Space Science Reviews

, Volume 166, Issue 1–4, pp 1–35 | Cite as

Magnetic Fields in the Large-Scale Structure of the Universe

  • D. RyuEmail author
  • D. R. G. Schleicher
  • R. A. Treumann
  • C. G. Tsagas
  • L. M. Widrow


Magnetic fields appear to be ubiquitous in astrophysical environments. Their existence in the intracluster medium is established through observations of synchrotron emission and Faraday rotation. On the other hand, the nature of magnetic fields outside of clusters, where observations are scarce and controversial, remains largely unknown. In this chapter, we review recent developments in our understanding of the nature and origin of intergalactic magnetic fields, and in particular, intercluster fields. A plausible scenario for the origin of galactic and intergalactic magnetic fields is for seed fields, created in the early universe, to be amplified by turbulent flows induced during the formation of the large scale structure. We present several mechanisms for the generation of seed fields both before and after recombination. We then discuss the evolution and role of magnetic fields during the formation of the first starts. We describe the turbulent amplification of seed fields during the formation of large scale structure and the nature of the magnetic fields that arise. Finally, we discuss implications of intergalactic magnetic fields.


Large-scale structure of the universe Magnetic field Turbulence 



The work of DR was supported by the National Research Foundation of Korea through grant 2007-0093860. The work of DS was supported by a funding from the European Community’s Seventh Framework Programme (/FP7/2007-2013/) under grant agreement No 229517. The work of LMW was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.


  1. T. Abel, G.L. Bryan, M.L. Norman, The formation of the first star in the universe. Science 295, 93–98 (2002). doi: 10.1126/science.1063991 ADSGoogle Scholar
  2. A. Achterberg, J. Wiersma, The Weibel instability in relativistic plasmas. I. Linear theory. Astron. Astrophys. 475, 1–36 (2007). doi: 10.1051/0004-6361:20065365 ADSzbMATHGoogle Scholar
  3. J. Adams, U.H. Danielson, D. Grasso, H.R. Rubinstein, Distortion of the acoustic peaks in the CMBR due to a primordial magnetic field. Phys. Lett. B 388, 253–258 (1996). doi: 10.1016/S0370-2693(96)01171-9 ADSGoogle Scholar
  4. T. Akahori, D. Ryu, Faraday rotation measure due to the intergalactic magnetic field. Astrophys. J. 723, 467–481 (2010). doi: 10.1088/0004-637X/723/1/476 ADSGoogle Scholar
  5. J. Aleksić et al.and MAGIC Collaboration, Search for an extended VHE γ-ray emission from Mrk 421 and Mrk 501 with the MAGIC Telescope. Astron. Astrophys. 524, A77 (2010). doi: 10.1051/0004-6361/201014747 Google Scholar
  6. T.G. Arshakian, R. Beck, M. Krause, D. Sokoloff, Evolution of magnetic fields in galaxies and future observational tests with the Square Kilometre Array. Astron. Astrophys. 494, 21–32 (2009). doi: 10.1051/0004-6361:200810964 ADSGoogle Scholar
  7. J.D. Barrow, P.G. Ferreira, J. Silk, Constraints on a primordial magnetic field. Phys. Rev. Lett. 78, 3610–3613 (1997). doi: 10.1103/PhysRevLett.78.3610 ADSGoogle Scholar
  8. J.D. Barrow, R. Maartens, C.G. Tsagas, Cosmology with inhomogeneous magnetic fields. Phys. Rep. 449, 131–171 (2007). doi: 10.1016/j.physrep.2007.04.006 MathSciNetADSGoogle Scholar
  9. E. Battaner, E. Florido, J. Jimenez-Vicente, Magnetic fields and large scale structure in a hot universe. I. General equations. Astron. Astrophys. 326, 13–22 (1997) ADSGoogle Scholar
  10. A.R. Bell, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353, 550–558 (2004). doi: 10.1111/j.1365-2966.2004.08097.x ADSGoogle Scholar
  11. L. Biermann, Über den Ursprung der Magnetfelder auf Sternen und im interstellaren Raum. Z. Naturforsch. A 5, 65–71 (1950) MathSciNetADSzbMATHGoogle Scholar
  12. A. Bonafede, L. Feretti, M. Murgia, F. Govoni, G. Giovannini, D. Dallacasa, K. Dolag, G.B. Taylor, The Coma cluster magnetic field from Faraday rotation measures. Astron. Astrophys. 513, A30 (2010). doi: 10.1051/0004-6361/200913696 ADSGoogle Scholar
  13. J.R. Bond, L. Kofman, D. Pogosyan, How filaments of galaxies are woven into the cosmic web. Nature 380, 603–606 (1996). doi: 10.1038/380603a0 ADSGoogle Scholar
  14. A. Brandenburg, K. Subramanian, Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417, 1–209 (2005). doi: 10.1016/j.physrep.2005.06.005 MathSciNetADSGoogle Scholar
  15. A. Brandenburg, K. Subramanian, D.D. Sokoloff, Turbulent dynamos. Space Sci. Rev. (2010, this issue) Google Scholar
  16. V. Bromm, A. Loeb, Formation of the first supermassive black holes. Astrophys. J. 596, 34–46 (2003). doi: 10.1086/377529 ADSGoogle Scholar
  17. S. Brown, D. Farnsworth, L. Rudnick, Cross-correlation of diffuse synchrotron and large-scale structures. Mon. Not. R. Astron. Soc. 402, 2–6 (2010). doi: 10.1111/j.1365-2966.2009.15867.x ADSGoogle Scholar
  18. M. Brüggen, A. Bykov, D. Ryu, H. Röttgering, Magnetic fields, relativistic particles, and shock waves in cluster outskirts. Space Sci. Rev. (2010, this issue) Google Scholar
  19. M. Bruni, Cosmological collapses of irrotational dust, in Mapping, measuring and modelling the universe, ed. by P. Coles, V. Martinez, M.-J. Pons-Borderia. ASP Conference Series, vol. 94 (1996), pp. 31–36 Google Scholar
  20. M. Bruni, R. Maartens, C.G. Tsagas, Magnetic field amplification in cold dark matter anisotropic collapse. Mon. Not. R. Astron. Soc. 338, 785–789 (2003). doi: 10.1046/j.1365-8711.2003.06095.x ADSGoogle Scholar
  21. C. Caprini, R. Durrer, Gravitational wave production: a strong constraint on primordial magnetic fields. Phys. Rev. D 65, 023517 (2002). doi: 10.1103/PhysRevD.65.023517 ADSGoogle Scholar
  22. C.L. Carilli, S. Rawlings, Science with the Square Kilometre Array. New Astronomy Reviews, vol. 48. (Elsevier, Amsterdam, 2004) Google Scholar
  23. C.L. Carilli, G.B. Taylor, Cluster magnetic fields. Annu. Rev. Astron. Astrophys. 40, 319–348 (2002). doi: 10.1146/annurev.astro.40.060401.093852 ADSGoogle Scholar
  24. R. Cassano, G. Brunetti, T. Venturi, G. Setti, D. Dallacasa, S. Giacintucci, S. Bardelli, Revised statistics of radio halos and the reacceleration model. Astron. Astrophys. 480, 687–697 (2008). doi: 10.1051/0004-6361:20078986 ADSGoogle Scholar
  25. R.A. Cassidy, M.T. Elford, The mobility of Li+ ions in helium and argon. Aust. J. Phys. 38, 587–601 (1985) ADSGoogle Scholar
  26. R. Cen, J.P. Ostriker, Where are the baryons? Astrophys. J. 514, 1–6 (1999). doi: 10.1086/306949 ADSGoogle Scholar
  27. R. Cen, J.P. Ostriker, Where are the baryons? II. Feedback effects. Astrophys. J. 650, 560–572 (2006). doi: 10.1086/506505 ADSGoogle Scholar
  28. R. Cen, J.P. Ostriker, J.X. Prochaska, A.M. Wolfe, Metallicity evolution of damped Ly systems in ΛCDM cosmology. Astrophys. J. 598, 741–755 (2003). doi: 10.1086/378881 ADSGoogle Scholar
  29. J. Cho, D. Ryu, Characteristic lengths of magnetic field in magnetohydrodynamic turbulence. Astrophys. J. 705, L90–L94 (2009). doi: 10.1088/0004-637X/705/1/L90 ADSGoogle Scholar
  30. J. Cho, E.T. Vishniac, The generation of magnetic fields through driven turbulence. Astrophys. J. 538, 217–225 (2000). doi: 10.1086/309127 ADSGoogle Scholar
  31. J. Cho, E.T. Vishniac, A. Beresnyak, A. Lazarian, D. Ryu, Growth of magnetic fields induced by turbulent motions. Astrophys. J. 693, 1449–1461 (2009). doi: 10.1088/0004-637X/693/2/1449 ADSGoogle Scholar
  32. P.C. Clark, S.C.O. Glover, R.S. Klessen, V. Bromm, Gravitational fragmentation in turbulent primordial gas and the initial mass function of population III stars. Astrophys. J. 727, 110 (2011). doi: 10.1088/0004-637X/727/2/110 ADSGoogle Scholar
  33. T.E. Clarke, Faraday rotation observations of magnetic fields in galaxy clusters. J. Korean Astron. Soc. 37, 337–342 (2004) ADSGoogle Scholar
  34. T.E. Clarke, P.P. Kronberg, H. Böhringer, A new radio-X-ray probe of galaxy cluster magnetic fields. Astrophys. J. 547, L111–L114 (2001). doi: 10.1086/318896 ADSGoogle Scholar
  35. S. Das, H. Kang, D. Ryu, J. Cho, Propagation of ultra-high-energy protons through the magnetized cosmic web. Astrophys. J. 682, 29–38 (2008). doi: 10.1086/588278 ADSGoogle Scholar
  36. G. Davies, L.M. Widrow, A possible mechanism for generating galactic magnetic fields. Astrophys. J. 540, 755–764 (2000). doi: 10.1086/309358 ADSGoogle Scholar
  37. C.D. Dermer, M. Cavadini, S. Razzaque, J.D. Finke, J. Chiang, B. Lott, Time delay of cascade radiation for TeV blazars and the measurement of the intergalactic magnetic field. Astrophys. J. Lett. 733, L21–L24 (2011). doi: 10.1088/2041-8205/733/2/L21 ADSGoogle Scholar
  38. A.S. Dickinson, M.S. Lee, W.A. Lester, Jr., Close-coupling calculation of Li+−H2 diffusion cross sections. J. Phys. B 15, 1371–1376 (1982). doi: 10.1088/0022-3700/15/9/013 ADSGoogle Scholar
  39. K. Dolag, M. Bartelmann, H. Lesch, Evolution and structure of magnetic fields in simulated galaxy clusters. Astron. Astrophys. 387, 383–395 (2002). doi: 10.1051/0004-6361:20020241 ADSGoogle Scholar
  40. J. Donnert, K. Dolag, H. Lesch, E. Müller, Cluster magnetic fields from galactic outflows. Mon. Not. R. Astron. Soc. 392, 1008–1021 (2009). doi: 10.1111/j.1365-2966.2008.14132.x ADSGoogle Scholar
  41. A.J. Fennelly, C.R. Evans, Magnetohydrodynamic perturbations of Robertson-Walker universes and of anisotropic Bianchi type-I universes. Nuovo Cimento A 60, 1–45 (1980). doi: 10.1007/BF02723065 MathSciNetGoogle Scholar
  42. C. Federrath, S. Sur, D.R.G. Schleicher, R. Banerjee, R.S. Klessen, A new jeans resolution criterion for (M)HD simulations of self-gravitating gas: application to magnetic field amplification by gravity-driven turbulence. Astrophys. J. 71, 62 (2011). doi: 10.1088/0004-637X/731/1/62 ADSGoogle Scholar
  43. B.D. Fried, Mechanism for instability of transverse plasma waves. Phys. Fluids 2, 337 (1959). doi: 10.1063/1.1705933 MathSciNetADSGoogle Scholar
  44. S. Fromang, S.A. Balbus, C. Terquem, J. De Villiers, Evolution of self-gravitating magnetized disks. II. Interaction between magnetohydrodynamic turbulence and gravitational instabilities. Astrophys. J. 616, 364–375 (2004). doi: 10.1086/424829 ADSGoogle Scholar
  45. S.C.O. Glover, D.W. Savin, Is \(\mathrm{H}_{+}^{3}\) cooling ever important in primordial gas? Mon. Not. R. Astron. Soc. 393, 911–948 (2009). doi: 10.1111/j.1365-2966.2008.14156.x ADSGoogle Scholar
  46. F. Govoni, L. Feretti, Magnetic fields in clusters of galaxies. Int. J. Mod. Phys. D 13, 1549–1594 (2004). doi: 10.1142/S0218271804005080 ADSzbMATHGoogle Scholar
  47. D. Grasso, H.R. Rubinstein, Magnetic fields in the early universe. Phys. Rep. 348, 163–266 (2001). doi: 10.1016/S0370-1573(00)00110-1 ADSGoogle Scholar
  48. A. Gruzinov, Gamma-ray burst phenomenology, shock dynamics, and the first magnetic fields. Astrophys. J. Lett. 563, L15–L18 (2001). doi: 10.1086/324223 ADSGoogle Scholar
  49. A. Gruzinov, E. Waxman, Gamma-ray burst afterglow: polarization and analytic light curves. Astrophys. J. 511, 852–861 (1999). doi: 10.1086/306720 ADSGoogle Scholar
  50. D. Guidetti, M. Murgia, F. Govoni, P. Parma, L. Gregorini, H.R. deRuiter, R.A. Cameron, R. Fanti, The intracluster magnetic field power spectrum in Abell 2382. Astron. Astrophys. 483, 699–713 (2008). doi: 10.1051/0004-6361:20078576 ADSGoogle Scholar
  51. N.E.L. Haugen, A. Brandenburg, W. Dobler, Simulations of nonhelical hydromagnetic turbulence. Phys. Rev. E 70, 016308 (2004a). doi: 10.1103/PhysRevE.70.016308 ADSGoogle Scholar
  52. N.E.L. Haugen, A. Brandenburg, W. Dobler, High-resolution simulations of nonhelical MHD turbulence. Astrophys. Space Sci. 292, 53–60 (2004b). doi: 10.1023/B:ASTR.0000045000.08395.a3 ADSzbMATHGoogle Scholar
  53. N.E.L. Haugen, A. Brandenburg, A.J. Mee, Mach number dependence of the onset of dynamo action. Mon. Not. R. Astron. Soc. 353, 947–952 (2004c). doi: 10.1111/j.1365-2966.2004.08127.x ADSGoogle Scholar
  54. F. Hoyle, Magnetic fields and highly condensed objects. Nature 223, 936 (1969). doi: 10.1038/223936a0 ADSGoogle Scholar
  55. C.H. Jaroschek, M. Hoshino, Radiation dominated relativistic current sheets. Phys. Rev. Lett. 103, 075002 (2009). doi: 10.1103/PhysRevLett.103.075002 ADSGoogle Scholar
  56. C.H. Jaroschek, H. Lesch, R.A. Treumann, Ultra-relativistic plasma shell collision s in gamma-ray burst sources: dimensional effects and the final steady state magnetic field. Astrophys. J. 618, 822–831 (2005). doi: 10.1086/426066 ADSGoogle Scholar
  57. C.H. Jaroschek, M. Hoshino, H. Lesch, R.A. Treumann, Stochastic particle acceleration by the forced interaction of relativistic current sheets. Adv. Space Res. 41, 481–490 (2008). doi: 10.1016/j.asr.2007.07.001 ADSGoogle Scholar
  58. H. Kang, D. Ryu, R. Cen, D. Song, Shock-heated gas in the large-scale structure of the universe. Astrophys. J. 620, 21–30 (2005). doi: 10.1086/426931 ADSGoogle Scholar
  59. H. Kang, D. Ryu, R. Cen, J.P. Ostriker, Cosmological shock waves in the large-scale structure of the universe: nongravitational effects. Astrophys. J. 669, 729–740 (2007). doi: 10.1086/521717 ADSGoogle Scholar
  60. K.T. Kim, P.P. Kronberg, G. Giovannini, T. Venturi, Discovery of intergalactic radio emission in the Coma-A1367 supercluster. Nature 341, 720–723 (1989). doi: 10.1038/341720a0 ADSGoogle Scholar
  61. K.T. Kim, P.P. Kronberg, P.D. Dewdney, T.L. Landecker, The halo and magnetic field of the Coma cluster of galaxies. Astrophys. J. 355, 29–37 (1990). doi: 10.1086/168737 ADSGoogle Scholar
  62. E.-J. Kim, A.V. Olinto, R. Rosner, Generation of density perturbations by primordial magnetic fields. Astrophys. J. 468, 28–50 (1996). doi: 10.1086/177667 ADSGoogle Scholar
  63. E.W. Kolb, M.S. Turner, The Early Universe (Addison-Wesley, Redwood City, 1990) zbMATHGoogle Scholar
  64. M. Krause, P. Alexander, R. Bolton, J. Geisbüsch, D.A. Green, J. Riley, Measurements of the cosmological evolution of magnetic fields with the Square Kilometre Array. Mon. Not. R. Astron. Soc. 400, 646–656 (2009). doi: 10.1111/j.1365-2966.2009.15489.x ADSGoogle Scholar
  65. P.P. Kronberg, Q.W. Dufton, H. Li, S.A. Colgate, Magnetic energy of the intergalactic medium from galactic black holes. Astrophys. J. 560, 178–186 (2001). doi: 10.1086/322767 ADSGoogle Scholar
  66. R.M. Kulsrud, E.G. Zweibel, On the origin of cosmic magnetic fields. Rep. Prog. Phys. 71, 046901 (2008). doi: 10.1088/0034-4885/71/4/046901 ADSGoogle Scholar
  67. R.M. Kulsrud, R. Cen, J.P. Ostriker, D. Ryu, The protogalactic origin for cosmic magnetic fields. Astrophys. J. 480, 481–491 (1997). doi: 10.1086/303987 ADSGoogle Scholar
  68. M.I. Large, D.S. Mathewson, C.G.T. Haslam, A high-resolution survey of the Coma cluster of galaxies at 408 Mc/s. Nature 183, 1663–1664 (1959). doi: 10.1038/1831663a0 ADSGoogle Scholar
  69. R.B. Larson, Numerical calculations of the dynamics of collapsing proto-star. Mon. Not. R. Astron. Soc. 145, 271–295 (1969) ADSGoogle Scholar
  70. A. Lazarian, Diffusion-generated electromotive force and seed magnetic field problem. Astron. Astrophys. 264, 326–330 (1992) ADSGoogle Scholar
  71. M.N. Machida, K. Omukai, T. Matsumoto, S. Inutsuka, The first jets in the universe: protostellar jets from the first stars. Astrophys. J. Lett. 647, L1–L4 (2006). doi: 10.1086/507326 ADSGoogle Scholar
  72. M.N. Machida, S. Inutsuka, T. Matsumoto, T. High- and low-velocity magnetized outflows in the star formation process in a gravitationally collapsing cloud. Astrophys. J. 676, 1088–1108 (2008). doi: 10.1086/528364 ADSGoogle Scholar
  73. H. Maki, H. Susa, Dissipation of magnetic flux in primordial gas clouds. Astrophys. J. 609, 467–473 (2004). doi: 10.1086/421103 ADSGoogle Scholar
  74. S. Matarrese, Relativistic cosmology: from superhorizon to small scales, in Dark Matter in the Universe, ed. by S. Bonometto, J.R. Primack, A. Provenzale (IOS Press, Oxford, 1996), pp. 601–628 Google Scholar
  75. M.V. Medvedev, A. Loeb, Generation of magnetic fields in the relativistic shock of gamma-ray burst sources. Astrophys. J. 526, 697–706 (1999). doi: 10.1086/308038 ADSGoogle Scholar
  76. M.V. Medvedev, L.O. Silva, M. Kamionkowski, Cluster magnetic fields from large-scale structure and galaxy cluster shocks. Astrophys. J. Lett. 642, L1–L4 (2006). doi: 10.1086/504470 ADSGoogle Scholar
  77. F. Miniati, A.R. Bell, Resistive magnetic field generation at cosmic dawn. Astrophys. J. 729, 73 (2011). doi: 10.1088/0004-637X/729/1/73 ADSGoogle Scholar
  78. P.C. Myers, V.K. Khersonsky, On magnetic turbulence in interstellar clouds. Astrophys. J. 442, 186–196 (1995). doi: 10.1086/175434 ADSGoogle Scholar
  79. D. Nagai, A. Vikhlinin, A.V. Kravtsov, Testing X-ray measurements of galaxy clusters with cosmological simulations. Astrophys. J. 655, 98–108 (2007). doi: 10.1086/509868 ADSGoogle Scholar
  80. A. Neronov, I. Vovk, Evidence for strong extragalactic magnetic fields from Fermi observations of TeV Blazars. Science 328, 73–75 (2010). doi: 10.1126/science.1184192 ADSGoogle Scholar
  81. K.I. Nishikawa, J. Niemiec, P.E. Hardee, M. Medvedev, H. Sol, Y. Mizuno, B. Zhang, M. Pohl, M. Oka, D.H. Hartmann, Weibel instability and associated strong fields in a fully three-dimensional simulation of a relativistic shock. Astrophys. J. Lett. 698, L10–L13 (2009). doi: 10.1088/0004-637X/698/1/L10 ADSGoogle Scholar
  82. P.J.E. Peebles, Recombination of the primeval plasma. Astrophys. J. 153, 1–11 (1968). doi: 10.1086/149628 ADSGoogle Scholar
  83. M.V. Penston, Dynamics of self-gravitating gaseous spheres. III. Analytical results in the free-fall of isothermal cases. Mon. Not. R. Astron. Soc. 144, 425–448 (1969) ADSGoogle Scholar
  84. C. Pfrommer, V. Springel, T.A. Enßlin, M. Jubelgas, Detecting shock waves in cosmological smoothed particle hydrodynamics simulations. Mon. Not. R. Astron. Soc. 367, 113–131 (2006). doi: 10.1111/j.1365-2966.2005.09953.x ADSGoogle Scholar
  85. C. Pinto, D. Galli, Three-fluid plasmas in star formation. II. Momentum transfer rate coefficients. Astron. Astrophys. 484, 17–28 (2008). doi: 10.1051/0004-6361:20078819 ADSzbMATHGoogle Scholar
  86. C. Pinto, D. Galli, F. Bacciotti, Three-fluid plasmas in star formation. I. Magneto-hydrodynamic equations. Astron. Astrophys. 484, 1–15 (2008). doi: 10.1051/0004-6361:20078818 ADSzbMATHGoogle Scholar
  87. R.E. Pudritz, J. Silk, The origin of magnetic fields and primordial stars in protogalaxies. Astrophys. J. 342, 650–659 (1989). doi: 10.1086/167625 ADSGoogle Scholar
  88. I. Røeggen, H.R. Skullerud, T.H. Løvaas, D.K. Dysthe, The Li+−H2 system in a rigid-rotor approximation: potential energy surface and transport coefficients. J. Phys. B 35, 1707–1725 (2002). doi: 10.1088/0953-4075/35/7/309 ADSGoogle Scholar
  89. K. Roettiger, J.M. Stone, J.O. Burns, Magnetic field evolution in merging clusters of galaxies. Astrophys. J. 518, 594–602 (1999). doi: 10.1086/307298 ADSGoogle Scholar
  90. D. Ryu, H. Kang, Vorticity and turbulence in the large-scale structure of the universe, in Numerical Modeling of Space Plasma Flows (Astronum 2007), ed. by N.V. Pogorelov, E. Audit, G.P. Zank. ASP Conference Series, vol. 385 (2008), pp. 44–49 Google Scholar
  91. D. Ryu, J.P. Ostriker, H. Kang, R. Cen, A cosmological hydrodynamic code based on the total variation diminishing scheme. Astrophys. J. 414, 1–19 (1993). doi: 10.1086/173051 ADSGoogle Scholar
  92. D. Ryu, H. Kang, P.L. Biermann, Cosmic magnetic fields in large scale filaments and sheets. Astron. Astrophys. 335, 19–25 (1998) ADSGoogle Scholar
  93. D. Ryu, H. Kang, E. Hallman, T.W. Jones, Cosmological shock waves and their role in the large-scale structure of the universe. Astrophys. J. 593, 599–610 (2003). doi: 10.1086/376723 ADSGoogle Scholar
  94. D. Ryu, H. Kang, J. Cho, S. Das, Turbulence and magnetic fields in the large-scale structure of the universe. Science 320, 909–912 (2008). doi: 10.1126/science.1154923 ADSGoogle Scholar
  95. D. Ryu, S. Das, H. Kang, Intergalactic magnetic field and arrival direction of ultra-high-energy Protons. Astrophys. J. 710, 1422–1431 (2010). doi: 10.1088/0004-637X/710/2/1422 ADSGoogle Scholar
  96. T.V. Ruzmaikina, A.A. Ruzmaikin, Gravitational stability of an expanding universe in the presence of a magnetic field. Sov. Astron. 14, 963–966 (1971) ADSGoogle Scholar
  97. J.I. Sakai, R. Schlickeiser, P.K. Shukla, Simulation studies of magnetic field generation in cosmological plasmas. Phys. Lett. A 330, 384–389 (1999). doi: 10.1016/j.physleta.2004.08.007 ADSGoogle Scholar
  98. A.A. Schekochihin, S.C. Cowley, S.F. Taylor, J.L. Maron, J.C. McWilliams, Simulations of the small-scale turbulent dynamo. Astrophys. J. 612, 276–307 (2004). doi: 10.1086/422547 ADSGoogle Scholar
  99. A.A. Schekochihin, M. Brüggen, L. Feretti, M.W. Kunz, L. Rudnick, Magnetic fields in galaxy clusters: why bother. Space Sci. Rev. (2010, this issue) Google Scholar
  100. D.R.G. Schleicher, R. Banerjee, R.S. Klessen, Reionization: a probe for the stellar population and the physics of the early universe. Phys. Rev. D 78, 083005 (2008). doi: 10.1103/PhysRevD.78.083005 ADSGoogle Scholar
  101. D.R.G. Schleicher, D. Galli, S.C.O. Glover, R. Banerjee, F. Palla, R. Schneider, R.S. Klessen, The influence of magnetic fields on the thermodynamics of primordial star formation. Astrophys. J. 703, 1096–1106 (2009). doi: 10.1088/0004-637X/703/1/1096 ADSGoogle Scholar
  102. D.R.G. Schleicher, R. Banerjee, S. Sur, T.G. Arshakian, R.S. Klessen, R. Beck, M. Spaans, Small-scale dynamo action during the formation of the first stars and galaxies. I. The ideal MHD limit. Astron. Astrophys. 522, A115 (2010). doi: 10.1051/0004-6361/201015184 ADSGoogle Scholar
  103. R. Schlickeiser, P.K. Shukla, Cosmological magnetic field generation by the Weibel instability. Astrophys. J. Lett. 599, L57–L60 (2003). doi: 10.1086/381246 ADSGoogle Scholar
  104. P. Schuecker, A. Finoguenov, F. Miniati, H. Böhringer, U.G. Briel, Probing turbulence in the Coma galaxy cluster. Astron. Astrophys. 426, 387–397 (2004). doi: 10.1051/0004-6361:20041039 ADSGoogle Scholar
  105. S. Seager, D.D. Sasselov, D. Scott, A new calculation of the recombination epoch. Astrophys. J. Lett. 523, L1–L5 (1999). doi: 10.1086/312250 ADSGoogle Scholar
  106. S.K. Sethi, K. Subramanian, Primordial magnetic fields in the post-recombination era and early reionization. Mon. Not. R. Astron. Soc. 356, 778–788 (2005). doi: 10.1111/j.1365-2966.2004.08520.x ADSGoogle Scholar
  107. S.K. Sethi, B.B. Nath, K. Subramanian, Primordial magnetic fields and formation of molecular hydrogen. Mon. Not. R. Astron. Soc. 387, 1589–1596 (2008). doi: 10.1111/j.1365-2966.2008.13302.x ADSGoogle Scholar
  108. J. Silk, M. Langer, On the first generation of stars. Mon. Not. R. Astron. Soc. 371, 444–450 (2006). doi: 10.1111/j.1365-2966.2006.10689.x ADSGoogle Scholar
  109. A.G. Sitenko, Electromagnetic Fluctuations in Plasma (Academic Press, New York, 1967). Chap. 4 Google Scholar
  110. S.W. Skillman, B.W. O’Shea, E. Hallman, J.O. Burns, M.L. Norman, Cosmological shocks in adaptive mesh refinement simulations and the acceleration of cosmic rays. Astrophys. J. 689, 1063–1077 (2008). doi: 10.1086/592496 ADSGoogle Scholar
  111. R.S. de Souza, R. Opher, Origin of magnetic fields in galaxies. Phys. Rev. D 81, 067301 (2010). doi: 10.1103/PhysRevD.81.067301 ADSGoogle Scholar
  112. K. Subramanian, Unified treatment of small- and large-scale dynamos in helical turbulence. Phys. Rev. Lett. 83, 2957–2960 (1999). doi: 10.1103/PhysRevLett.83.2957 ADSGoogle Scholar
  113. K. Subramanian, J.D. Barrow, Magnetohydrodynamics in the early universe and the damping of nonlinear Alfvén waves. Phys. Rev. D 58, 083502 (1998). doi: 10.1103/PhysRevD.58.083502 ADSGoogle Scholar
  114. K. Subramanian, D. Narashimha, S.M. Chitre, Thermal generation of cosmological seed magnetic fields in ionization fronts. Mon. Not. R. Astron. Soc. 271, L15–L18 (1994) ADSGoogle Scholar
  115. S. Sur, D.R.G. Schleicher, R. Banerjee, C. Federrath, R.S. Klessen, The generation of strong magnetic fields during the formation of the first stars. Astrophys. J. Lett. 721, L134–L138 (2010). doi: 10.1088/2041-8205/721/2/L134 ADSGoogle Scholar
  116. S.I. Syrovatskii, in Interstellar Gas Dynamics, ed by H.J. Habing (Springer, New York, 1970) Google Scholar
  117. H. Takami, K. Sato, Distortion of ultra-high-energy sky by galactic magnetic field. Astrophys. J. 681, 1279–1286 (2008). doi: 10.1086/588513 ADSGoogle Scholar
  118. J.C. Tan, E.G. Blackman, Protostellar disk dynamos and hydromagnetic outflows in primordial star formation. Astrophys. J. 603, 401–413 (2004). doi: 10.1086/381668 ADSGoogle Scholar
  119. H. Tashiro, N. Sugiyama, Early reionization with primordial magnetic fields. Mon. Not. R. Astron. Soc. 368, 965–970 (2006). doi: 10.1111/j.1365-2966.2006.10178.x ADSGoogle Scholar
  120. (The Pierre Auger Collaboration) Correlation of the highest-energy cosmic rays with nearby extragalactic objects. Science 318, 938–943 (2007). doi: 10.1126/science.1151124 ADSGoogle Scholar
  121. R.A. Treumann, R. Nakamura, W. Baumjohann, Collisionless reconnection: mechanism of self-ignition in thin plane current homogeneous sheets. Ann. Geophys. 28, 1935–1943 (2010). doi: 10.5194/anngeo-28-1935-2010 ADSGoogle Scholar
  122. C.G. Tsagas, Gravitational waves and cosmic magnetism: a cosmological approach. Class. Quantum Gravity 19, 3709–3722 (2002). doi: 10.1088/0264-9381/19/14/311 MathSciNetADSzbMATHGoogle Scholar
  123. C.G. Tsagas, J.D. Barrow, A gauge-invariant analysis of magnetic fields in general-relativistic cosmology. Class. Quantum Gravity 14, 2539–2562 (1997). doi: 10.1088/0264-9381/14/9/011 MathSciNetADSzbMATHGoogle Scholar
  124. C.G. Tsagas, R. Maartens, Magnetized cosmological perturbations. Phys. Rev. D 61, 083519 (2000a). doi: 10.1103/PhysRevD.61.083519 ADSGoogle Scholar
  125. C.G. Tsagas, R. Maartens, Cosmological perturbations on a magnetized Bianchi I background. Class. Quantum Gravity 17, 2215–2241 (2000b). doi: 10.1088/0264-9381/17/11/305 MathSciNetADSzbMATHGoogle Scholar
  126. M.J. Turk, T. Abel, B. O’Shea, The formation of population III binaries from cosmological initial conditions. Science 325, 601–605 (2009). doi: 10.1126/science.1173540 ADSGoogle Scholar
  127. F. Vazza, G. Brunetti, C. Gheller, Shock waves in Eulerian cosmological simulations: main properties and acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 395, 1333–1354 (2009). doi: 10.1111/j.1365-2966.2009.14691.x ADSGoogle Scholar
  128. C. Vogt, T. Enßlin, A Bayesian view on Faraday rotation maps seeing the magnetic power spectra in galaxy clusters. Astron. Astrophys. 434, 67–76 (2005). doi: 10.1051/0004-6361:20041839 ADSGoogle Scholar
  129. S. Wang, New primordial-magnetic-field limit from the latest LIGO S5 data. Phys. Rev. D 81, 023002 (2010). doi: 10.1103/PhysRevD.81.023002 ADSGoogle Scholar
  130. I. Wasserman, On the origins of galaxies, galactic angular momenta and galactic magnetic fields. Astrophys. J. 224, 337–343 (1978). doi: 10.1086/156381 ADSGoogle Scholar
  131. E. Weibel, Spontaneously growing transverse waves in a plasma due to anisotropic velocity distribution. Phys. Rev. Lett. 2, 83–84 (1959). doi: 10.1103/PhysRevLett.2.83 ADSGoogle Scholar
  132. L.M. Widrow, Origin of galactic and extragalactic magnetic fields. Rev. Mod. Phys. 74, 775–823 (2002). doi: 10.1103/RevModPhys.74.775 ADSGoogle Scholar
  133. L.M. Widrow, D. Ryu, D.R.G. Schleicher, K. Subramanian, R.A. Treumann, C. Tsagas, The first magnetic fields. Space Sci. Rev. (2010, this issue) Google Scholar
  134. H. Xu, B.W. O’Shea, D.C. Collins, M.L. Norman, H. Li, S. Li, The Biermann battery in cosmological MHD simulations of population III star formation. Astrophys. J. Lett. 688, L57–L60 (2008). doi: 10.1086/595617 ADSGoogle Scholar
  135. Y. Xu, P.P. Kronberg, S. Habib, Q.W. Dufton, A Faraday rotation search for magnetic fields in large-scale structure. Astrophys. J. 637, 19–26 (2006). doi: 10.1086/498336 ADSGoogle Scholar
  136. N. Yoshida, K. Omukai, L. Hernquist, Protostar formation in the early universe. Science 321, 669–671 (2008). doi: 10.1126/science.1160259 ADSGoogle Scholar
  137. Y.B. Zeldovich, The hypothesis of cosmological magnetic inhomogeneity. Sov. Astron. 13, 608–611 (1970a) ADSGoogle Scholar
  138. Y.B. Zeldovich, Separation of uniform matter into parts under the action of gravitation. Astrofizika 6, 319–335 (1970b) ADSGoogle Scholar
  139. Y.B. Zeldovich, V.G. Kurt, R.A. Sunyaev, Recombination of hydrogen in the hot model of the universe. Sov. Phys. JETP 28, 146–150 (1969) ADSGoogle Scholar
  140. Y.B. Zeldovich, A.A. Ruzmaikina, D.D. Sokolov, Magnetic Fields in Astrophysics (Gordon & Breach, New York, 1983) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • D. Ryu
    • 1
    Email author
  • D. R. G. Schleicher
    • 2
  • R. A. Treumann
    • 3
  • C. G. Tsagas
    • 4
  • L. M. Widrow
    • 5
  1. 1.Department of Astronomy and Space ScienceChungnam National UniversityDaejeonKorea
  2. 2.Institut für AstrophysikGeorg-August-UniversitätGöttingenGermany
  3. 3.ISSIBernSwitzerland
  4. 4.Department of PhysicsAristotle University of ThessalonikiThessalonikiGreece
  5. 5.Department of PhysicsQueen’s UniversityKingstonCanada

Personalised recommendations