Space Science Reviews

, Volume 168, Issue 1–4, pp 261–282

Observations of Stratosphere-Troposphere Coupling During Major Solar Eclipses from FORMOSAT-3/COSMIC Constellation

  • Kuo-Ying Wang
  • Chao-Han Liu
  • Lou-Chuang Lee
  • Peter Braesicke
Open Access
Article

Abstract

Sudden tropospheric cooling and induced stratospheric warming were found during the 22 July 2009 total solar eclipse. Can the 22 July 2009 hallmark also be seen in other major solar eclipses? Here we hypothesize that the tropospheric cooling and the stratospheric warming can be predicted to occur during a major solar eclipse event. In this work we use the FORMOSAT-3/COSMIC (F3C) Global Positioning System (GPS) radio occultation (RO) data to construct eclipse-time temperature profiles before, during, and after the passages of major solar eclipses for the years 2006–2010. We use four times a day of meteorological analysis from the European Centre for Medium Range Weather Forecast (ECMWF) global meteorological analysis to construct non-eclipse effect temperature profiles for the same eclipse passages. The eclipse effects were calculated based on the difference between F3C and ECMWF profiles. A total of five eclipse cases and thirteen non-eclipse cases were analyzed and compared. We found that eclipses cause direct thermal cooling in the troposphere and indirect dynamic warming in the stratosphere. These results are statistically significant. Our results show −0.6 to −1.2°C cooling in the troposphere and 0.4 to 1.3°C warming in the middle to lower stratosphere during the eclipses. This characteristic stratosphere-troposphere coupling in temperature profiles represent a distinctive atmospheric responses to the solar eclipses.

Keywords

Solar eclipse Stratosphere-troposphere coupling FORMOSAT-3/COSMIC ECMWF 

References

  1. R.C. Anderson, D.R. Keefer, O.E. Myers, Atmospheric pressure and temperature changes during the 7 March 1970 solar eclipse. J. Atmos. Sci. 29, 583–587 (1972) ADSCrossRefGoogle Scholar
  2. R. Anthes et al., The COSMIC/FORMOSAT-3 mission: early results. Bull. Am. Meteorol. Soc. 89, 313–333 (2008) ADSCrossRefGoogle Scholar
  3. H.N. Ballard, R. Valenzuela, M. Izquierdo, J.S. Randhawa, R. Morla, J.F. Bettle, Solar eclipse: temperature, wind, and ozone in the stratosphere. J. Geophys. Res. 74, 711–712 (1969) ADSCrossRefGoogle Scholar
  4. R. Buizza, P.L. Houtekamer, G. Pellerin, Z. Toth, Y. Zhu, M. Wei, A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Weather Rev. 133, 1076–1097 (2005) ADSCrossRefGoogle Scholar
  5. G. Chimonas, Internal gravity-wave motions induced in the Earth’s atmosphere by a solar eclipse. J. Geophys. Res. 75, 5545–5551 (1970) ADSCrossRefGoogle Scholar
  6. G. Chimonas, C.O. Hines, Atmospheric gravity waves induced by a solar eclipse 2. J. Geophys. Res. 76, 7003–7005 (1971) ADSCrossRefGoogle Scholar
  7. F. Espenak, J. Anderson, Total solar eclipse of 2009 July 22. NASA/TP-2008-214169 (2008) Google Scholar
  8. F. Espenak, J. Meeus, Five Milliennium canon of solar eclipses: −1999 to +3000 (2000 BCE to 3000 CE). NASA/TP-2006-214141 (2006) Google Scholar
  9. D. Founda et al., The effect of the total solar eclipse of 29 March 2006 on meteorological variables in Greece. Atmos. Chem. Phys. 7, 5543–5553 (2007) ADSCrossRefGoogle Scholar
  10. E. Gerasopoulos et al., The total solar eclipse of March 2006: overview. Atmos. Chem. Phys. 7, 5205–5220 (2007) CrossRefGoogle Scholar
  11. G.A. Hajj et al., CHAMP and SAC-C atmospheric occultation results and intercomparisons. J. Geophys. Res. 109, D06109 (2004). doi:10.1029/2003JD003909 ADSCrossRefGoogle Scholar
  12. J.R. Holton, P.H. Haynes, M.E. McIntyre, A.R. Douglass, R.B. Rood, L. Pfister, Stratosphere–troposphere exchange. Rev. Geophys. Space Phys. 33, 403–439 (1995) CrossRefGoogle Scholar
  13. T. Kameda, K. Fujita, O. Sugita, N. Hirasawa, S. Takahashi, Total solar eclipse over Antarctica on 23 November 2003 and its effects on the atmosphere and snow near the ice sheet surface at Dome Fuji. J. Geophys. Res. 114, D18115 (2009). doi:10.1029/2009JD011886 ADSCrossRefGoogle Scholar
  14. Y.-H. Kuo, W.S. Schreiner, J. Wang, D.L. Rossiter, Y. Zhang, Comparison of GPS radio occultation soundings with radiosondes. Geophys. Res. Lett. 32, L05817 (2005). doi:10.1029/2004GL021443 CrossRefGoogle Scholar
  15. E.R. Kursinski, G.A. Hajj, J.T. Schofield, R.P. Linfield, K.R. Hardy, Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res. 102(D19), 23429–23465 (1997) ADSCrossRefGoogle Scholar
  16. H. Le, L. Liu, X. Yue, W. Wan, B. Ning, Latitudinal dependence of the ionospheric response to solar eclipses. J. Geophys. Res. 114, A07308 (2009). doi:10.1029/2009JA014072 CrossRefGoogle Scholar
  17. C. Lindsey et al., Extreme-infrared brightness profile of the solar chromospheres obtained during the total eclipse of 1991. Nature 358, 308–310 (1992) ADSCrossRefGoogle Scholar
  18. D.S. More, Statistics: Concepts and Controversies, 5th edn. (Freeman, New York, 2001), p. 557 Google Scholar
  19. J.M. Pasachoff, Solar eclipses as an astrophysical laboratory. Nature 459, 789–795 (2009) ADSCrossRefGoogle Scholar
  20. T. Schmidt, J. Wickert, A. Haser, Variability of the upper troposphere and lower stratosphere observed with GPS radio occultation bending angles and temperatures. Adv. Space Res. 46, 150–161 (2010) ADSCrossRefGoogle Scholar
  21. E.J. Seykora, A. Bhatnagar, R.M. Jain, J.L. Streete, Evidence of atmospheric gravity waves produced during the 11 June 1983 total solar eclipse. Nature 313, 124–125 (1985) ADSCrossRefGoogle Scholar
  22. M.G. Shepherd, T. Tsuda, Large-scale planetary disturbances in stratospheric temperature at high-latitudes in the southern summer hemisphere. Atmos. Chem. Phys. 8, 7557–7570 (2008) ADSCrossRefGoogle Scholar
  23. R.A. Treumann, Z. Klos, M. Parrot, Physics of electric discharges in atmospheric gases: An informal introduction. Space Sci. Rev. 137, 133–148 (2008) ADSCrossRefGoogle Scholar
  24. K.-Y. Wang, Profiles of the atmospheric temperature response to the Saharan dust outbreaks derived from FORMOSAT-3/COSMIC and OMI AI. Atmos. Res. 96, 110–121 (2010) CrossRefGoogle Scholar
  25. K.-Y. Wang, S.-C. Lin, First continuous GPS soundings of temperature structure over Antarctic winter from FORMOSAT-3/COSMIC constellation. Geophys. Res. Lett. 34, L12805 (2007). doi:10.1029/2007GL030159 ADSCrossRefGoogle Scholar
  26. K.-Y. Wang, C.-H. Liu, Profiles of temperature responses to the 22 July 2009 total solar eclipse from FORMOSAT-3/COSMIC constellation. Geophys. Res. Lett. 37, L01804 (2010). doi:10.1029/2009GL040968 CrossRefGoogle Scholar
  27. K.-Y. Wang, S.-C. Lin, L.-C. Lee, Immediate impact of the Mt. Chaiten eruption on atmosphere from FORMOSAT-3/COSMIC constellation. Geophys. Res. Lett. 36, L03808 (2009). doi:10.1029/2008GL036802 CrossRefGoogle Scholar
  28. J. Wickert et al., Atmospheric sounding by GPS radio occultation: First results from CHAMP. Geophys. Res. Lett. 28(17), 3263–3266 (2001) ADSCrossRefGoogle Scholar
  29. C.S. Zerefos et al., Evidence of gravity waves into the atmosphere during the March 2006 total solar eclipse. Atmos. Chem. Phys. 7, 4943–4951 (2007) ADSCrossRefGoogle Scholar
  30. J.B. Zirker, Total eclipse of the sun. Science 210, 1313–1319 (1980) ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Kuo-Ying Wang
    • 1
  • Chao-Han Liu
    • 2
  • Lou-Chuang Lee
    • 2
  • Peter Braesicke
    • 3
  1. 1.Department of Atmospheric SciencesNational Central UniversityChung-LiTaiwan
  2. 2.Institute of Space ScienceNational Central UniversityChung-LiTaiwan
  3. 3.Centre for Atmospheric Science, Department of ChemistryCambridge UniversityCambridgeUK

Personalised recommendations