Space Science Reviews

, Volume 176, Issue 1–4, pp 177–215 | Cite as

The Heliospheric Magnetic Field

  • André BaloghEmail author
  • Géza Erdõs


The Heliospheric Magnetic Field (HMF) is the physical framework in which energetic particles and cosmic rays propagate. Changes in the large scale structure of the magnetic field lead to short- and long term changes in cosmic ray intensities, in particular in anti-phase with solar activity. The origin of the HMF in the corona is well understood and inner heliospheric observations can generally be linked to their coronal sources. The structure of heliospheric magnetic polarities and the heliospheric current sheet separating the dominant solar polarities are reviewed here over longer than a solar cycle, using the three dimensional heliospheric observations by Ulysses. The dynamics of the HMF around solar minimum activity is reviewed and the development of stream interaction regions following the stable flow patterns of fast and slow solar wind in the inner heliosphere is described. The complex dynamics that affects the evolution of the stream interaction regions leads to a more chaotic structure of the HMF in the outer heliosphere is described and discussed on the basis of the Voyager observations. Around solar maximum, solar activity is dominated by frequent transients, resulting in the interplanetary counterparts of Coronal Mass Ejections (ICMEs). These produce a complex aperiodic pattern of structures in the inner heliosphere, at all heliolatitudes. These structures continue to interact and evolve as they travel to the outer heliosphere. However, linking the observations in the inner and outer heliospheres is possible in the case of the largest solar transients that, despite their evolutions, remain recognizably large structures and lead to the formation of Merged Interaction Regions (MIRs) that may well form a quasi-spherical, “global” shell of enhanced magnetic fields around the Sun at large distances. For the transport of energetic particles and cosmic rays, the fluctuations in the magnetic field and their description in alternative turbulent models remains a very important research topic. These are also briefly reviewed in this paper.


Heliosphere Magnetic fields Solar wind Magnetic fluctuations Energetic particle transport 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A. Balogh, Magnetic fields in the heliosphere at solar minimum and solar maximum, in Proceedings of the Second Granada Workshop, “The Evolving Sun and its Influence on Planetary Environments”, ed. by B. Montesinos, A. Gimenez, E.F. Guinan. ASP Conf. Series, vol. 269 (2002), pp. 37–72 Google Scholar
  2. A. Balogh, J.R. Jokipii, The heliospheric magnetic field and its extension to the inner heliosheath. Space Sci. Rev. 143, 85–110 (2009) ADSGoogle Scholar
  3. A. Balogh, G. Erdös, R.J. Forsyth, E.J. Smith, The evolution of the interplanetary sector structure in 1992. Geophys. Res. Lett. 20, 2331–2334 (1993) ADSGoogle Scholar
  4. A. Balogh, J.A. Gonzalez-Esparza, R.J. Forsyth, M.E. Burton, B.E. Goldstein, E.J. Smith, Interplanetary shock waves: Ulysses observations in and out of the ecliptic plane. Space Sci. Rev. 72, 171–180 (1995) ADSGoogle Scholar
  5. S.J. Bame, B.E. Goldstein, J.T. Gosling, J.W. Harvey, D.J. McComas, M. Neugebauer, J.L. Phillips, Ulysses observations of a recurrent high speed stream and the heliomagnetic streamer belt. Geophys. Res. Lett. 20, 2323–2326 (1993) ADSGoogle Scholar
  6. K.W. Behannon, Heliocentric distance dependence of the interplanetary magnetic field. Rev. Geophys. Space Phys. 16, 125–145 (1978) ADSGoogle Scholar
  7. J.W. Belcher, L. Davis Jr., Large-amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 76, 3534–3563 (1971) ADSGoogle Scholar
  8. J.W. Belcher, A.J. Lazarus, R.L. McNutt Jr., G.S. Gordon Jr., Large-scale density structures in the outer heliosphere. Adv. Space Res. 13, 41–46 (1993) ADSGoogle Scholar
  9. J.W. Bieber, W.H. Matthaeus, C.W. Smith, W. Wanner, M.-B. Kallenrode, G. Wibberenz, Proton and electron mean free paths: the Palmer consensus revisited. Astrophys. J. 420, 294–306 (1994) ADSGoogle Scholar
  10. J.W. Bieber, W. Wanner, W.H. Matthaeus, Dominant two-dimensional solar wind turbulence with implications for cosmic ray transport. J. Geophys. Res. 101, 2511–2522 (1996) ADSGoogle Scholar
  11. J.E. Borovsky, On the variations of the solar wind magnetic field about the Parker spiral direction. J. Geophys. Res. 115, A09101 (2010). doi: 10.1029/2009JA015040 ADSGoogle Scholar
  12. R. Bruno, V. Carbone, The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 2 (2005).
  13. L.F. Burlaga, Magnetic clouds and force-free fields with constant alpha. J. Geophys. Res. 93, 7217–7224 (1988) ADSGoogle Scholar
  14. L.F. Burlaga, N.F. Ness, Merged interaction regions and large-scale magnetic field fluctuations during 1991: Voyager 2 observations. J. Geophys. Res. 99, 19,341–19,350 (1994) ADSGoogle Scholar
  15. L.F. Burlaga, N.F. Ness, Magnetic fields in the distant heliosphere approaching solar minimum: Voyager 1 and 2 observations during 1994. J. Geophys. Res. 101, 13473–13481 (1996) ADSGoogle Scholar
  16. L.F. Burlaga, E. Sittler, F. Mariani, R. Schwenn, Magnetic loop behind an interplanetary shock—Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673–6684 (1981) ADSGoogle Scholar
  17. L.F. Burlaga, L. Klein, N.R. Sheeley Jr., D.J. Michels, R.A. Howard, M.J. Koomen, R. Schwenn, H. Rosenbauer, A magnetic cloud and a coronal mass ejection. Geophys. Res. Lett. 9, 1317–1320 (1982) ADSGoogle Scholar
  18. L.F. Burlaga, R. Schwenn, H. Rosenbauer, Dynamical evolution of interplanetary magnetic fields and flowsbetween 0.3 AU and 8.5 AU: Entrainment. Geophys. Res. Lett. 10, 413–416 (1983) ADSGoogle Scholar
  19. L.F. Burlaga, W.H. Mish, Y.C. Whang, Coalescence of recurrent streams of different sizes and amplitudes. J. Geophys. Res. 95, 4247–4255 (1990) ADSGoogle Scholar
  20. L.F. Burlaga, N.F. Ness, J.W. Belcher, Radial evolution of corotating merged interaction regions and flows between ∼14 AU and ∼43 AU. J. Geophys. Res. 102, 4661–4671 (1997) ADSGoogle Scholar
  21. L.F. Burlaga, N.F. Ness, J.D. Richardson, R.P. Lepping, The Bastille day shock and merged interaction region at 63 AU: Voyager 2 observations. Sol. Phys. 204, 399–411 (2001) ADSGoogle Scholar
  22. L.F. Burlaga, D. Berdichevsky, N. Gopalswamy, R. Lepping, T. Zurbuchen, Merged interaction regions at 1 AU. J. Geophys. Res. 108(A12), 1425 (2003a). doi: 10.1029/2003JA010088 Google Scholar
  23. L.F. Burlaga, N.F. Ness, J.D. Richardson, Sectors in the distant heliosphere: Voyager 1 and 2 observations from 1999 through 2002 between 57 and 83 AU. J. Geophys. Res. 108(A10), 8028 (2003b). doi: 10.1029/2003JA009870 Google Scholar
  24. L.F. Burlaga, C. Wang, J.D. Richardson, N.F. Ness, Evolution of magnetic fields in corotating interaction regions from 1 to 95 AU: order to chaos. Astrophys. J. 590, 554–566 (2003c) ADSGoogle Scholar
  25. L.F. Burlaga, N.F. Ness, F.B. McDonald, J.D. Richardson, C. Wang, Voyager 1 and 2 observations of magnetic fields and associated cosmic-ray variations from 2000 through 2001: 60–87 AU. Astrophys. J. 582, 540–549 (2003d) ADSGoogle Scholar
  26. H.V. Cane, I.G. Richardson, Interplanetary coronal mass ejections in the near-Earth solar wind during 1996–2002. J. Geophys. Res. 108(A4), 1156 (2003). doi: 10.1029/2002JA009817 Google Scholar
  27. P.J. Cargill, J.M. Schmidt, Modelling interplanetary CMEs using magnetohydrodynamic simulations. Ann. Geophys. 20, 879–890 (2002) ADSGoogle Scholar
  28. M.L. Cartwright, M.B. Moldwin, Comparison of small-scale flux rope magnetic properties to large-scale magnetic clouds: Evidence for reconnection across the HCS? J. Geophys. Res. 113, A09105 (2008). doi: 10.1029/2008JA013389 ADSGoogle Scholar
  29. M.L. Cartwright, M.B. Moldwin, Heliospheric evolution of solar wind small-scale magnetic flux ropes. J. Geophys. Res. 115, A08102 (2010). doi: 10.1029/2009JA014271 ADSGoogle Scholar
  30. P.J. Coleman Jr., Turbulence, viscosity and dissipation in the solar wind plasma. Astrophys. J. 153, 371–388 (1968) ADSGoogle Scholar
  31. P. Démoulin, S. Dasso, Magnetic cloud models with bent and oblate cross-section boundaries. Astron. Astrophys. 507, 969–980 (2009) ADSGoogle Scholar
  32. W. Dröge, Particle scattering by magnetic fields. Space Sci. Rev. 93, 121–151 (2000) ADSGoogle Scholar
  33. G. Erdõs, A. Balogh, The symmetry of the heliospheric current sheet as observed by Ulysses during the fast latitude scan. Geophys. Res. Lett. 25, 245–248 (1998) ADSGoogle Scholar
  34. G. Erdős, A. Balogh, In situ observations of magnetic field fluctuations. Adv. Space Res. 35, 625–635 (2005) ADSGoogle Scholar
  35. G. Erdõs, A. Balogh, North-south asymmetry of the location of the heliospheric current sheet revisited. J. Geophys. Res. 115, A01105 (2010). doi: 10.1029/2009JA014620 ADSGoogle Scholar
  36. G. Erdős, A. Balogh, J. Kóta, Scattering mean free path of energetic protons in the heliosphere, in Proceedings 26th International Cosmic Ray Conference, Salt Lake City, 1999, vol. 6 (1999), pp. 316–319 Google Scholar
  37. H.Q. Feng, D.J. Wu, C.C. Lin, J.K. Chao, L.C. Lee, L.H. Lyu, Interplanetary small- and intermediate-sized magnetic flux ropes during 1995–2005. J. Geophys. Res. 113, A12105 (2008). doi: 10.1029/2008JA013103 ADSGoogle Scholar
  38. L.A. Fisk, Motion of the footpoints of heliospheric magnetic field lines at the Sun: implications for recurrent energetic particle events at high heliographic latitudes. J. Geophys. Res. 101, 15547–15554 (1996) ADSGoogle Scholar
  39. T. Forbes, A review on the genesis of coronal mass ejections. J. Geophys. Res. 105, 23153–23166 (2000) ADSGoogle Scholar
  40. T. Forbes, J.A. Linker, J. Chen, C. Cid, J. Kóta, M.A. Lee, G. Mann, Z. Mikic, M.S. Potgieter, J.M. Schmidt, et al., CME theory and models—report of working group D. Space Sci. Rev. 123, 251–302 (2006) ADSGoogle Scholar
  41. R.J. Forsyth, A. Balogh, T.S. Horbury, G. Erdos, E.J. Smith, M.E. Burton, The heliospheric magnetic field at solar minimum: Ulysses observations from pole to pole. Astron. Astrophys. 316, 287–295 (1996) ADSGoogle Scholar
  42. R.J. Forsyth, A. Balogh, E.J. Smith, The underlying direction of the heliospheric magnetic field through the Ulysses first orbit. J. Geophys. Res. 107(A11), 1405 (2002). doi: 10.1029/2001JA005056 Google Scholar
  43. F. Fraschetti, J.R. Jokipii, Time-dependent perpendicular transport of fast charged particles in a turbulent magnetic field. Astrophys. J. 734(2), 83 (2011). doi: 10.1088/0004-637X/734/2/83 ADSGoogle Scholar
  44. P.R. Gazis, A large-scale survey of corotating interaction regions and their successors in the outer heliosphere. J. Geophys. Res. 105, 19–23 (2000) ADSGoogle Scholar
  45. J. Geiss, G. Gloeckler, R. von Steiger, Origin of the solar wind from composition data. Space Sci. Rev. 72, 49–60 (1995) ADSGoogle Scholar
  46. J. Giacalone, Cosmic-ray transport and interaction with shocks. Space Sci. Rev. (2011, this issue). doi: 10.1007/s11214-011-9763-2
  47. M.L. Goldstein, D.A. Roberts, Magnetohydrodynamic turbulence in the solar wind. Phys. Plasmas 6, 4154–4160 (1999) ADSGoogle Scholar
  48. J.A. Gonzalez-Esparza, E.J. Smith, Solar cycle dependence of solar wind dynamics: Pioneer, Voyager and Ulysses from 1 to 5 AU. J. Geophys. Res. 101, 24359–24371 (1996) ADSGoogle Scholar
  49. J.T. Gosling, Coronal mass ejections and magnetic flux ropes in interplanetary space, in Physics of Magnetic Flux Ropes, ed. by C.T. Russell, E.R. Priest, L.C. Lee. Geophysical Monograph, vol. 58 (American Geophysical Union, Washington, 1990), pp. 343–364 Google Scholar
  50. J.T. Gosling, V.J. Pizzo, Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci. Rev. 89, 21–52 (1999) ADSGoogle Scholar
  51. J.T. Gosling, R.M. Skoug, On the origin of radial magnetic fields in the heliosphere. J. Geophys. Res. 107(A10), 1327 (2002). doi: 10.1029/2002JA009434 Google Scholar
  52. J.T. Gosling, A.J. Hundhausen, S.J. Bame, Solar wind stream evolution at large heliocentric distances: Experimental demonstration and the test of a model. J. Geophys. Res. 81, 2111–2122 (1976) ADSGoogle Scholar
  53. J.T. Gosling, J.R. Asbridge, S.J. Bame, W.C. Feldman, Solar wind stream interfaces. J. Geophys. Res. 83, 1401–1412 (1978) ADSGoogle Scholar
  54. H.-Q. He, G. Qin, A simple analytical method to determine solar energetic particles’ mean free path. Astrophys. J. 730(1), 46 (2011). doi: 10.1088/0004-637X/730/1/46 ADSGoogle Scholar
  55. J.T. Hoeksema, Extending the Sun’s magnetic field through the three-dimensional heliosphere. Adv. Space Res. 9, 141–152 (1989) ADSGoogle Scholar
  56. H.S. Hudson, J.-L. Bougeret, J. Burkepile, Coronal mass ejections: Overview of observations. Space Sci. Rev. 123, 13–30 (2006) ADSGoogle Scholar
  57. A.J. Hundhausen, Evolution of large-scale solar wind structures beyond 1 AU. J. Geophys. Res. 78, 2035–2042 (1973) ADSGoogle Scholar
  58. A.J. Hundhausen, Sizes and locations of coronal mass ejections: SMM observations from 1980 and 1984–1989. J. Geophys. Res. 98, 13177–13200 (1993) ADSGoogle Scholar
  59. D.S. Intriligator, J.R. Jokipii, T.S. Horbury, J.M. Intriligator, R.J. Forsyth, H. Kunow, G. Wibberenz, J.T. Gosling, Processes associated with particle transport in corotating interaction regions and near stream interfaces. J. Geophys. Res. 106, 10625–10634 (2001) ADSGoogle Scholar
  60. L. Jian, C.T. Russell, J.G. Luhmann, R.M. Skoug, Properties of stream interaction regions at one AU during 1995–2004. Sol. Phys. 239, 337–392 (2006) ADSGoogle Scholar
  61. L.K. Jian, C.T. Russell, J.G. Luhmann, A.B. Galvin, P.J. MacNeice, Multi-spacecraft observations: Stream interactions and associated structures. Sol. Phys. 259, 345–360 (2009) ADSGoogle Scholar
  62. J.R. Jokipii, Cosmic-ray propagation. I. Charged particles in a random magnetic field. Astrophys. J. 146, 480–487 (1966) ADSGoogle Scholar
  63. J.R. Jokipii, J. Kóta, The polar heliospheric magnetic field. Geophys. Res. Lett. 16, 1–4 (1989) ADSGoogle Scholar
  64. G.H. Jones, A. Balogh, R.J. Forsyth, Radial heliospheric magnetic fields detected by Ulysses. Geophys. Res. Lett. 25, 3109–3112 (1998) ADSGoogle Scholar
  65. G.H. Jones, A. Balogh, E.J. Smith, Solar magnetic field reversal as seen at Ulysses. Geophys. Res. Lett. 30(19), 8028 (2003). doi: 10.1029/2003GL017204 ADSGoogle Scholar
  66. S.W. Kahler, S. Krucker, A. Szabo, Solar energetic electron probes of magnetic cloud field line lengths. J. Geophys. Res. 116, A01104 (2011). doi: 10.1029/2010JA015328 ADSGoogle Scholar
  67. L.W. Klein, L.F. Burlaga, Interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 87, 613–624 (1982) ADSGoogle Scholar
  68. H. Kunow, N.U. Crooker, J.A. Linker, R. Schwenn, R. Von Steiger (eds.), Coronal Mass Ejections. Space Science Series of ISSI, vol.  21. Reprinted from Space Science Reviews Journal, vol. 123/1–4 (2006) Google Scholar
  69. R.P. Lepping, J.A. Jones, L.F. Burlaga, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 95, 11957–11965 (1990) ADSGoogle Scholar
  70. R.P. Lepping, D.B. Berdichevsky, L.F. Burlaga, A.J. Lazarus, J. Kasper, M.D. Desch, C.-C. Wu, D.V. Reames, H.J. Singer, C.W. Smith, K.L. Ackerson, The Bastille day magnetic clouds and upstream shocks: near-Earth interplanetary observations. Sol. Phys. 204, 287–305 (2001) ADSGoogle Scholar
  71. R.P. Lepping, C.-C. Wu, D.B. Berdichevsky, A. Szabo, Magnetic clouds at/near the 2007–2009 solar minimum: Frequency of occurrence and some unusual properties. Sol. Phys. (2011). doi: 10.1007/s11207-010-9646-9
  72. S.T. Lepri, T.H. Zurbuchen, L.A. Fisk, I.G. Richardson, H.V. Cane, G. Gloeckler, Iron charge distribution as an identifier of interplanetary coronal mass ejections. J. Geophys. Res. 106, 29231–29238 (2001) ADSGoogle Scholar
  73. F.B. McDonald, A. Barnes, L.F. Burlaga, P. Gazis, J. Mihalov, R.S. Selesnick, Effects of the intense solar activity of March/June 1991 observed in the outer heliosphere. J. Geophys. Res. 99, 14705–14715 (1994) ADSGoogle Scholar
  74. F.B. McDonald, L.F. Burlaga, A.C. Cummings, B.C. Heikkila, N. Lal, N.F. Ness, E.C. Stone, J.D. Richardson, W.R. Webber, The July 14th, 2000 “Bastille Day” solar event as observed by Voyagers 1 and 2 in the distant heliosphere, in Proc. 27th Internat. Cosmic Ray Conf. Copernicus Gesellschaft (2001), pp. 3637–3640 Google Scholar
  75. J. Minnie, W.H. Matthaeus, J.W. Bieber, D. Ruffolo, R.A. Burger, When do particles follow field lines? J. Geophys. Res., 114, A01102 (2009). doi: 10.1029/2008JA013349 ADSGoogle Scholar
  76. M.B. Moldwin, J.L. Phillips, J.T. Gosling, E.E. Scime, D.J. McComas, S.J. Bame, A. Balogh, R.J. Forsyth, Ulysses observations of a noncoronal mass ejection flux rope: Evidence of interplanetary magnetic reconnection. J. Geophys. Res. 100, 19903–19910 (1995). doi: 10.1029/95JA01123 ADSGoogle Scholar
  77. C. Möstl, C.J. Farrugia, H.K. Biernat, M. Leitner, E.K.J. Kilpua, A.B. Galvin, J.G. Luhmann, Optimized Grad–Shafranov reconstruction of a magnetic cloud using STEREO-Wind observations. Sol. Phys. 256, 427–441 (2009) ADSGoogle Scholar
  78. D. Odstrcil, P. Riley, J.A. Linker, R. Lionello, Z. Mikic, V.J. Pizzo, 3-D simulations of ICMEs by coupled coronal and heliospheric models, in Solar Variability as an Input to the Earth’s Environment. ESA SP, vol. 535 (European Space Agency, Noordwijk, 2003), pp. 541–546 Google Scholar
  79. I.D. Palmer, Transport coefficients of low-energy cosmic rays in interplanetary space. Rev. Geophys. Space Phys. 20, 335–351 (1982) ADSGoogle Scholar
  80. E.N. Parker, Extension of the solar corona into interplanetary space. J. Geophys. Res. 64, 1675–1681 (1959) ADSGoogle Scholar
  81. K.I. Paularena, C. Wang, R. von Steiger, B. Heber, An ICME observed by Voyager 2 at 58 AU and by Ulysses at 5 AU. Geophys. Res. Lett. 28, 2755–2758 (2001) ADSGoogle Scholar
  82. A. Petrosyan, A. Balogh, M.L. Goldstein, J. Léorat, E. Marsch, K. Petrovay, B. Roberts, R. von Steiger, J.-C. Vial, Turbulence in the solar atmosphere and solar wind. Space Sci. Rev. 156, 135–238 (2010) ADSGoogle Scholar
  83. V.J. Pizzo, Global, quasi-steady dynamics of the distant solar wind 2. Deformation of the heliospheric current sheet. J. Geophys. Res. 99, 4185–4191 (1994) ADSGoogle Scholar
  84. A. Rees, R.J. Forsyth, Two examples of magnetic clouds with double rotations observed by the Ulysses spacecraft. Geophys. Res. Lett. 31, L06804 (2004). doi: 10.1029/2003GL018330 ADSGoogle Scholar
  85. J.D. Richardson, Y. Liu, C. Wang, D.J. McComas, E.C. Stone, A.C. Cummings, L.F. Burlaga, M.H. Acuna, N.F. Ness, Source and consequences of a large shock near 79 AU. Geophys. Res. Lett. 33, L23107 (2006a). doi: 10.1029/2006GL027983 ADSGoogle Scholar
  86. J.D. Richardson, Y. Liu, C. Wang, L.F. Burlaga, ICMEs at very large distances. Adv. Space Res. 38, 528–534 (2006b) ADSGoogle Scholar
  87. I.G. Richardson, H.V. Cane, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): Catalog and summary of properties. Sol. Phys. 264, 189–237 (2010) ADSGoogle Scholar
  88. P. Riley, N.U. Crooker, Kinematic treatment of coronal mass ejection evolution in the solar wind. Astrophys. J. 600, 1035–1042 (2004) ADSGoogle Scholar
  89. P. Riley, J.A. Linker, Z. Mikic, Modeling the heliospheric current sheet: Solar cycle variations. J. Geophys. Res. 107 A7, 1136 (2002). doi: 10.1029/2001JA000299 ADSGoogle Scholar
  90. P. Riley, J.A. Linker, R. Lionello, Z. Mikić, D. Odstrcil, M.A. Hidalgo, C. Cid, Q. Hu, R.P. Lepping, B.J. Lynch, A. Rees, Fitting flux ropes to a global MHD solution: A comparison of techniques. J. Atmos. Sol.-Terr. Phys. 66, 1321–1331 (2004) ADSGoogle Scholar
  91. P. Riley, J.A. Linker, Z. Mikic, D. Odstrcil, Modeling interplanetary coronal mass ejections. Adv. Space Res. 38, 535–546 (2006a) ADSGoogle Scholar
  92. P. Riley, C. Schatzman, H.V. Cane, I.G. Richardson, N. Gopalswamy, On the rates of coronal mass ejections: Remote solar and in situ observations. Astrophys. J. 647, 648–653 (2006b) ADSGoogle Scholar
  93. E. Robbrecht, D. Berghmans, R.A.M. Van der Linden, Automated LASCO CME catalog for solar cycle 23: Are CMEs scale invariant? Astrophys. J. 691, 1222–1234 (2009) ADSGoogle Scholar
  94. M. Schulz, Interplanetary sector structure and the heliomagnetic equator. Astrophys. Space Sci. 24, 371–383 (1973) ADSGoogle Scholar
  95. R. Schwenn, Heliospheric 3D structure and CME propagation as seen from SOHO: Recent lessons for space weather predictions. Adv. Space Res. 26, 43–53 (2000) ADSGoogle Scholar
  96. J.A. Simpson, M. Zhang, S. Bame, A solar polar north-south asymmetry for cosmic-ray propagation in the heliosphere: The Ulysses pole-to-pole rapid transit. Astrophys. J. 465, L69–L72 (1996) ADSGoogle Scholar
  97. E.J. Smith, Interplanetary magnetic field over two solar cycles and out to 20 AU. Adv. Space Res. 9, 159–169 (1989) ADSGoogle Scholar
  98. E.J. Smith, The heliospheric current sheet. J. Geophys. Res. 106, 15819–15831 (2001) ADSGoogle Scholar
  99. E.J. Smith, The global heliospheric magnetic field, in The Heliosphere Through the Solar Activity Cycle, ed. by A. Balogh, L.J. Lanzerotti, S.T. Suess (Springer, Chichester, 2007), pp. 79–150 Google Scholar
  100. E.J. Smith, J.H. Wolfe, Observations of interaction regions and corotating shocks between one and five AU: Pioneers 10 and 11. Geophys. Res. Lett. 3, 137–140 (1976) ADSGoogle Scholar
  101. E.J. Smith, A. Balogh, Ulysses observations of the radial magnetic field. Geophys. Res. Lett. 22, 3317–3320 (1995) ADSGoogle Scholar
  102. E.J. Smith, M. Neugebauer, A. Balogh, S.J. Bame, G. Erdõs, R.J. Forsyth, B.E. Goldstein, J.L. Phillips, B.T. Tsurutani, Disappearance of the heliospheric sector structure at Ulysses. Geophys. Res. Lett. 20, 2327–2330 (1993) ADSGoogle Scholar
  103. B.U.Ö. Sonnerup, H. Hasegawa, W.-L. Teh, L.-N. Hau, Grad–Shafranov reconstruction: An overview. J. Geophys. Res. 111, A09204 (2006). doi: 10.1029/2006JA011717 ADSGoogle Scholar
  104. B.T. Thomas, E.J. Smith, The Parker spiral configuration of the interplanetary magnetic field between 1 and 8.5 AU. J. Geophys. Res. 85, 6861–6867 (1980) ADSGoogle Scholar
  105. B.T. Thomas, E.J. Smith, The structure and dynamics of the heliospheric current sheet. J. Geophys. Res. 86, 11105–11110 (1981) ADSGoogle Scholar
  106. M. Vandas, E.P. Romashets, S. Watari, A. Geranios, E. Antoniadou, O. Zacharopoulou, Comparison of force-free flux rope models with observations of magnetic clouds. Adv. Space Res. 38, 441–446 (2006) ADSGoogle Scholar
  107. R. von Steiger, T.H. Zurbuchen, Composition signatures of interplanetary coronal mass ejections, in Solar Variability as an Input to the Earth’s Environment. ESA SP, vol. 535 (European Space Agency, Noordwijk, 2003), pp. 835–840 Google Scholar
  108. R. von Steiger, J.D. Richardson, ICMEs in the outer heliosphere and at high latitudes: an introduction. Space Sci. Rev. 123, 111–126 (2006) ADSGoogle Scholar
  109. A. Vourlidas, R.A. Howard, E. Esfandiari, S. Patsourakos, S. Yashiro, G. Michalek, Comprehensive analysis of coronal mass ejections mass and energy properties over a full solar cycle. Astrophys. J. 722, 1522–1538 (2010) ADSGoogle Scholar
  110. C. Wang, J.D. Richardson, Interplanetary coronal mass ejections observed by Voyager 2 between 1 and 30 AU. J. Geophys. Res. 109, A06104 (2004). doi: 10.1029/2004JA010379 ADSGoogle Scholar
  111. C. Wang, J.D. Richardson, Dynamic processes in the outer heliosphere: Voyager observations and models. Adv. Space Phys. 35, 2102–2105 (2005) ADSGoogle Scholar
  112. C. Wang, J.D. Richardson, L.F. Burlaga, Propagation of the Bastille Day 2000 CME shock in the outer heliosphere. Sol. Phys. 204, 411–421 (2001) ADSGoogle Scholar
  113. C. Wang, J.D. Richardson, L.F. Burlaga, N.F. Ness, On radial heliospheric magnetic fields: Voyager 2 observation and model. J. Geophys. Res. 108(A5), 1205 (2003). doi: 10.1029/2002JA009809 Google Scholar
  114. C. Wang, D. Du, J.D. Richardson, Characteristics of the interplanetary coronal mass ejections in the heliosphere between 0.3 and 5.4 AU. J. Geophys. Res. 110, A10107 (2005). doi: 10.1029/2005JA011198 ADSGoogle Scholar
  115. Y.-M. Wang, Coronal holes and open magnetic flux. Space Sci. Rev. 144, 383–399 (2009) ADSGoogle Scholar
  116. Y.-M. Wang, N.R. Sheeley Jr., On potential field models of the solar corona. Astrophys. J. 392, 310–319 (1992) ADSGoogle Scholar
  117. Y.-M. Wang, N.R. Sheeley, Solar implications of Ulysses interplanetary field measurements. Astrophys. J. 447, L143–L146 (1995) ADSGoogle Scholar
  118. Y.-M. Wang, N.R. Sheeley, On the topological evolution of the coronal magnetic field during the solar cycle. Astrophys. J. 599, 1404–1417 (2003) ADSGoogle Scholar
  119. Y.-M. Wang, N.R. Sheeley Jr., Sources of the solar wind at Ulysses during 1990–2006. Astrophys. J. 653, 708–718 (2006) ADSGoogle Scholar
  120. Y.-M. Wang, N.R. Sheeley Jr., M.D. Andrews, Polarity reversal of the solar magnetic field during cycle 23. J. Geophys. Res. 107(A12), 1465 (2002a). doi: 10.1029/2002JA009463 Google Scholar
  121. Y.M. Wang, S. Wang, P.Z. Ye, Multiple magnetic clouds in interplanetary space. Sol. Phys. 211, 333–344 (2002b) ADSGoogle Scholar
  122. Y.-M. Wang, E. Robbrecht, N.R. Sheeley, On the weakening of the polar magnetic fields during solar cycle 23. Astrophys. J. 707, 1372–1386 (2009) ADSGoogle Scholar
  123. W. Wanner, M.-B. Kallenrode, W. Dröge, G. Wibberenz, Solar energetic proton mean free paths. Adv. Space Res. 13, 359–362 (1993) ADSGoogle Scholar
  124. Y.C. Whang, Shock interactions in the outer heliosphere. Space Sci. Rev. 57, 339–388 (1991) ADSGoogle Scholar
  125. Y.C. Whang, L.F. Burlaga, Evolution and interaction of interplanetary shocks. J. Geophys. Res. 90, 10765–10778 (1985) ADSGoogle Scholar
  126. Y.C. Whang, L.F. Burlaga, Evolution of recurrent solar wind structures between 14 AU and the termination shock. J. Geophys. Res. 93, 5446–5460 (1988) ADSGoogle Scholar
  127. Y.C. Whang, L.F. Burlaga, N.F. Ness, C.W. Smith, The Bastille day shocks and merged interaction region. Sol. Phys. 204, 255–265 (2001) ADSGoogle Scholar
  128. J.M. Wilcox, N.F. Ness, Quasi-stationary corotating structure in the interplanetary medium. J. Geophys. Res. 70, 5793–5805 (1965) ADSGoogle Scholar
  129. R.F. Wimmer-Schweingruber, N.U. Crooker, A. Balogh, V. Bothmer, R.J. Forsyth et al., Understanding interplanetary coronal mass ejection signatures. Space Sci. Rev. 123, 177–216 (2006) ADSGoogle Scholar
  130. C.C. Wu, R.P. Lepping, Statistical comparison of magnetic clouds with interplanetary coronal mass ejections for solar cycle 23. Sol. Phys. 269, 141–153 (2011) ADSGoogle Scholar
  131. X. Zhou, E.J. Smith, Solar cycle variations of heliospheric magnetic flux. J. Geophys. Res. 114, A03106 (2009). doi: 10.1029/2008JA013421 ADSGoogle Scholar
  132. B. Zieger, K.C. Hansen, Statistical validation of a solar wind propagation model from 1 to 10 AU. J. Geophys. Res. 113, A08107 (2008). doi: 10.1029/2008JA013046 ADSGoogle Scholar
  133. T. Zurbuchen, A new view of the coupling of the Sun and the heliosphere. Annu. Rev. Astron. Astrophys. 45, 297–338 (2007) ADSGoogle Scholar
  134. T.H. Zurbuchen, I.G. Richardson, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123, 31–43 (2006) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.The Blackett LaboratoryImperial College LondonLondonUK
  2. 2.Research Institute for Particle and Nuclear Physics (KFKI RMKI)BudapestHungary

Personalised recommendations