Advertisement

Space Science Reviews

, Volume 168, Issue 1–4, pp 283–314 | Cite as

Dynamical Control of the Middle Atmosphere

  • Erich BeckerEmail author
Article

Abstract

This review recapitulates the concept of the wave-driven residual circulation in the stratosphere and mesosphere. The residual circulation is defined as the conventional mean meridional circulation corrected by the quasi-linear Stokes drift due to atmospheric waves. Only when the zonal-mean primitive equations are transformed using the residual circulation, they reflect the causality arising from the Eliassen-Palm (EP) theorem. The EP theorem states that the proper wave-mean flow interaction, defined as the EP flux divergence, vanishes for waves that are linear, conservative, and steady. In the real atmosphere, this theorem is violated mainly due to wave breaking and turbulence. The resulting EP flux divergence then drives a residual circulation which causes the observed substantial deviations from some hypothetical radiatively determined state. With regard to this dynamical control we discuss the different contributions of Rossby waves and gravity waves. Recapitulation of Lindzen’s theory of gravity-wave saturation allows us to interpret various phenomena in the upper mesosphere such as interhemispheric coupling or modulations of the gravity-wave driven branch of the residual circulation by solar proton effects and thermal tides. In addition we discuss the relative importance of changes in radiative transfer and tropospheric gravity-wave sources on the long-term temperature trends in the summer mesosphere.

Keywords

Residual circulation Eliassen-Palm theorem Rossby waves Gravity waves Variability of the summer mesosphere 

Notes

Acknowledgements

I am indebted to Erdal Yiǧit for his thorough review and many helpful comments on the manuscript, as well as to Norbert Grieger and Christoph Zülicke for preparing the data analyses on tides and sudden stratospheric warmings used in this paper. Other valuable comments by Fabian Senf, Thomas Birner, and Corinna Schütt are gratefully acknowledged. Last not least I thank Rudolf Treumann for initiating this review.

References

  1. U. Achatz, N. Grieger, H. Schmidt, Mechanism controlling the diurnal solar tide: analysis using a GCM and a linear model. J. Geophys. Res. 113 (2008). doi: 10.1029/2007JA012967
  2. R.A. Akmaev, On the energetics of mean-flow interactions with thermally dissipating gravity waves. J. Geophys. Res. 112 (2007). doi: 10.1029/2006JD007908
  3. M.J. Alexander, M. Geller, C. McLandress, S. Polavarapu, P. Preusse, F. Sassi, K. Sato, S. Eckermann, M. Ern, A. Hertzog, Y. Kawatani, M. Pulido, T. Shaw, M. Sigmond, R. Vincent, S. Watanabe, Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Q. J. R. Meteorol. Soc. 136, 1103–1124 (2010) Google Scholar
  4. D.G. Andrews, M.E. McIntyre, Planetary waves in horizontal and vertical shear: the generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci. 33, 2031–2048 (1976) MathSciNetADSCrossRefGoogle Scholar
  5. D.G. Andrews, J.R. Holton, C.B. Leovy, Middle Atmosphere Dynamics (Academic Press, San Diego, 1987), p. 489 Google Scholar
  6. M.P. Baldwin, T.J. Dunkerton, Quasi-biennial modulation of the southern hemisphere stratospheric polar vortex. Geophys. Res. Lett. 25, 3343–3346 (1998) ADSCrossRefGoogle Scholar
  7. M.P. Baldwin, T.J. Dunkerton, Stratospheric Harbingers of anomalous weather regimes. Science 581–584 (2001) Google Scholar
  8. M.P. Baldwin, L.J. Gray, T.J. Dunkerton, K. Hamilton, P.H. Haynes, W.J. Randel, J.R. Holton, M.J. Alexander, I. Hirota, T. Horinouchi, D.B.A. Jones, J.S. Kinnersley, C. Marquardt, K. Sato, M. Takahashi, The quasi-biennial oscillation. Rev. Geophys. 39, 179–229 (2001) ADSCrossRefGoogle Scholar
  9. E. Becker, Direct heating rates associated with gravity wave saturation. J. Atmos. Sol.-Terr. Phys. 66, 683–696 (2004) ADSCrossRefGoogle Scholar
  10. E. Becker, Sensitivity of the upper mesosphere to the Lorenz energy cycle of the troposphere. J. Atmos. Sci. 66, 647–666 (2009) ADSCrossRefGoogle Scholar
  11. E. Becker, D.C. Fritts, Enhanced gravity-wave activity and interhemispheric coupling during the MaCWAVE/MIDAS northern summer program 2002. Ann. Geophys. 24, 1175–1188 (2006) ADSCrossRefGoogle Scholar
  12. E. Becker, C. McLandress, Consistent scale interaction of gravity waves in the Doppler spread parameterization. J. Atmos. Sci. 66, 1434–1449 (2009) ADSCrossRefGoogle Scholar
  13. E. Becker, G. Schmitz, Interaction between extratropical stationary waves and the zonal mean circulation. J. Atmos. Sci. 58, 462–480 (2001) ADSCrossRefGoogle Scholar
  14. E. Becker, G. Schmitz, Climatological effects of orography and land-sea heating contrasts on the gravity-wave driven circulation of the mesosphere. J. Atmos. Sci. 60, 103–118 (2003) ADSCrossRefGoogle Scholar
  15. E. Becker, C. von Savigny, Dynamical heating of the polar summer mesopause induced by solar proton events. J. Geophys. Res. 115 (2010). doi: 10.1029/2009JD012561
  16. E. Becker, E.A. Müllemann, F.-J. Lübken, H. Körnich, P. Hoffmann, M. Rapp, High Rossby-wave activity in austral winter 2002: modulation of the general circulation of the MLT during the MaCWAVE/MIDAS northern summer program. Geophys. Res. Lett. 31 (2004). doi: 10.1029/2004GL019615
  17. T. Birner, Recent widening of the tropical belt from global tropopause statistics: sensitivities. J. Geophys. Res. 115 (2010). doi: 10.1029/2010JD014664
  18. T. Birner, H. Bönisch, Residual circulation trajectories and transit times into the extratropical lowermost stratosphere. Atmos. Chem. Phys. 11, 817–827 (2011). doi: 10.5194/acp-11-817-2011 ADSCrossRefGoogle Scholar
  19. J. Boyd, The noninteraction of waves with the zonally-averaged flow on a spherical earth and the interrelationships of eddy fluxes of energy, heat and momentum. J. Atmos. Sci. 33, 2285–2291 (1976) ADSCrossRefGoogle Scholar
  20. J. Bremer, Detection of long-term trends in the mesosphere/lower thermosphere from ground-based radio propagation measurements. Adv. Space Res. 35, 1398–1404 (2005) ADSCrossRefGoogle Scholar
  21. J.G. Charney, P.G. Drazin, Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res. 66, 83–109 (1961) ADSCrossRefGoogle Scholar
  22. R.E. Dickinson, Theory of planetary wave-zonal flow interaction. J. Atmos. Sci. 26, 73–81 (1969) ADSCrossRefGoogle Scholar
  23. T.J. Dunkerton, On the mean meridional mass motions of the stratosphere and mesosphere. J. Atmos. Sci. 35, 2325–2333 (1978) ADSCrossRefGoogle Scholar
  24. T.J. Dunkerton, Nonlinear Hadley circulation driven by asymmetric differential heating. J. Atmos. Sci. 46, 956–974 (1989) ADSCrossRefGoogle Scholar
  25. H.J. Edmon Jr., B.J. Hoskins, M.E. McIntyre, Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci. 37, 2600–2616 (1980) ADSCrossRefGoogle Scholar
  26. A. Eliassen, E. Palm, On the transfer of energy in stationary mountain waves. Geophys. Norv. 22(3), 1–23 (1960) MathSciNetGoogle Scholar
  27. P.J. Espy, S. Ochoa Fernández, P. Forkman, D. Murtagh, J. Stegman, The role of the QBO in the inter-hemispheric coupling of summer mesospheric temperatures. Atmos. Chem. Phys. 11, 495–502 (2011). doi: 10.5194/acp-11-495-2011 ADSCrossRefGoogle Scholar
  28. V. Eyring, N. Butchart, D.W. Waugh, et al., Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past. J. Geophys. Res. 11 (2006). doi: 10.1029/2006JD007327
  29. V.I. Fomichev, W.E. Ward, S.R. Beagley, C. McLandress, J.C. McConnell, N.A. McFarlane, T.G. Shepherd, Extended Canadian Middle Atmosphere Model: zonal-mean climatology and physical parameterizations. J. Geophys. Res. 107 (2002). doi: 10.1029/2001JD000479
  30. V.I. Fomichev, W.E. Ward, S.R. Beagley, C. McLandress, J.C. McConnell, N.A. McFarlane, T.G. Shepherd, Extended Canadian Middle Atmosphere Model: zonal-mean climatology and physical parameterizations. J. Climate 107 (2007). doi: 10.1029/2001JD000479
  31. D.C. Fritts, Gravity saturation in the middle atmosphere: a review of theory and observations. Rev. Geophys. 2, 275–308 (1984) ADSCrossRefGoogle Scholar
  32. D.C. Fritts, M.J. Alexander, Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 41 (2003). doi: 10.1029/2001/RG000106
  33. D.C. Fritts, T. Lund, Gravity wave influences in the thermosphere and ionosphere: observations and recent modeling, in Aeronomy of the Earth’s Atmosphere and Ionosphere, ed. by M. Abdu, D. Pancheva (2011), pp. 141–162 Google Scholar
  34. D.C. Fritts, S.L. Vadas, Gravity wave penetration into the thermosphere: sensitivity to solar cycle variations and mean winds. Ann. Geophys. 26, 3841–3861 (2008) ADSCrossRefGoogle Scholar
  35. A. Gabriel, D. Peters, I. Kirchner, H.-F. Graf, Effect of zonally asymmetric ozone on stratospheric temperature and planetary wave propagation. Geophys. Res. Lett. 34 (2007). doi: 10.1029/2006GL028998
  36. R.R. Garcia, S. Solomon, The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. J. Geophys. Res. 90, 3850–3868 (1985) ADSCrossRefGoogle Scholar
  37. R.R. Garcia, D.R. Marsh, D.E. Kinnison, B.A. Boville, F. Sassi, Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res. 112 (2007). doi: 10.1029/2006JD007485
  38. R.A. Goldberg, D.C. Fritts, B.P. Williams, F.-J. Lübken, M. Rapp, W. Singer, R. Latteck, P. Hoffmann, A. Müllemann, G. Baumgarten, F.J. Schmidlin, C.-Y. She, D.A. Krueger, The MaCWAVE/MIDAS rocket and groundbased measurements of polar summer dynamics: overview and mean state structure. Geophys. Res. Lett. 31 (2004). doi: 10.1029/2004GL019411
  39. M. Grygalashvyly, E. Becker, G.R. Sonnemann, Wave mixing effects on minor chemical constituents in the MLT region: results from a global CTM driven by high-resolution dynamics. J. Geophys. Res. 116 (2011). doi: 10.1029/2010JD015518
  40. L. Haimberger, M. Hantel, Implementing convection into Lorenz’s global cycle. Part II. A new estimate of the conversion rate into kinetic energy. Tellus 52 (2000) Google Scholar
  41. N. Harnik, R.K. Scott, J. Perlwitz, Wave reflection and focusing prior to the major stratospheric warming of September 2002. J. Atmos. Sci. 62, 640–650 (2005) ADSCrossRefGoogle Scholar
  42. P.H. Haynes, H.J. Marks, M.E. McIntyre, T.G. Shepherd, K.P. Shine, On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci. 48, 651–678 (1991) ADSCrossRefGoogle Scholar
  43. I.M. Held, A.Y. Hou, Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci. 37, 515–533 (1980) MathSciNetADSCrossRefGoogle Scholar
  44. C.O. Hines, Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys. 38, 1441–1481 (1960) ADSCrossRefGoogle Scholar
  45. C.O. Hines, Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1: Basic formulation. J. Atmos. Sol.-Terr. Phys. 59, 371–386 (1997) ADSCrossRefGoogle Scholar
  46. P. Hoffmann, E. Becker, W. Singer, M. Placke, Seasonal variation of mesospheric waves at northern middle and high latitudes. J. Atmos. Sol.-Terr. Phys. 72, 1068–1079 (2010) ADSCrossRefGoogle Scholar
  47. J.R. Holton, The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J. Atmos. Sci. 39, 791–799 (1982) ADSCrossRefGoogle Scholar
  48. J.R. Holton, The influence of gravity wave breaking on the general circulation of the middle atmosphere. J. Atmos. Sci. 40, 2497–2507 (1983) ADSCrossRefGoogle Scholar
  49. C.H. Jackman, R.G. Roble, E.L. Fleming, Mesospheric dynamical changes induced by the solar proton events in October-November 2003. Geophys. Res. Lett. 34 (2007). doi: 10.1029/2006GL028328
  50. B. Karlsson, H. Körnich, J. Gumbel, Evidence for interhemispheric stratosphere-mesosphere coupling derived from noctilucent cloud properties. Geophys. Res. Lett. 34 (2007). doi: 10.1029/2007GL030282
  51. B. Karlsson, C. McLandress, T.G. Shepherd, Inter-hemispheric mesospheric coupling in a comprehensive middle atmosphere model. J. Atmos. Sol.-Terr. Phys. 71, 518–530 (2008). doi: 10.1016/j.jastp.2008.08.006 ADSCrossRefGoogle Scholar
  52. B. Karlsson, C.E. Randall, S. Benze, M. Mills, V.L. Harvey, S.M. Bailey, J.M. Russel, Intra-seasonal variability of polar mesospheric clouds due to inter-hemispheric coupling. Geophys. Res. Lett. 36 (2009). doi: 10.1029/2009GL040348
  53. P. Keckhut, A. Hauchcorne, M.-L. Chanin, Midlatitude long-term variability of the middle atmosphere: trends and cyclic and episodic changes. J. Geophys. Res. 100, 18887–18897 (1995) ADSCrossRefGoogle Scholar
  54. K. Körnich, E. Becker, A simple model for the interhemispheric coupling of the middle atmosphere circulation. Adv. Space Res. 45, 661–668 (2010). doi: 10.1016/j.asr.2009.11.001 ADSCrossRefGoogle Scholar
  55. K. Körnich, G. Schmitz, E. Becker, The role of stationary waves in the maintenance of the northern annular mode as deduced from model experiments. J. Atmos. Sci. 63, 2931–2947 (2006) ADSCrossRefGoogle Scholar
  56. K. Labitzke, The interaction between stratosphere and mesosphere in winter. J. Atmos. Sci. 29, 1395–1399 (1972) ADSCrossRefGoogle Scholar
  57. R.S. Lieberman, Eliassen-Palm fluxes of the 2-day wave. J. Atmos. Sci. 56, 2846–2861 (1999) ADSCrossRefGoogle Scholar
  58. R.S. Lieberman, Corrigendum. J. Atmos. Sci. 59, 2625–2627 (2002) ADSCrossRefGoogle Scholar
  59. R.S. Lieberman, D.M. Riggin, S.J. Franke, A.H. Hanson, C. Meek, T. Nakamura, T. Tsuda, R.A. Vincent, I. Reid, The 6.5-day wave in the mesosphere and lower thermosphere: evidence for baroclinic/barotropic instability. J. Geophys. Res. 108 (2003). doi: 10.1029/2002JD003349
  60. R.S. Lindzen, Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res. 86, 9707–9714 (1981) ADSCrossRefGoogle Scholar
  61. H.L. Liu, Temperature changes due to gravity wave saturation. J. Geophys. Res. 105, 12329–12336 (2000) ADSCrossRefGoogle Scholar
  62. H.L. Liu, R.G. Roble, A study of a self-generated stratospheric sudden warming and its mesospheric-lower thermospheric impacts using the coupled TIME-GCM/CCM3. J. Geophys. Res. 107 (2002). doi: 10.1029/2001JD001533
  63. E.N. Lorenz, Available potential energy and the maintenance of the general circulation. Tellus 7, 157–167 (1955) ADSCrossRefGoogle Scholar
  64. E.N. Lorenz, The nature and theory of the general circulation of the atmosphere. World Meteorol. Organ. Monogr. 218, 1–161 (1967) Google Scholar
  65. F.-J. Lübken, Seasonal variation of turbulent energy dissipation rates at high latitudes as determined by in situ measurements of neutral density fluctuations. J. Geophys. Res. 102, 13441–13456 (1997) ADSCrossRefGoogle Scholar
  66. F.-J. Lübken, Nearly zero temperature trend in the polar summer mesosphere. Geophys. Res. Lett. 21, 3603–3606 (2000) CrossRefGoogle Scholar
  67. T. Matsuno, A dynamical model of the stratospheric sudden warming. J. Atmos. Sci. 28, 1479–1494 (1971) ADSCrossRefGoogle Scholar
  68. C. McLandress, The seasonal variation of the propagating diurnal tide in the mesosphere and lower thermosphere. Part II: The role of tidal heating and zonal mean winds. J. Atmos. Sci. 59, 907–922 (2002) ADSCrossRefGoogle Scholar
  69. C. McLandress, Large-scale dynamics of the mesosphere and lower thermosphere: an analysis using the extended Canadian Middle Atmosphere Model. J. Geophys. Res. 111 (2006). doi: 10.1029/2005JD006776
  70. C. McLandress, J.F. Scinocca, The GCM response to current parameterizations of non-orographic gravity wave drag. J. Atmos. Sci. 62, 2394–2413 (2005) ADSCrossRefGoogle Scholar
  71. C. McLandress, T.G. Shepherd, Simulated anthropogenic changes in the Brewer-Dobson circulation, including its extension to high latitudes. J. Climate 22, 1516–1540 (2009) ADSCrossRefGoogle Scholar
  72. A.S. Medvedev, G.P. Klaassen, J. Geophys. Res. 100, 25841–25853 (1995) ADSCrossRefGoogle Scholar
  73. A.S. Medvedev, G.P. Klaassen, J. Atmos. Sol.-Terr. Phys. 62, 1015–1033 (2000) ADSCrossRefGoogle Scholar
  74. W.A. Norton, J. Thuburn, The two-day wave in a middle atmosphere GCM. Geophys. Res. Lett. 23(16), 2113–2116 (1996) ADSCrossRefGoogle Scholar
  75. A.H. Orrt, On estimates of the atmospheric energy cycle. Mon. Weather Rev. 92, 483–493 (1964) ADSCrossRefGoogle Scholar
  76. D. O’Sullivan, T.J. Dunkerton, Generation of inertia-gravity waves in a simulated life-cycle of baroclinic instability. J. Atmos. Sci. 52, 3695–3716 (1995) ADSCrossRefGoogle Scholar
  77. R.A. Plumb, Baroclinic instability of the summer mesosphere: a mechanism for the quasi-two-day wave? J. Atmos. Sci. 40, 262–270 (1983) ADSCrossRefGoogle Scholar
  78. P. Preusse, M. Ern, S.D. Eckermann, C.D. Warner, R.H. Picard, P. Knieling, M. Krebsbach, J.M.I. Russel, M.G. Mlynczak, C.J. Mertens, M. Riese, Tropopause to mesopause gravity waves in August: measurement and modeling. J. Atmos. Sol.-Terr. Phys. 68, 1730–1751 (2006) ADSCrossRefGoogle Scholar
  79. V. Ramaswamy, M.-L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, K. Labitzke, J.-J.R. Lin, A.O. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, R. Swinbank, Stratospheric temperature trends: observations and model simulations. Rev. Geophys. 39, 71–122 (2001) ADSCrossRefGoogle Scholar
  80. M. Rapp, B. Strelnikov, A. Müllemann, F.-J. Lübken, D.C. Fritts, Turbulence measurements and implications for gravity wave dissipation during the MaCWAVE/MIDAS rocket program. Geophys. Res. Lett. 31 (2004). doi: 10.1029/2003GL019325
  81. J.H. Richter, R.R. Garcia, On the forcing of the mesospheric semi-annual oscillation in the Whole Atmosphere Community Climate Model. Geophys. Res. Lett. 33 (2006). doi: 10.1029/2005GL024378
  82. J.H. Richter, F. Sassi, R.R. Garcia, K. Matthes, C.A. Fischer, Dynamics of the middle atmosphere as simulated by the Whole Atmosphere Community Climate Model, version 3 (WACCM3). J. Geophys. Res. 113 (2008). doi: 10.1029/2007JD009269
  83. R.G. Roble, B.A. Emery, R.R. Garcia, T.L. Killeen, P.B. Hays, G.C. Reid, S. Solomon, D.S. Evan, N.W. Spencer, L.H. Brace, Joule heating in the mesosphere and thermosphere during the 13 July 1982, solar proton event. J. Geophys. Res. 92, 6083–6090 (1987) ADSCrossRefGoogle Scholar
  84. G.J. Rohen, C. von Savigny, M. Sinnhuber, E.J. Llewellyn, J.W. Kaiser, C.H. Jackman, M.B. Kallenrode, J. Schröter, K.-U. Eichmann, H. Bovensmann, J.P. Burrows, Solar Proton Events on Mesospheric Ozone: SCIAMACHY Measurements and Model Results. J. Geophys. Res. 110 (2006). doi: 10.1029/2004JA010984
  85. H. Schmidt, G.P. Brasseur, M. Charron, E. Manzini, M.A. Giorgetta, T. Diehl, V.I. Fomichev, D. Kinnison, D. Marsh, S. Walters, The HAMMONIA chemistry climate model: sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling. J. Climate 19, 3903–3931 (2006) ADSCrossRefGoogle Scholar
  86. H. Schmidt, G.P. Brasseur, M.A. Giorgetta, The solar cycle signal in a general circulation and chemistry model with internally generated QBO. J. Geophys. Res. 115 (2010). doi: 10.1029/2009JD012542
  87. K. Seminiuk, T.G. Shepherd, The middle-atmosphere Hadley circulation and equatorial inertial adjustment. J. Atmos. Sci. 58, 3077–3096 (2001) ADSCrossRefGoogle Scholar
  88. T.A. Shaw, T.G. Shepherd, Theoretical framework for energy and momentum consistency in subgrid-scale parameterization for climate models. J. Atmos. Sci. 66, 3095–3114 (2009) ADSCrossRefGoogle Scholar
  89. T.A. Shaw, M. Sigmond, T.G. Shepherd, J.F. Scinocca, Sensitivity of simulated climate to conservation of momentum in gravity wave drag parameterization. J. Climate 22, 2726–2742 (2009) ADSCrossRefGoogle Scholar
  90. T.G. Shepherd, Transport in the middle atmosphere. J. Meteorol. Soc. Jpn. 85 (2007) Google Scholar
  91. T.G. Shepherd, Dynamics, stratospheric ozone, and climate change. Atmos.-Ocean 46, 117–138 (2008) CrossRefGoogle Scholar
  92. T.G. Shepherd, J.N. Koshyk, On the nature of large-scale mixing in the stratosphere and mesosphere. J. Geophys. Res. 105, 12433–12446 (2000) ADSCrossRefGoogle Scholar
  93. T.G. Shepherd, K. Seminiuk, J.N. Koshyk, Sponge layer feedbacks in middle-atmosphere models. J. Geophys. Res. 101, 23447–23464 (1996) ADSCrossRefGoogle Scholar
  94. K.P. Shine, The middle atmosphere in the absence of dynamical heat fluxes. Q. J. R. Meteorol. Soc. 113, 603–633 (1987) ADSCrossRefGoogle Scholar
  95. W. Singer, R. Latteck, P. Hoffmann, B.P. Williams, D.C. Fritts, Y. Murayama, K. Sakanoi, Tides near the Arctic summer mesopause during the MaCWAVE/MIDAS summer program. Geophys. Res. Lett. 32 (2005). doi: 10.1029/2004GL021607
  96. D.E. Siskind, L. Coy, P. Espy, Observations of stratospheric warmings and mesospheric coolings by the TIMED SABER instrument. Geophys. Res. Lett. 32 (2005). doi: 10.1029/2005GL022399
  97. A.K. Smith, The origin of stationary planetary waves in the upper mesosphere. J. Atmos. Sci. 60, 3033–3041 (2003) ADSCrossRefGoogle Scholar
  98. A.K. Smith, Interactions between the lower, middle and upper atmosphere. Space Sci. Rev. (2011). doi: 10.1007/s11214-011-9791-y Google Scholar
  99. A.K. Smith, R.R. Garcia, D.R. Marsh, D.E. Kinnison, J.H. Richter, Simulations of the response of mesospheric circulation and temperature to the Antarctic ozone hole. Geophys. Res. Lett. 37 (2010) Google Scholar
  100. A.K. Smith, R.R. Garcia, D.R. Marsh, J.H. Richter, WACCM simulations of the mean circulation and trace species transport in the winter mesosphere. J. Geophys. Res. (2011) Google Scholar
  101. S.L. Vadas, D.C. Fritts, Thermospheric responses to gravity waves: influences of increasing viscosity and thermal diffusivity. J. Geophys. Res. 110 (2005). doi: 10.1029/2004JD005574
  102. E.M. Volodin, G. Schmitz, A troposphere-stratosphere-mesosphere general circulation model with parameterization of gravity waves: climatology and sensitivity studies. Tellus A 53, 300–316 (2001) ADSCrossRefGoogle Scholar
  103. C. von Savigny, M. Sinnhuber, H. Bovensmann, J.P. Burrows, M.B. Kallenrode, M. Schwartz, On the disappearance of noctilucent clouds during the January 2005 solar proton events. Geophys. Res. Lett. 134 (2007). doi: 10.1029/2006GL028106
  104. S. Watanabe, Y. Kawatani, Y. Tomikawa, K. Miyazaki, M. Takahashi, K. Sato, General aspects of a T213L256 middle atmosphere general circulation model. J. Geophys. Res. 113 (2008). doi: 10.1029/2008JD010026
  105. E. Yiǧit, A.S. Medvedev, Heating and cooling of the thermosphere by internal gravity waves. Geophys. Res. Lett. 36 (2009). doi: 10.1029/2009GL038507
  106. E. Yiǧit, A.D. Aylward, A.S. Medvedev, Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: sensitivity study. J. Geophys. Res. 113 (2008). doi: 10.1029/2008JD010135
  107. E. Yiǧit, A.S. Medvedev, A.D. Aylward, P. Hartogh, M.J. Harris, Modeling the effects of gravity wave momentum deposition on the general circulation above the turbopause. J. Geophys. Res. 114 (2009). doi: 10.1029/2008JD011132
  108. E. Yulaeva, J.R. Holton, J.M. Wallace, On the cause of the annual cycle in tropical lower-stratospheric temperatures. J. Atmos. Sci. 51, 169–174 (1994) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Leibniz Institute of Atmospheric Physics at the University of RostockKühlungsbornGermany

Personalised recommendations