Space Science Reviews

, Volume 168, Issue 1–4, pp 175–209 | Cite as

Global Response of the Ionosphere to Atmospheric Tides Forced from Below: Recent Progress Based on Satellite Measurements

Global Tidal Response of the Ionosphere
Article

Abstract

This paper provides an overview on the recent progress in studying the ionospheric response to atmospheric tides forced from below. The global spatial structure and temporal variability of the atmospheric temperature tides and their ionospheric responses are considered on the basis of modern satellite-board data (COSMIC and TIMED). The tidal waves from the two data sets have been extracted by one and the same data analysis method. The similarity between the lower thermospheric temperature tides and their ionospheric responses provides evidence for confirming the new paradigm of atmosphere-ionosphere coupling. This paper provides also new experimental results which give an explanation why the WN4 and partly WN3 longitude structures are so prominent pattern in the ionosphere. These results present evidence indicating that the WN4 (WN3) structure is not generated only by the DE3 (DE2) tide as it has been often assumed. The DE3 (DE2) tide remains the leading contributor, but the SPW4 and SE2 (SPW3, DW4 and SE1) waves have their effects as well in a way that the ionospheric response becomes almost double (1.5 time stronger). The paper presents also the global distribution and temporal variability of the sun-synchronous 24-h (DW1), 12-h (SW2) and 8-h (TW3) electron density oscillations. It has been shown that while the latitude and altitude structure of the ionospheric SW2 response is predominantly shaped by the migrating SW2 tide forced from below the DW1 response is mainly due to daily variability of the photo-ionization. The peculiar vertical structure of the ionospheric TW3 response, that shows downward/upward phase progression, calls for further study of the physical processes shaping this ionospheric response.

Keywords

Nonmigrating tides Ionospheric response Modulated vertical plasma drift “Fountain effect” 

References

  1. M. Angelats i Coll, J.M. Forbes, Nonlinear interactions in the upper atmosphere: the s=1 and s=3 nonmigrating semidiurnal tides. J. Geophys. Res. (2002). doi:10.1029/2001JA900179 Google Scholar
  2. C. Arras, Ch. Jacobi, J. Wicker, Semidiurnal tidal signature in sporadic E occurrence rates derived from GPS radio occultation measurements at midlatitudes. Ann. Geophys. 27, 2555–2563 (2009) ADSCrossRefGoogle Scholar
  3. F. Azpilicueta, C. Brunini, S.M. Radicella, Global ionospheric maps from GPS observations using modip latitude. Adv. Space Res. 38, 2324–2331 (2006) ADSCrossRefGoogle Scholar
  4. L. Bankov, R. Heelis, M. Parrot, J.-J. Berthelier, P. Marinov, A. Vassileva, WN4 effect on longitudinal distribution of different ion species in the topside ionosphere at low latitudes by means of DEMETER, DMSP-F13 and DMSP-F15 data. Ann. Geophys. 27, 1–10 (2009) CrossRefGoogle Scholar
  5. N.P. Benkova, M.G. Deminov, A.T. Karpachev, N.A. Kochenova, Yu.V. Kusnerevsky, V.V. Migulin, S.A. Pulinets, M.D. Fligel, Longitude features shown by topside sounder data and their importance in ionospheric mapping. Adv. Space Res. 10, 857–866 (1990) Google Scholar
  6. P.S. Brahmanandam, Y.-H. Chu, K.-H. Wu, H.-P. Hsia, C.-L. Su, G. Uma, Vertical and longitudinal electron density structures of equatorial E- and F-regions. Ann. Geophys. 29, 81–89 (2011) ADSCrossRefGoogle Scholar
  7. S. Chapman, R.S. Lindzen, Atmospheric Tides: Thermal and Gravitational (Gordon and Breach, New York, 1970), p. 200 Google Scholar
  8. C.-Z. Cheng, Y.-H. Kuo, R.A. Anthes, L. Wu, Satellite constellation monitors global and space weather. Eos Trans. AGU 87, 166–167 (2006) ADSCrossRefGoogle Scholar
  9. Y.-H. Chu, K.-H. Wu, C.-L. Su, Reply to comment by Lei et al. on “A new aspect of ionospheric E region electron density morphology”. J. Geophys. Res. 115, A07314 (2010). doi:10.1029/2010JA015334 CrossRefGoogle Scholar
  10. S.L. England, T.J. Immel, E. Sagawa, S.B. Henderson, M.E. Hagan, S.B. Mende, H.U. Frey, C.M. Swenson, L.J. Paxton, The effect of atmospheric tides on the morphology of the quiet-time post-sunset equatorial ionospheric anomaly. J. Geophys. Res. 111, A10S19 (2006a). doi:10.1029/2006JA011795 CrossRefGoogle Scholar
  11. S.L. England, S. Maus, T.J. Immel, S.B. Mende, Longitudinal variation of the E-region electric fields caused by atmospheric tides. Geophys. Res. Lett. 33, L21105 (2006b). doi:10.1029/2006GL027465 ADSCrossRefGoogle Scholar
  12. S.L. England, X. Zhang, T.J. Immel, J.M. Forbes, R. DeMajistre, The effect of non-migrating tides on the morphology of the equatorial ionospheric anomaly: seasonal variability. Earth Planets Space 61, 493–503 (2009) ADSGoogle Scholar
  13. S.L. England, T.J. Immel, J.D. Huba, M.E. Hagan, A. Maute, R. DeMajistre, Modeling of multiple effects of atmospheric tides on the ionosphere: an examination of possible coupling mechanisms responsible for the longitudinal structure of the equatorial ionosphere. J. Geophys. Res. 115, A05308 (2010). doi:10.1029/2009JA014894 CrossRefGoogle Scholar
  14. B.G. Fejer, J.W. Jensen, S.-Y. Su, Quiet time equatorial F region vertical plasma drift model derived from ROCSAT-1 observations. J. Geophys. Res. 113, A05304 (2008). doi:10.1029/2007JA012801 CrossRefGoogle Scholar
  15. J.M. Forbes, R.G. Roble, C. Fesen, Accelerating, heating and compositional mixing of the thermosphere due to upward propagating tides. J. Geophys. Res. 98(A1), 311–321 (1993). doi:10.1029/1992JA00442 ADSCrossRefGoogle Scholar
  16. J.M. Forbes, J. Russell, S. Miyahara, X. Zhang, S. Palo, M. Mlynczak, C.J. Mertens, M.E. Hagan, Troposphere-thermosphere tidal coupling as measure by the SABER instrument on TIMED during July-September 2002. J. Geophys. Res. 111, A10S06 (2006). doi:10.1029/2005JA011492 CrossRefGoogle Scholar
  17. J.M. Forbes, X. Zhang, S. Palo, J. Russell, C.J. Mertens, M. Mlynczak, Tidal variability in the ionospheric dynamo region. J. Geophys. Res. 113, A02310 (2008). doi:10.1029/2007JA012737 CrossRefGoogle Scholar
  18. T.J. Fuller-Rowell, R.A. Akmaev, F. Wu et al., Impact of terrestrial weather on the upper atmosphere. Geophys. Res. Lett. 35, L09808 (2008). doi:10.1029/2007GL032911 CrossRefGoogle Scholar
  19. M.E. Hagan, Comparative effects of migrating solar sources on tidal signatures in the middle and upper atmosphere. J. Geophys. Res. 101(D16), 21213–21222 (1996) ADSCrossRefGoogle Scholar
  20. M.E. Hagan, J.M. Forbes, Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res. 107, 4754 (2002). doi:10.1029/2001JD001236 CrossRefGoogle Scholar
  21. M.E. Hagan, J.M. Forbes, Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res. 108(A2), 1062 (2003). doi:10.1029/2002JA009466 CrossRefGoogle Scholar
  22. M.E. Hagan, A. Maute, R.G. Roble, A.D. Richmond, T.J. Immel, S.L. England, Connections between deep tropical clouds and the Earth’s ionosphere. Geophys. Res. Lett. 34, L20109 (2007). doi:10.1029/2007GL030142 ADSCrossRefGoogle Scholar
  23. M.E. Hagan, A. Maute, R.G. Roble, Tropospheric tidal effects on the middle and upper atmosphere. J. Geophys. Res. 114, A01302 (2009). doi:10.1029/2008JA013637 CrossRefGoogle Scholar
  24. C. Haldoupis, D. Pancheva, N.J. Mitchell, A study of tidal and planetary wave periodicities present in midlatitude sporadic E layers. J. Geophys. Res. 109, A02302 (2004). doi:10.1029/2003JA010253 CrossRefGoogle Scholar
  25. C. Haldoupis, C. Meek, N. Christakis, D. Pancheva, A. Bourdillon, Ionogram height-time-intensity observations of descending sporadic E layers. J. Atmos. Sol.-Terr. Phys. 68, 539–557 (2006) ADSCrossRefGoogle Scholar
  26. C. Haldoupis, D. Pancheva, Terdiurnal tide-like variability in sporadic E layers. J. Geophys. Res. 111, A07303 (2006). doi:10.1029/2005JA011522 CrossRefGoogle Scholar
  27. K. Hamilton, Latent heat release as a possible forcing mechanism for atmospheric tides. Mon. Weather Rev. 109, 3–17 (1981) ADSCrossRefGoogle Scholar
  28. W.A. Hartman, R.A. Heelis, Longitudinal variations in the equatorial vertical drift in the topside ionosphere. J. Geophys. Res. 112, A03305 (2007). doi:10.1029/2006JA011773 CrossRefGoogle Scholar
  29. K. Häusler, H. Lühr, Nonmigrating tidal signals in the upper thermospheric zonal wind at equatorial latitudes as observed by CHAMP. Ann. Geophys. 27, 2643–2652 (2009) ADSCrossRefGoogle Scholar
  30. R.A. Heelis, Electrodynamics in the low and middle latitude ionosphere: a tutorial. J. Atmos. Sol.-Terr. Phys. 66, 825–838 (2004) ADSCrossRefGoogle Scholar
  31. F.T. Huang, H.G. Mayr, C.A. Reber, T. Killeen, J.M. Russell, M. Mlynczak, W. Skinner, J.G. Mengel, Diurnal variations of temperature and winds inferred from TIMED and UARS measurements. J. Geophys. Res. 111, A10S04 (2006a). doi:10.1029/2005JA011426 CrossRefGoogle Scholar
  32. F.T. Huang, H.G. Mayr, C.A. Reber, J.M. Russell, M. Mlynczak, J.G. Mengel, Stratospheric and mesospheric temperature variations for quasi-biennial and semiannual (QBO and SAO) oscillations based on measurements from SABER (TIMED) and MLS (UARS). Ann. Geophys. 24, 2131–2149 (2006b) ADSCrossRefGoogle Scholar
  33. T.J. Immel, E. Sagawa, S.L. England, S.B. Henderson, M.E. Hagan, S.B. Mende, H.U. Frey, C.M. Swenson, L.J. Paxton, Control of equatorial ionospheric morphology by atmospheric tides. Geophys. Res. Lett. 33, L15108 (2006). doi:10.1029/2006GL026161 ADSCrossRefGoogle Scholar
  34. M.C. Jeruchim, P. Balaban, K.S. Shanmugan, Simulation of Communication Systems: Modeling, Methodology and Techniques (Kluwer Academic Plenum Publishers, Dordrecht, 2000), pp. 397–399 Google Scholar
  35. H. Jin, Y. Miyoshi, H. Fujiwara, H. Shinagawa, Electrodynamics of the formation of ionospheric wave number 4 longitudinal structure. J. Geophys. Res. 113, A09307 (2008). doi:10.1029/2008JA013301 CrossRefGoogle Scholar
  36. H. Jin, Y. Miyoshi, H. Fujiwara, H. Shinagawa, K. Terada, N. Terada, M. Ishii, Y. Otsuka, A. Saito, Vertical connection from the tropospheric activities to the ionospheric longitudinal structure simulated by a new Earth’s whole atmosphere-ionosphere coupled model. J. Geophys. Res. 116, A01316 (2011). doi:10.1029/2010JA015925 CrossRefGoogle Scholar
  37. A.T. Karpachev, Characteristics of the global longitudinal effect in the night-time equatorial anomaly. Geomagn. Aeron. 28(1), 46–49 (1988) ADSGoogle Scholar
  38. M.C. Kelley, V.K. Wong, N. Aponte, C. Coker, A.J. Mannucci, A. Komjathy, Comparison of COSMIC occultation-based electron density profiles and TIP observations with Arecibo incoherent scatter radar data. Radio Sci. 44, RS4011 (2009). doi:10.1029/2008RS004087 CrossRefGoogle Scholar
  39. H. Kil, R. DeMajistre, L.J. Paxton, Y. Zhang, Nighttime F-region morphology in the low and middle latitudes seen from DMSP F15 and TIMED/GUVI. J. Atmos. Sol.-Terr. Phys. 68, 1672–1681 (2006) ADSCrossRefGoogle Scholar
  40. H. Kil, S.-J. Oh, M. Kelley, L. Paxton, S. England, E. Talaat, K.-W. Min, S.-Y. Su, Longitudinal structure of the vertical E×B drift and ion density seen from ROCSAT-1. Geophys. Res. Lett. 34, L14110 (2007). doi:10.1029/2007GL030018 ADSCrossRefGoogle Scholar
  41. H. Kil, E.R. Talaat, S.-J. Oh, L.J. Paxton, S.L. England, S.-Y. Su, The wave structures of the plasma density and vertical E × B drift in low-latitude F region. J. Geophys. Res. 113, A09312 (2008). doi:10.1029/2008JA013106 CrossRefGoogle Scholar
  42. N.A. Kochenova, Longitudinal variations of the equatorial ionosphere according to Intercosmos-19 data. Geomagn. Aeron. 21(1), 142–144 (1987) ADSGoogle Scholar
  43. N.A. Kochenova, Longitudinal variations of N(h) profiles at the magnetic equator. Geomagn. Aeron. 28(1), 144–146 (1988) ADSGoogle Scholar
  44. A.K.H. Kong, P.A. Charles, E. Kuulkers, Long-term X-ray variability in GX 354-0. New Astron. 3(5), 301–307 (1998) ADSCrossRefGoogle Scholar
  45. Y.-H. Kuo, T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, R.A. Anthes, Inversion and error estimation of GPS radio occultation data. J. Meteorol. Soc. Jpn. 82(1B), 507–531 (2004) CrossRefGoogle Scholar
  46. J. Lei, S. Syndergaard, A.G. Burns et al., Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: Preliminary results. J. Geophys. Res. 112, A07308 (2007). doi:10.1029/2006JA012240 CrossRefGoogle Scholar
  47. J. Lei, J.P. Thayer, J.M. Forbes, Q. Wu, C. She, W. Wan, W. Wang, Ionosphere response to solar wind high-speed streams. Geophys. Res. Lett. 35, L19105 (2008). doi:10.1029/2008GL035208 ADSCrossRefGoogle Scholar
  48. C.H. Lin, W. Wang, M.E. Hagan, C.C. Hsiao, T.J. Immel, M.L. Hsu, J.Y. Liu, L.J. Paxton, T.W. Fang, C.H. Liu, Plausible effect of atmospheric tides on the equatorial ionosphere observed by the FORMOSAT-3/COSMIC: three-dimensional electron density structures. Geophys. Res. Lett. 34, L11112 (2007a). doi:10.1029/2007GL029265 ADSCrossRefGoogle Scholar
  49. C.H. Lin, C.C. Hsiao, J.Y. Liu, C.H. Liu, Longitudinal structure of the equatorial ionosphere: time evolution of the four-peaked EIA structure. J. Geophys. Res. 112, A12305 (2007b). doi:10.1029/2007JA012455 ADSCrossRefGoogle Scholar
  50. H. Liu, M. Yamamoto, H. Lühr, Wave-4 pattern of the equatorial mass density anomaly: a thermospheric signature of tropical deep convection. Geophys. Res. Lett. 36, L18104 (2009). doi:10.1029/2009GL039865 ADSCrossRefGoogle Scholar
  51. J.Y. Liu, C.Y. Lin, C.H. Lin, H.F. Tsai, S.C. Solomon, Y.Y. Sun, T. Lee, W.S. Schreiner, Y.H. Kuo, Artificial plasma caves in the low-latitude ionosphere results from the radio occultation inversion of the FORMOSAT-3/COSMIC. J. Geophys. Res. (2010). doi:10.1029/2009JA015079 Google Scholar
  52. H. Lühr, K. Häusler, C. Stolle, Longitudinal variation of F region electron density and thermospheric zonal wind caused by atmospheric tides. Geophys. Res. Lett. 34, L16102 (2007). doi:10.1029/2007GL030639 ADSCrossRefGoogle Scholar
  53. H. Lühr, M. Rother, K. Häusler, P. Alken, S. Maus, Influence of nonmigrating tides on the longitudinal variations of the equatorial electrojet. J. Geophys. Res. 113, A08313 (2008). doi:10.1029/2008JA013064 ADSCrossRefGoogle Scholar
  54. J.D. Mathews, E. Sporadic, Current views and recent progress. J. Atmos. Sol.-Terr. Phys. 60, 413–435 (1998) ADSCrossRefGoogle Scholar
  55. C. McLandress, W.E. Ward, Tidal/gravity wave interactions and their influence on the large scale dynamics of the middle atmosphere: model results. J. Geophys. Res. 99, 8139–8156 (1994) ADSCrossRefGoogle Scholar
  56. C.J. Mertens et al., Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15 μm earth limb emission under non-LTE conditions. Geophys. Res. Lett. 28, 1391–1394 (2001) ADSCrossRefGoogle Scholar
  57. C.J. Mertens et al., SABER observations of mesospheric temperature and comparisons with falling sphere measurements taken during the 2002 summer MaCWINE campaign. Geophys. Res. Lett. 31, J03105 (2004). doi:10.1029/2003GL018605 CrossRefGoogle Scholar
  58. P. Mukhtarov, D. Pancheva, B. Andonov, Global structure, seasonal and interannual variability of the migrating diurnal tide seen in the SABER/TIMED temperatures between 20 and 120 km. J. Geophys. Res. 114, A02309 (2009). doi:10.1029/2008JA013759 CrossRefGoogle Scholar
  59. P. Mukhtarov, D. Pancheva, Global ionospheric response to nonmigrating DE3 and DE2 tides forced from below. J. Geophys. Res. (2011). doi:10.1029/2010JA016099 Google Scholar
  60. J. Oberheide, M.E. Hagan, R.G. Roble, D. Offermann, Sources of nonmigrating tides in the tropical middle atmosphere. J. Geophys. Res. 107, 4567 (2002). doi:10.1029/2002JD002220 CrossRefGoogle Scholar
  61. J. Oberheide, Q. Wu, T.L. Killeen, M.E. Hagan, R.G. Roble, Diurnal nonmigrating tides from TIMED Doppler Interferometer wind data: monthly climatologies and seasonal variations. J. Geophys. Res. 111, A10S03 (2006). doi:10.1029/2005JA011491 CrossRefGoogle Scholar
  62. J. Oberheide, Q. Wu, T.L. Killeen, M.E. Hagan, R.G. Roble, A climatology of nonmigrating semidiurnal tides from TIMED Doppler Interferometer (TIDI) wind data. J. Atmos. Sol.-Terr. Phys. 69, 2203–2218 (2007) ADSCrossRefGoogle Scholar
  63. J. Oberheide, J.M. Forbes, Tidal propagation of deep tropical cloud signatures into the thermosphere from TIMED observations. Geophys. Res. Lett. 35, L04816 (2008). doi:10.1029/2007GL032397 CrossRefGoogle Scholar
  64. J. Oberheide, J.M. Forbes, K. Haüsler, Q. Wu, S.L. Bruinsma, Tropospheric tides from 80–400 km: propagation, inter-annual variability and solar cycle effects. J. Geophys. Res. 114, D00I05 (2009). doi:10.1029/2009JD012388 CrossRefGoogle Scholar
  65. J. Oberheide, J.M. Forbes, X. Zhang, S.L. Bruinsma, Wave-driven variability in the ionosphere-thermosphere-mesosphere system from TIMED observations: what contributes to the “wave4”? J. Geophys. Res. 116, A01306 (2011). doi:10.1029/2009JA015911 CrossRefGoogle Scholar
  66. D. Pancheva, C. Haldoupis, C. Meek, A. Manson, N. Mitchell, Evidence for a role of modulated atmospheric tides in the dependence of sporadic E layers on planetary waves. J. Geophys. Res. 108(A5), 1176 (2003). doi:10.1029/2002JA009788 CrossRefGoogle Scholar
  67. D. Pancheva, P. Mukhtarov, B. Andonov, Nonmigrating tidal activity related to the sudden stratospheric warming in the Arctic winter of 2003/2004. Ann. Geophys. 27, 975–987 (2009a) ADSCrossRefGoogle Scholar
  68. D. Pancheva, P. Mukhtarov, B. Andonov, Global structure, seasonal and interannual variability of the migrating semidiurnal tide seen in the SABER/TIMED temperatures (2002–2007). Ann. Geophys. 27, 687–703 (2009b) ADSCrossRefGoogle Scholar
  69. D. Pancheva, P. Mukhtarov, B. Andonov, N.J. Mitchell, J.M. Forbes, Planetary waves observed by TIMED/SABER in coupling the stratosphere-mesosphere-lower thermosphere during the winter of 2003/2004: Part 1, Comparison with the UKMO temperature results. J. Atmos. Sol.-Terr. Phys. 71, 61–74 (2009c) ADSCrossRefGoogle Scholar
  70. D. Pancheva, P. Mukhtarov, B. Andonov, Reply to Manson et al.’s comment on “Global structure, seasonal and interannual variability of the migrating semidiurnal tide seen in the SABER/TIMED temperatures (2002–2007)”. Ann. Geophys. 28, 677–685 (2010a) ADSCrossRefGoogle Scholar
  71. D. Pancheva, P. Mukhtarov, B. Andonov, Global distribution, seasonal and interannual variability of the eastward propagating tides seen in the SABER/TIMED temperatures (2002–2007). Adv. Space Res. 46, 257–274 (2010b). doi:10.1016/j.asr.2010.03.026 ADSCrossRefGoogle Scholar
  72. D. Pancheva, P. Mukhtarov, Strong evidence for the tidal control on the longitudinal structure of the ionospheric F-region. Geophys. Res. Lett. 37, L14105 (2010). doi:10.1029/2010GL044039 ADSCrossRefGoogle Scholar
  73. D. Pancheva, P. Mukhtarov, Atmospheric tides and planetary waves: recent progress based on SABER/TIMED, in IAGA Special Sopron Book Series 2, Aeronomy of the Earth’s Atmosphere and Ionosphere, ed. by M. Abdu, D. Pancheva (Springer, Berlin, 2011), pp. 19–56, doi:10.1007/978-94-007-0326-1 CrossRefGoogle Scholar
  74. N.M. Pedatella, J.M. Forbes, J. Oberheide, Intra-annual variability of the low-latitude ionosphere due to nonmigrating tides. Geophys. Res. Lett. 35, L18104 (2008). doi:10.1029/2008GL035332 ADSCrossRefGoogle Scholar
  75. L. Perrone, A.V. Mikhailov, L.P. Korsunova, FORMOSAT-3/COSMIC E region observations and daytime f oE at middle latitudes. J. Geophys. Res. 116, A06307 (2011). doi:10.1029/2010JA016411 CrossRefGoogle Scholar
  76. S.M. Radicella, R. Leitinger, The evolution of the DGR approach to model electron density profiles. Adv. Space Res. 27(1), 35–40 (2001) ADSCrossRefGoogle Scholar
  77. K. Rawer, in Meteorological and Astronomical Influences on Radio Wave Propagation, ed. by B. Landmark (Oxford, Pergamon Press, 1963), pp. 221–250 Google Scholar
  78. K. Rawer (ed.), Encyclopedia of Physics, Geophysics III, Part VII (Springer, Berlin, 1984), pp. 389–391 Google Scholar
  79. E.E. Remsberg, B.T. Marshall, M. García-Comas, D. Krueger, G.S. Lingenfelser, J. Martin-Torres, M.G. Mlynczak, J.M. Russell, A.K. Smith, Y. Zhao, C. Brown, L.L. Gordley, M.J. Lopez-Gonzales, M. Lopez-Puertas, C.-Y. She, M.J. Taylor, R.E. Thompson, Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER. J. Geophys. Res. 113, D17101 (2008). doi:10.1029/2008JD0100113 ADSCrossRefGoogle Scholar
  80. Z. Ren, W. Wan, L. Liu, B. Zhao, Y. Wei, X. Yue, R.A. Heelis, Longitudinal variations of electron temperature and total ion density in the sunset equatorial topside ionosphere. Geophys. Res. Lett. 35, L05108 (2008). doi:10.1029/2007GL032998 CrossRefGoogle Scholar
  81. Z. Ren, W. Wan, L. Liu, J. Xiong, Intra-annual variation of wavenumber-4 structure of vertical E×B drifts in the equatorial ionosphere seen from ROCSAT-1. J. Geophys. Res. (2009). doi:10.1029/2009JA014060 Google Scholar
  82. Z. Ren, W. Wan, J. Xiong, L. Liu, Simulated wavenumber 4 structure in the equatorial F region vertical plasma drifts. J. Geophys. Res. 115, A05301 (2010). doi:10.1029/2009JA014746 CrossRefGoogle Scholar
  83. Z. Ren, W. Wan, L. Liu, Y. Cheng, H. Le, Equinoctial asymmetry of ionospheric vertical plasma drifts and its effect on F-region plasma density. J. Geophys. Res. 116, A02308 (2011). doi:10.1029/2010JA016081 CrossRefGoogle Scholar
  84. A.D. Richmond, The ionospheric wind dynamo: effects of its coupling with different atmospheric regions, in The Upper Mesosphere and Lower Thermosphere: A Review of Experiments and Theory, ed. by R.M. Johnson, T.L. Killeen. Geophys. Monogr. Ser., vol. 87 (AGU, Washington, 1995), pp. 49–65 CrossRefGoogle Scholar
  85. H. Rishbeth, I.C.F. Müller-Wodarg, L. Zou, T.J. Fuller-Rowell, G.H. Millward, R.J. Moffett, D.W. Idenden, A.D. Aylward, Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion. Ann. Geophys. 18, 945–956 (2000) ADSCrossRefGoogle Scholar
  86. R.G. Roble, The NCAR thermosphere-ionosphere-mesosphere-electrodynamics general circulation model, in STEP Handbook on Ionospheric Models, ed. by R.W. Schunk (Utah State Univ., Logan, 1996), pp. 207–216 Google Scholar
  87. R.G. Roble, On the feasibility of developing a global atmospheric model extending from the ground to the exosphere, in Atmospheric Science Across the Stratopause, ed. by D.E. Siskind, S.D. Eckermann, M.E. Summers. Geophys. Monogr. Ser., vol. 123 (AGU, Washington, 2000), pp. 53–67 CrossRefGoogle Scholar
  88. E. Sagawa, T.J. Immel, H.U. Frey, S.B. Mende, Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV. J. Geophys. Res. 110, A11302 (2005). doi:10.1029/2004JA010848 ADSCrossRefGoogle Scholar
  89. W.S. Schreiner, S.V. Sokolovskiy, C. Rocken, D.C. Hunt, Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci. 34(4), 949–966 (1999) ADSCrossRefGoogle Scholar
  90. S.M. Stankov, N. Jakowski, S. Heise, P. Muhtarov, I. Kutiev, R. Warnant, A new method for reconstruction of the vertical electron density distribution in the upper ionosphere and plasmosphere. J. Geophys. Res. 108(A5), 1164 (2003). doi:10.1029/2002JA009570 CrossRefGoogle Scholar
  91. G. Thuillier, J.R.H. Wiens, G.G. Shepherd, R.G. Roble, Photochemistry and dynamics in 566 thermospheric intertropical arcs measure by the WIND imaging interferometer on board UARS: 567 A comparison with TIE-GCM simulations. J. Atmos. Sol.-Terr. Phys. 64, 405–415 (2002) ADSCrossRefGoogle Scholar
  92. W. Wan, L. Liu, X. Pi, M.-L. Zhang, B. Ning, J. Xiong, F. Ding, Wavenumber-4 patterns of the total electron content over the low latitude ionosphere. Geophys. Res. Lett. 35, L12104 (2008). doi:10.1029/2008GL033755 ADSCrossRefGoogle Scholar
  93. K.H. West, R.A. Heelis, Longitude variations in ion composition in the morning and evening 574 topside equatorial ionosphere near solar minimum. J. Geophys. Res. 101, 7951–7960 (1996) ADSCrossRefGoogle Scholar
  94. C.R. Williams, S.K. Avery, Diurnal nonmigrating tidal oscillations forced by deep convective clouds. J. Geophys. Res. 101, 4079–4091 (1996) ADSCrossRefGoogle Scholar
  95. J. Xu, A.K. Smith, H.-L. Liu, W. Yuan, Q. Wu, G. Jiang, M.G. Mlynczak, J.M. Russell III, S.J. Franke, Seasonal and quasi-biennial variations in the migrating diurnal tide observed by Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED). J. Geophys. Res. 114, D13107 (2009). doi:10.1029/2007JD011298 ADSCrossRefGoogle Scholar
  96. X. Zhang, J.M. Forbes, M.E. Hagan, J.M. Russell III, S.E. Palo, C.J. Mertens, M.G. Mlynczak, Monthly tidal temperatures 20–120 km from TIMED/SABER. J. Geophys. Res. 111, A10S08 (2006). doi:10.1029/2005JA011504 CrossRefGoogle Scholar
  97. X. Zhang, J.M. Forbes, M.E. Hagan, Longitudinal variation of tides in the MLT region: 2. Relative effects of solar radiative and latent heating. J. Geophys. Res. 115, A06317 (2010). doi:10.1029/2009JA014898 CrossRefGoogle Scholar
  98. X. Yue, W.S. Schreiner, J. Lei, S.V. Sokolovsky, C. Rocken, D.C. Hunt, Y.-H. Kuo, Error analysis of Abel retrieved electron density profiles from radio occultation measurements. Ann. Geophys. 28, 217–222 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Geophysical InstituteBulg. Acad. SciencesSofiaBulgaria

Personalised recommendations