-Wodarg, A.D. Aylward, T.J. Fuller-Rowell, A.D. Richmond, R.J. Moffett, An investigation into the influence of tidal forcing on F region equatorial vertical ion drift using a global ionosphere-thermosphere model with coupled electrodynamics. J. Geophys. Res. 106, 24,733–24,744 (2001). doi:10.1029/2000JA000342

  48. S. Namba, K.I. Maeda, in Radio Wave Propagation (Corona, Toyko, 1939)

  49. J. Oberheide, J.M. Forbes, Thermospheric nitric oxide variability induced by nonmigrating tides. Geophys. Res. Lett. 35, L16814 (2008a). doi:10.1029/2008GL034825

  50. J. Oberheide, J.M. Forbes, Tidal propagation of deep tropical cloud signatures into the thermosphere from TIMED observations. Geophys. Res. Lett. 35, 4816 (2008b). doi:10.1029/2007GL032397

  51. J. Oberheide, J.M. Forbes, K. Häusler, Q. Wu, S.L. Bruinsma, Tropospheric tides from 80 to 400 km: propagation, interannual variability, and solar cycle effects. J. Geophys. Res., Space Phys. 114, D00I05 (2009). doi:10.1029/2009JD012388

  52. D. Pancheva, P. Mukhtarov, Strong evidence for the tidal control on the longitudinal structure of the ionospheric F-region. Geophys. Res. Lett. 37, L14105 (2010). doi:10.1029/2010GL044039

  53. J. Park, H. Lühr, K.W. Min, Characteristics of F-region dynamo currents deduced from CHAMP magnetic field measurements. J. Geophys. Res., Space Phys. 115, A10302 (2010). doi:10.1029/2010JA015604

  54. N.M. Pedatella, J.M. Forbes, J. Oberheide, Intra-annual variability of the low-latitude ionosphere due to nonmigrating tides. Geophys. Res. Lett. 35, 18104 (2008). doi:10.1029/2008GL035332

  55. Z. Ren, W. Wan, L. Liu, J. Xiong, Intra-annual variation of wave number 4 structure of vertical E×B drifts in the equatorial ionosphere seen from ROCSAT-1. J. Geophys. Res., Space Phys. 114, A05308 (2009). doi:10.1029/2009JA014060

  56. Z. Ren, W. Wan, J. Xiong, L. Liu, Simulated wave number 4 structure in equatorial F-region vertical plasma drifts. J. Geophys. Res., Space Phys. 115, A05301 (2010). doi:10.1029/2009JA014746

  57. R.G. Roble, G.G. Shepherd, An analysis of wind imaging interferometer observations of O(1S) equatorial emission rates using the thermosphere-ionosphere-mesosphere-electrodynamics general circulation model. J. Geophys. Res. 102, 2467–2474 (1997). doi:10.1029/96JA02930

  58. E. Sagawa, T.J. Immel, H.U. Frey, S.B. Mende, Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV. J. Geophys. Res. 110(A9) (2005). doi:10.1029/2004JA010848

  59. L. Scherliess, D.C. Thompson, R.W. Schunk, Longitudinal variability of low-latitude total electron content: tidal influences. J. Geophys. Res., Space Phys. 113, 1311 (2008). doi:10.1029/2007JA012480

  60. R.W. Schunk, A.F. Nagy, Ionospheres Cambridge Atmospheric and Space Science Series (Cambridge University Press, Cambridge, 2004)

  61. G.G. Shepherd, R.G. Roble, C. McLandress, W.E. Ward, WINDII observations of the 558 nm emission in the lower thermosphere: the influence of dynamics on composition. J. Atmos. Sol.-Terr. Phys. 59(6), 655–667 (1997). doi:10.1016/S1364-6826(96)00142-3

  62. E.R. Talaat, R.S. Lieberman, Direct observations of nonmigrating diurnal tides in the equatorial thermosphere. Geophys. Res. Lett. 37, L04803 (2010). doi:10.1029/2009GL041845

  63. J.D. Tarpley, The ionospheric wind dynamo-II. Solar tides. Planet. Space Sci. 18, 1091 (1970). doi:10.1016/0032-0633(70)90110-8

  64. G. Thuilleir, J.E. Blamont, Vertical red line 6300 Å distribution and tropical nightglow morphology in quiet magnetic conditions, in Physics and Chemistry of Upper Atmospheres, ed. by B.M. McCormac. Astrophysics and Space Science Library, vol. 35 (1973), p. 219

  65. G. Thuillier, J.W. King, A.J. Slater, An explanation of the longitudinal variation of the O1D /630 nm/ tropical nightglow intensity. J. Atmos. Terr. Phys. 38, 155–158 (1976)

  66. G. Thuillier, R.H. Wiens, G.G. Shepherd, R.G. Roble, Photochemistry and dynamics in thermospheric intertropical arcs measured by the WIND Imaging Interferometer on board UARS: a comparison with TIE-GCM simulations. J. Atmos. Sol.-Terr. Phys. 64, 405–415 (2002). doi:10.1016/S1364-6826(01)00109-2

  67. G.O. Walker, Longitudinal structure of the F-region equatorial anomaly—a review. J. Atmos. Terr. Phys. 43, 763–774 (1981)

  68. E.K. Walton, S.A. Bowhill, Seasonal variations in the low latitude dynamo current system near sunspot maximum. J. Atmos. Terr. Phys. 41, 937–949 (1979)

  69. E. Yiğit, A.S. Medvedev, A.D. Aylward, P. Hartogh, M.J. Harris, Modeling the effects of gravity wave momentum deposition on the general circulation above the turbopause. J. Geophys. Res.-Atmos. 114, D07101 (2009). doi:10.1029/2008JD011132

  70. X. Zhang, J.M. Forbes, M.E. Hagan, J.M. Russell, S.E. Palo, C.J. Mertens, M.G. Mlynczak, Monthly tidal temperatures 20–120 km from TIMED/SABER. J. Geophys. Res., Space Phys. 111, A10S08 (2006). doi:10.1029/2005JA011504

  71. Y. Zhang, S. England, L.J. Paxton, Thermospheric composition variations due to nonmigrating tides and their effect on ionosphere. Geophys. Res. Lett. 37, L17103 (2010). doi:10.1029/2010GL044313

Download references

Acknowledgements

S.L. England was supported by the National Science Foundation’s CEDAR program through Award number AGS-1042261.

Author information

Correspondence to S. L. England.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

England, S.L. A Review of the Effects of Non-migrating Atmospheric Tides on the Earth’s Low-Latitude Ionosphere. Space Sci Rev 168, 211–236 (2012). https://doi.org/10.1007/s11214-011-9842-4

Download citation

Keywords

  • Atmospheric tides
  • Earth’s ionosphere