Space Science Reviews

, Volume 176, Issue 1–4, pp 321–332 | Cite as

On the Atmospheric Transport and Deposition of the Cosmogenic Radionuclides (10Be): A Review

  • U. Heikkilä
  • J. Beer
  • J. A. Abreu
  • F. Steinhilber


Cosmogenic radionuclides, such as 10Be, are commonly used for reconstructing solar activity in the past. The interpretation of 10Be records, most commonly obtained from polar ice cores, is complicated by the mixing of 10Be in the atmosphere, its transport to polar regions and its deposition. Throughout the generations of 10Be studies these complications have been mentioned but never investigated on a physical basis. This manuscript aims to summarize the recent efforts to study the atmospheric transport of 10Be from its production to its deposition into the polar ice using three-dimensional physically based general circulation models (GCMs) of the atmosphere. These models represent our best understanding of the atmospheric processes up to date. The model studies indicate that the most important factor controlling the deposition response of 10Be to production changes is the fact that a major part of it (∼65%) is produced in the stratosphere where its residence time is long and it undergoes strong mixing. Therefore, in an ideal archive the 10Be concentrations will reflect the global mean production rate and hence changes in the solar activity. An explanation is offered for the partly different deposition responses of 10Be snow concentrations to production changes obtained with two different GCMs.


Atmospheric transport Deposition Climate impact Beryllium-10 Solar activity proxy Polar enhancement 



This is publication no. A369 from the Bjerknes Centre for Climate Research.


  1. J.A. Abreu, J. Beer, F. Steinhilber, S.M. Tobias, N.O. Weiss, For how long will the current grand maximum of solar activity persist? Geophys. Res. Lett. 35, L20109 (2008). doi: 10.1029/2008GL035442 ADSCrossRefGoogle Scholar
  2. J. Abreu, J. Beer, A. Ferriz-Mas, Past and future solar activity from cosmogenic radionuclides, in SOHO-23: Understanding a Peculiar Solar Minimum, ed. by R. Cranmer, J.T. Hoeksema, J.L. Kohl. ASP Conference Series, vol. 428 (2010) Google Scholar
  3. C. Appenzeller, J.R. Holton, K.H. Rosenlof, Seasonal variation of mass transport across the tropopause. J. Geophys. Res. 101(D10), 15071–15078 (1996) ADSCrossRefGoogle Scholar
  4. E. Bard, G.M. Raisbeck, F. Yiou, J. Jouzel, Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus B 52, 985–992 (2000) ADSCrossRefGoogle Scholar
  5. J. Beer, A. Blinov, G. Bonani, R.C. Finkel, H.J. Hofmann, B. Lehmann, H. Oeschger, A. Sigg, J. Schwander, T. Staffelbach, B. Stauffer, M. Suter, W. Wölfli, Use of 10Be in polar ice to trace the 11-year cycle of solar activity. Nature 347, 164–166 (1990) ADSCrossRefGoogle Scholar
  6. J. Beer, K. McCracken, J.A. Abreu, U. Heikkilä, F. Steinhilber, Cosmogenic radionuclides as an extension of the neutron monitor era into the past: potential and limitations. Space Sci. Rev. (2011, this issue) Google Scholar
  7. A.-M. Berggren, J. Beer, G. Possnert, A. Aldahan, P. Kubik, M. Christl, S.J. Johnsen, J. Abreu, B.M. Vinther, A 600-year annual 10Be record from the NGRIP ice core, Greenland. Geophys. Res. Lett. 36, L11801 (2009). doi: 10.1029/2009GL038004 ADSCrossRefGoogle Scholar
  8. R. Brost, J. Feichter, M. Heimann, Three-dimensional simulation of 7Be in a global climate model. J. Geophys. Res. 96, 22423–22445 (1991) ADSCrossRefGoogle Scholar
  9. M. D’Isidoro, A. Maurizi, F. Tampieri, Effects of resolution on the relative importance of numerical and physical horizontal diffusion in atmospheric composition modelling. Atmos. Chem. Phys. 10, 2737–2743 (2010) ADSCrossRefGoogle Scholar
  10. C. Field, G. Schmidt, D. Koch, C. Salyk, Modeling production and climate-related impacts on 10Be concentration in ice cores. J. Geophys. Res. 111, D15107 (2006). doi: 10.1029/2005JD00640 ADSCrossRefGoogle Scholar
  11. C.V. Field, G.A. Schmidt, D.T. Shindell, Interpreting 10Be changes during the Maunder Minimum. J. Geophys. Res. 114, D02113 (2009). doi: 10.1029/2008JD010578 ADSCrossRefGoogle Scholar
  12. C.V. Field, G.A. Schmidt, Model-based constraints on interpreting 20th century trends in ice core 10Be. J. Geophys. Res. 114, D12110 (2009). doi: 10.1029/2008JD011217 ADSCrossRefGoogle Scholar
  13. P. Foukal, C. Fröhlich, H. Spruit, T.M.L. Wigley, Variations in solar luminosity and their effect on the Earth’s climate. Nature 443, 161–166 (2006). doi: 10.1038/nature05072 ADSCrossRefGoogle Scholar
  14. U. Heikkilä, J. Beer, V. Alfimov, 10Be and 7Be in precipitation in Dübendorf (440 m) and at Jungfraujoch (3580 m), Switzerland (1998–2005). J. Geophys. Res. (2008a). doi: 10.1029/2007JD009160 Google Scholar
  15. U. Heikkilä, J. Beer, J. Feichter, Modelling cosmogenic radionuclides 10Be and 7Be during the Maunder Minimum with the ECHAM5–HAM general circulation model. Atmos. Chem. Phys. 8, 2797–2809 (2008b) ADSCrossRefGoogle Scholar
  16. U. Heikkilä, J. Beer, J. Jouzel, J. Feichter, P. Kubik, 10Be measured in a GRIP snow pit and modeled using the ECHAM5-HAM general circulation model. Geophys. Res. Lett. (2008c). doi: 10.1029/2007GL033067 Google Scholar
  17. U. Heikkilä, J. Beer, J. Feichter, Meridional transport and deposition of atmospheric 10Be. Atmos. Chem. Phys. 9, 515–527 (2009) ADSCrossRefGoogle Scholar
  18. J. Holton, P. Haynes, M. McIntyre, A. Douglass, R. Rood, L. Pfister, Stratosphere-troposphere exchange. Rev. Geophys. 33, 403–439 (1995) ADSCrossRefGoogle Scholar
  19. Y. Igarashi, K. Hirose, M. Otsuji-Hatori, Beryllium-7 deposition and its relation to sulfate deposition. J. Atmos. Chem. 29, 217–231 (1998) CrossRefGoogle Scholar
  20. D. Koch, D. Rind, Beryllium-10/Beryllium-7 as a tracer of stratospheric transport. J. Geophys. Res. 103, 3907–3917 (1998) ADSCrossRefGoogle Scholar
  21. D. Koch, D. Jacob, W. Graustein, Vertical transport of tropospheric aerosols as indicated by 7Be and 210Pb in a chemical tracer model. J. Geophys. Res. 101, 18651–18666 (1996) ADSCrossRefGoogle Scholar
  22. D. Koch, G. Schmidt, C. Field, Sulfur, sea salt and radionuclide aerosols in GISS ModelE. J. Geophys. Res. 111, D06206 (2006). doi: 10.1029/2004JD005550 ADSCrossRefGoogle Scholar
  23. M.F. Knudsen, P. Riisager, B.H. Jacobsen, R. Muscheler, I. Snowball, M.-S. Seidenkrantz, Taking the pulse of the Sun during the Holocene by joint analysis of 14C and 10Be. Geophys. Res. Lett. 36, L16701 (2009). doi: 10.1029/2009GL039439 ADSCrossRefGoogle Scholar
  24. D. Lal, 10Be in polar ice: Data reflect changes in cosmic ray flux or polar meteorology. Geophys. Res. Lett. 14, 785–788 (1987) ADSCrossRefGoogle Scholar
  25. D. Lal, B. Peters, Cosmic ray produced radioactivity on the Earth, in Handbuch der Physik, vol. XLVI/2 (Springer, New York, 1967), pp. 551–612 Google Scholar
  26. C. Land, J. Feichter, Stratosphere-troposphere exchange in a changing climate simulated with the general circulation model MAECHAM4. J. Geophys. Res. 108(D12), 8523 (2003) CrossRefGoogle Scholar
  27. J. Masarik, J. Beer, Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. J. Geophys. Res. 104, 12099–12111 (1999) ADSCrossRefGoogle Scholar
  28. J. Masarik, J. Beer, An updated simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. J. Geophys. Res. 114, D11103 (2009). doi: 10.1029/2008JD010557 ADSCrossRefGoogle Scholar
  29. R. Muscheler, F. Joos, J. Beer, S. Müller, M. Vonmoos, I. Snowball, Solar activity during the last 1000 yr inferred from radionuclide records. Quat. Sci. Rev. 26, 82–97 (2007) ADSCrossRefGoogle Scholar
  30. J. Pedro, T. van Ommen, M. Curran, V. Morgan, A. Smith, A. McMorrow, Evidence for climate modulation of the 10Be solar activity proxy. J. Geophys. Res. 111, D21105 (2006). doi: 10.1029/2005JD006764 ADSCrossRefGoogle Scholar
  31. J.B. Pedro, A.M. Smith, M.L. Duldig, A.R. Klekociuk, K.J. Simon, M.A.J. Curran, T.D. van Ommen, D.A. Fink, V.I. Morgan, B. Galton-Fenzi, 10Be concentrations in snow at Law Dome, Antarctica following the 29 October 2003 and 20 January 2005 solar cosmic ray events. Adv. Geosci. 14, 285–303 (2009). ISSN 1680-7340 CrossRefGoogle Scholar
  32. G.M. Raisbeck, F. Yiou, M. Fruneau, J.M. Loiseaux, M. Lieuvin, J.C. Ravel, Geophys. Res. Lett. 8(9), 1015–1018 (1981) ADSCrossRefGoogle Scholar
  33. G.M. Raisbeck, F. Yiou, J. Jouzel, J.R. Petit, 10Be and d3H in polar ice cores as a probe of the solar variability’s influence on climate. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 330, 65–72 (1990) CrossRefGoogle Scholar
  34. S. Rehfeld, M. Heimann, Three dimensional atmospheric transport simulation of the radioactive tracers 210Pb, 7Be, 10Be and 90Sr. J. Geophys. Res. 100, 26141–26161 (1995) ADSCrossRefGoogle Scholar
  35. T. Reichler, J. Kim, How well do coupled models simulate today’s climate? Bull. Am. Meteorol. Soc. (2008). doi: 10.1175/BAMS-89-3-303 Google Scholar
  36. E. Roeckner, G. Baeuml, L. Bonventura, R. Brokopf, M. Esch, M. Giorgetta, S. Hagemann, I. Kirchner, L. Kornblueh, E. Manzini, A. Rhodin, U. Schlese, U. Schulzweida, A. Tompkins, The atmospheric general circulation model ECHAM5. PART I: Model description, Report 349, Max Planck Institute for Meteorology, Hamburg, Germany, available from, 2003
  37. F. Steinhilber, J.A. Abreu, J. Beer, Solar modulation during the Holocene. Astrophys. Space Sci. Trans. 4, 1–6 (2008) ADSCrossRefGoogle Scholar
  38. P. Stier, J. Feichter, S. Kinne, S. Kloster, E. Vignati, J. Wilson, L. Ganzeveld, I. Tegen, M. Werner, M. Schulz, Y. Balkanski, O. Boucher, A. Minikin, A. Petzold, The aerosol-climate model ECHAM5-HAM. Atmos. Chem. Phys. 5, 1125–1165 (2005) ADSCrossRefGoogle Scholar
  39. A. Stohl, P. Bonasoni, P. Cristofanelli, W. Collins, J. Feichter, A. Frank, C. Forster, E. Gerasopoulos, H. Gäggeler, P. James, T. Kentarchos, H. Kromp-Kolb, B. Krüger, C. Land, J. Meloen, A. Papayannis, A. Priller, P. Seibert, M. Sprenger, G.J. Roelofs, H.E. Scheel, C. Schnabel, P. Siegmund, L. Tobler, T. Trickl, H. Wernli, V. Wirth, P. Zanis, C. Zerefos, Stratosphere–troposphere exchange: A review, and what we have learnt from STACCATO. J. Geophys. Res. 108(D12), 8516 (2003). doi: 10.1029/2002JD002490 CrossRefGoogle Scholar
  40. C. Textor, M. Schulz, S. Guibert, S. Kinne, Y. Balkanski, S. Bauer, T. Berntsen, T. Berglen, O. Boucher, M. Chin, F. Dentener, T. Diehl, R. Easter, J. Feichter, D. Fillmore, S. Ghan, P. Ginoux, S. Gong, A. Grini, J. Hendricks, L. Horowitz, P. Huang, I. Isaksen, T. Iversen, S. Kloster, D. Koch, A. Kirkevåg, J.E. Kristjansson, M. Krol, A. Lauer, J.F. Lamarque, X. Liu, V. Montanaro, G. Myhre, J. Penner, G. Pitari, S. Reddy, Ø. Seland, P. Stier, T. Takemura, X. Tie, Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys. 6, 1777–1813 (2006) ADSCrossRefGoogle Scholar
  41. I.G. Usoskin, G.A. Kovaltsov, Production of cosmogenic 7Be isotope in the atmosphere: Full 3D modeling. J. Geophys. Res. 113, D12107 (2008). doi: 10.1029/2007JD009725 ADSCrossRefGoogle Scholar
  42. M. Vonmoos, J. Beer, R. Muscheler, Large variations in Holocene solar activity: Constraints from 10Be in the Greenland Ice Core Project ice core. J. Geophys. Res. 111, A10105 (2006). doi: 10.1029/2005JA011500 ADSCrossRefGoogle Scholar
  43. W. Webber, P. Higbie, Production of cosmogenic Be nuclei in the Earth’s atmosphere by cosmic rays: Its dependence on solar modulation and the interstellar cosmic ray spectrum. J. Geophys. Res. 108 (2003). doi: 10.1029/2003JA009863
  44. W. Webber, P. Higbie, What Voyager cosmic ray data in the outer heliosphere tells us about the 10Be production in the Earth’s polar atmosphere in the recent past. J. Geophys. Res. 115, A05102 (2010). doi: 10.1029/2009JA014532 ADSCrossRefGoogle Scholar
  45. E. Zorita, J.F. Gonzalez-Rouco, H. von Storch, J.P. Montavez, F. Valero, Natural and anthropogenic model of surface temperature variations in the last thousand years. J. Geophys. Res. 32, L08707 (2005). doi: 10.1029/2004GL021563 ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • U. Heikkilä
    • 1
    • 2
  • J. Beer
    • 3
  • J. A. Abreu
    • 3
  • F. Steinhilber
    • 3
  1. 1.Uni Bjerknes CentreBjerknes Centre for Climate ResearchBergenNorway
  2. 2.Australian Nuclear Science and Technology Organisation (ANSTO)Lucas HeightsAustralia
  3. 3.EAWAGDübendorfSwitzerland

Personalised recommendations