Space Science Reviews

, Volume 162, Issue 1–4, pp 85–111 | Cite as

Recent Results from Titan’s Ionosphere

  • A. J. Coates
  • J.-E. Wahlund
  • K. Ågren
  • N. Edberg
  • J. Cui
  • A. Wellbrock
  • K. Szego


Titan has the most significant atmosphere of any moon in the solar system, with a pressure at the surface larger than the Earth’s. It also has a significant ionosphere, which is usually immersed in Saturn’s magnetosphere. Occasionally it exits into Saturn’s magnetosheath. In this paper we review several recent advances in our understanding of Titan’s ionosphere, and present some comparisons with the other unmagnetized objects Mars and Venus. We present aspects of the ionospheric structure, chemistry, electrodynamic coupling and transport processes. We also review observations of ionospheric photoelectrons at Titan, Mars and Venus. Where appropriate, we mention the effects on ionospheric escape.


Ionosphere Titan Mars Venus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. K. Ågren, J.-E. Wahlund, R. Modolo, D. Lummerzheim, M. Galand, I. Müller-Wodarg, P. Canu, W.S. Kurth, T.E. Cravens, R.V. Yelle, J.H. Waite Jr., A.J. Coates, G.R. Lewis, D.T. Young, C. Bertucci, M.K. Douherty, On magnetospheric impact ionization and dynamics in Titan’s ram-side and polar ionosphere – a Cassini case study. Ann. Geophys. 25, 2359 (2007) ADSGoogle Scholar
  2. K. Ågren, J.-E. Wahlund, P. Garnier, R. Modolo, J. Cui, M. Galand, I. Müller-Wodarg, The ionospheric structure of Titan. Planet. Space Sci. 57, 1821 (2009) ADSGoogle Scholar
  3. K. Ågren, D.J. Andrews, S.C. Buchert, A.J. Coates, S.W.H. Cowley, M.K. Dougherty, N.J.T. Edberg, P. Garnier, G.R. Lewis, R. Modolo, H. Opgenoorth, G. Provan, L. Rosenqvist, D.L. Talboys, J.-E. Wahlund, A. Wellbrock, Detection of currents and associated electric fields in Titan’s ionosphere from Cassini data, J. Geophys. Res. 116 (2011). CiteID A04313 Google Scholar
  4. D.J. Andrews, S.W.H. Cowley, M.K. Dougherty, G. Provan, Magnetic field oscillations near the planetary period in Saturn’s magnetosphere: Variation of amplitude and phase with radial distance and local time. J. Geophys. Res. 115(A14), A04212 (2010) Google Scholar
  5. H. Backes et al., Titan’s magnetic field signature during the first Cassini encounter. Science 308, 992 (2005) ADSGoogle Scholar
  6. P.M. Banks, G. Kockarts, Aeronomy, Parts A and B (Academic Press, San Diego, 1973) Google Scholar
  7. A.R. Barakat, R.W. Schunk, A three-dimensional model of the generalized polar wind. J. Geophys. Res. 111, A12314 (2006) ADSGoogle Scholar
  8. C. Bertucci et al., Structure of Titan’s mid-range magnetic tail: Cassini magnetometer observations during the T9 flyby. Geophys. Res. Lett. 34, L24S02 (2007) Google Scholar
  9. C. Bertucci et al., The magnetic memory of Titan’s ionized atmosphere. Science 321 (2008) Google Scholar
  10. C. Bertucci et al., The variability of Titan’s magnetic environment. Planet. Space Sci. 57, 1813 (2009) ADSGoogle Scholar
  11. M.K. Bird, R. Dutta-Roy, S.W. Asmar, T.A. Rebold, Detection of Titan’s ionosphere from Voyager 1 radio occultation observations. Icarus 130, 426–436 (1997) ADSGoogle Scholar
  12. M. Blanc, S. Bolton, J. Bradley, M. Burton, T.E. Cravens, I. Dandouras, M.K. Dougherty, M. Festou, J. Feynman, R.E. Johnson, T. Gombosi, W.S. Kurth, P.C. Liewer, B.H. Mauk, S. Maurice, D. Mitchell, F.M. Neubauer, J.D. Richardson, D.E. Shemansky, E.C. Sittler, B.T. Tsurutani, Ph. Zarka, L.W. Esposito, E. Grün, D.A. Gurnett, A. Kliore, S.M. Krimigis, D. Southwood, J.H. Waite, D.T. Young, Magnetospheric and plasma science with Cassini-Huygens. Space Sci. Rev. 104, 253–346 (2002) ADSGoogle Scholar
  13. R. Boström, A model of the auroral electrojets. J. Geophys. Res. 69, 4983 (1964) zbMATHADSGoogle Scholar
  14. J.F. Brannon, J.L. Fox, H.S. Porter, Evidence for day-to-night ion transport at low solar activity in the Venus pre-dawn ionosphere. Geophys. Res. Lett. 20, 2739–2742 (1993) ADSGoogle Scholar
  15. C.R. Chappell, T.E. Moore, J.H. Waite, The ionosphere as a fully adequate source of plasma for the Earth’s magnetosphere. J. Geophys. Res. 92, 5896 (1987) ADSGoogle Scholar
  16. C.C. Chaston, A.J. Hull, J.W. Bonnell, C.W. Carlson, R.E. Ergun, R.J. Strangeway, J.P. McFadden, Large parallel electric fields, currents, and density cavities in dispersive Alfven waves above the aurora. J. Geophys. Res. 112, A05215 (2007) Google Scholar
  17. A.J. Coates, A.D. Johnstone, J.F.E. Johnson, J.J. Sojka, G.L. Wrenn, Ionospheric photoelectrons observed in the magnetosphere at distances of up to 7 Earth radii. Planet. Space Sci. 33, 1267–1275 (1985) ADSGoogle Scholar
  18. A.J. Coates, F.J. Crary, G.R. Lewis, D.T. Young, J.H. Waite Jr., E.C. Sittler Jr., Discovery of heavy negative ions in Titan’s ionosphere. Geophys. Res. Lett. 34, L22103 (2007a) ADSGoogle Scholar
  19. A.J. Coates, F.J. Crary, D.T. Young, K. Szego, C.S. Arridge, Z. Bebesi, E.C. Sittler Jr., R.E. Hartle, T.W. Hill, Ionospheric electrons in Titan’s tail: plasma structure during the Cassini T9 encounter. Geophys. Res. Lett. 34, L24S05 (2007b) Google Scholar
  20. A.J. Coates et al., Ionospheric photoelectrons at Venus: initial observations by ASPERA-4 ELS. Planet. Space Sci. 56, 802–806 (2008) ADSMathSciNetGoogle Scholar
  21. A.J. Coates, Interaction of Titan’s ionosphere with Saturn’s magnetosphere. Philos. Trans. R. Soc. A 367, 773–788 (2009) ADSGoogle Scholar
  22. A.J. Coates, A. Wellbrock, G.R. Lewis, G.H. Jones, D.T. Young, F.J. Crary, J.H. Waite Jr., Heavy negative ions in Titan’s ionosphere: altitude and latitude dependence. Planet. Space Sci. 57, 1866–1871 (2009) ADSGoogle Scholar
  23. A.J. Coates, A. Wellbrock, G.R. Lewis, G.H. Jones, D.T. Young, F.J. Crary, J.H. Waite, R.E. Johnson, T.W. Hill, E.C. Sittler Jr., Negative ions at Titan and Enceladus: recent results. Faraday Discuss. 147(1), 293–305 (2010) ADSGoogle Scholar
  24. A.J. Coates, S.M.E. Tsang, A. Wellbrock, R.A. Frahm, J.D. Winningham, S. Barabash, R. Lundin, D.T. Young, F.J. Crary, Ionospheric photoelectrons: comparing Venus, Earth, Mars and Titan. Planet. Space Sci. 59, 1019–1027 (2011) ADSGoogle Scholar
  25. F.J. Crary, B.A. Magee, K. Mandt, J.H. Waite Jr., J. Westlake, Heavy ions, temperatures and winds in Titan’s ionosphere: combined Cassini CAPS and INMS observations. Planet. Space Sci. 57, 1847–1856 (2009) ADSGoogle Scholar
  26. T.E. Cravens, T.I. Gombosi, J. Kozyra, A.F. Nagy, L.H. Brace, W.C. Knudsen, Model calculations of the dayside ionosphere of Venus: Energetics. J. Geophys. Res. 85, 7778–7786 (1980) ADSGoogle Scholar
  27. T.E. Cravens, S.L. Crawford, A.F. Nagy, T.I. Gombosi, A two-dimensional model of the ionosphere of Venus. J. Geophys. Res. 88, 5595–5606 (1983) ADSGoogle Scholar
  28. T.E. Cravens, I.P. Robertson, J. Clark, J.-E. Wahlund, J.H. Waite Jr., S.A. Ledvina, H.B. Niemann, R.V. Yelle, W.T. Kasprzak, J.G. Luhmann, R.L. McNutt, W.-H. Ip, V. De La Haye, I.C.F. Müller-Wodarg, D.T. Young, A.J. Coates, Titan’s ionosphere: Model comparisons with Cassini Ta data. Geophys. Res. Lett. 32, L12108 (2005) ADSGoogle Scholar
  29. T.E. Cravens, I.P. Robertson, J.H. Waite Jr., R.V. Yelle, W.T. Kasprzak, C.N. Keller, S.A. Ledvina, H.B. Niemann, J.G. Luhmann, R.L. McNutt, W.-H. Ip, V. De La Haye, I. Mueller-Wodarg, J.-E. Wahlund, V.G. Anicich, V. Vuitton, Composition of Titan’s ionosphere. Geophys. Res. Lett. 33, L07105 (2006) Google Scholar
  30. T.E. Cravens, I.P. Robertson, J.H. Waite Jr., R.V. Yelle, V. Vuitton, A.J. Coates, J.-E. Wahlund, K. Ågren, M.S. Richard, V. De La Haye, A. Wellbrock, F.M. Neubauer, Model-data comparisons for Titans nightside ionosphere. Icarus 199, 174–188 (2008a) ADSGoogle Scholar
  31. T.E. Cravens et al., Energetic ion precipitation at Titan. Geophys. Res. Lett. 35, L03103 (2008b) Google Scholar
  32. T.E. Cravens, R.V. Yelle, J.-E. Wahlund, D.E. Shemansky, A.F. Nagy, Composition and structure of the ionosphere and thermosphere, in Titan form Cassini-Huygens, ed. by R.H. Brown, J.-P. Lebreton, J.H. Waite (Springer, Berlin, 2009). Chapter 11 Google Scholar
  33. J. Cui, M. Galand, R.V. Yelle, V. Vuitton, J.-E. Wahlund, P.P. Lavvas, I.C.F. Müller-Wodarg, T.E. Cravens, W.T. Kasprzak, J.H. Waite Jr., Diurnal variations of Titan’s ionosphere. J. Geophys. Res. 114, A06310 (2009) Google Scholar
  34. J. Cui, M. Galand, R.V. Yelle, J.-E. Wahlund, K. Ågren, J.H. Waite Jr., M.K. Dougherty, Ion transport in Titan’s upper atmosphere. J. Geophys. Res. 115, A06314 (2010) Google Scholar
  35. H. Derblom, Non-sporadic properties of sporadic E. Internal Report UIO-SR-81-03, Uppsala Ionosphere Obs., Uppsala, Sweden (1981) Google Scholar
  36. N.J.T. Edberg et al., Electron density and temperature measurements in the cold plasma environment of Titan: implications for atmospheric escape. Geophys. Res. Lett. 37, L20105 (2010) ADSGoogle Scholar
  37. N.J.T. Edberg, K. Agren, J.-E. Wahlund, M.W. Morooka, D.J. Andrews, S.W.H. Cowley, A. Wellbrock, A.J. Coates, C. Bertucci, M.K. Dougherty, Structured ionospheric outflow during the Cassini Titan flybys T55-T59. Planet. Space Sci. 59, 788–797 (2011) ADSGoogle Scholar
  38. R.C. Elphic, H.G. Mayr, R.F. Theis, L.H. Brace, K.L. Miller, W.C. Knudsen, Nightward ion flow in the Venus ionosphere—implications of momentum balance. Geophys. Res. Lett. 11, 1007–1010 (1984) ADSGoogle Scholar
  39. E. Engwall, A.I. Eriksson, C.M. Cully, M. André, R. Torbert, H. Vaith, Earth’s ionospheric outflow dominated by hidden cold plasma. Nat. Geosci. 2(1), 24 (2009) ADSGoogle Scholar
  40. J.L. Fox, R.V. Yelle, Hydrocarbon ions in the ionosphere of Titan. Geophys. Res. Lett. 24, 2179–2182 (1997) ADSGoogle Scholar
  41. J.L. Fox, A. Dalgarno, Ionization, luminosity, and heating of the upper atmosphere of Mars. J. Geophys. Res. 84, 7315–7333 (1979) ADSGoogle Scholar
  42. R.A. Frahm, J.D. Winningham, J.R. Sharber, J.R. Scherrer, S.J. Jeffers, A.J. Coates, D.R. Linder, D.O. Kataria, R. Lundin, S. Barabash, M. Holmström, H. Andersson, M. Yamauchi, A. Grigoriev, E. Kallio, H. Koskinen, T. Säles, P. Riihela, W. Schmidt, J.U. Kozyra, J.G. Luhmann, E.C. Roelof, D.J. Williams, S. Livi, C.C. Curtis, K.C. Hsieh, B.R. Sandel, M. Grande, M. Carter, J.-A. Sauvaud, A. Fedorov, J.-J. Thocaven, S. McKenna-Lawler, S. Orsini, R. Cerulli-Irelli, M. Maggi, P. Wurz, P. Bochsler, N. Krupp, J. Woch, M. Fraenz, K. Asamura, C. Dierker, Carbon dioxide photoelectron peaks at Mars. Icarus 182, 371–382 (2006a) ADSGoogle Scholar
  43. R.A. Frahm, J.R. Sharber, J.D. Winningham, P. Wurz, M.W. Liemohn, E. Kallio, M. Yamauchi, R. Lundin, S. Barabash, A.J. Coates, D.R. Linder, J.U. Kozyra, M. Holmström, S.J. Jeffers, H. Andersson, S. McKenna-Lawlor, Locations of atmospheric photoelectron energy peaks within the Mars environment. Space Sci. Rev. 126, 389–402 (2006b) ADSGoogle Scholar
  44. M. Galand, R.V. Yelle, A.J. Coates, H. Backes, J.-E. Wahlund, Electron temperature of Titan’s sunlit ionosphere. Geophys. Res. Lett. 33, L21101 (2006) ADSGoogle Scholar
  45. M. Galand et al., Ionization sources in Titan’s deep ionosphere. J. Geophys. Res. 115, A07312 (2010) Google Scholar
  46. L. Gan, C.N. Keller, T.E. Cravens, Electrons in the ionosphere of Titan. J. Geophys. Res. 97, 12,137–12,151 (1992) ADSGoogle Scholar
  47. L. Gan, T.E. Cravens, M. Horanyi, Electrons in the ionopause boundary layer of Venus. J. Geophys. Res. 95(A11), 19,023–19,035 (1990) ADSGoogle Scholar
  48. S.B. Ganguli, The polar wind. Rev. Geophys. 34, 311–348 (1996) ADSGoogle Scholar
  49. D.A. Gurnett, F.L. Scarf, W.S. Kurth, The structure of Titan’s wake from plasma wave observations. J. Geophys. Res. 87, 1395–1403 (1982) ADSGoogle Scholar
  50. P. Garnier et al., Titan’s ionosphere in the magnetosheath: Cassini RPWS results during the T32 flyby. Ann. Geophys. 27, 5257 (2009) MathSciNetGoogle Scholar
  51. S.A. Haider, Some molecular nitrogen emission from Titan–solar EUV interaction. J. Geophys. Res. 91, 8998–9000 (1986) ADSGoogle Scholar
  52. R.E. Hartle, J.M. Grebowsky, Planetary loss from light ion escape on Venus. Adv. Space Res. 15(4), 117–122 (1995) ADSGoogle Scholar
  53. J.L. Horwitz, W. Zeng, Physics-based formula representations of high-latitude ionospheric outflows: H+ and O+ densities, flow velocities, and temperatures versus soft electron precipitation, wave-driven transverse heating, and solar zenith angle effects. J. Geophys. Res. 114, A01308 (2009) Google Scholar
  54. R.E. Johnson et al., Mass loss processes in Titan’s upper atmosphere, in Titan form Cassini-Huygens, ed. by R.H. Brown, J.-P. Lebreton, J.H. Waite (Springer, Berlin, 2009). Chapter 15 Google Scholar
  55. J.F. Kasting, D. Catling, Evolution of a habitable planet. Annu. Rev. Astron. Astrophys. 41, 429 (2003) ADSGoogle Scholar
  56. C.N. Keller, T.E. Cravens, One-dimensional multispecies hydrodynamic models of the wakeside ionosphere of Titan. J. Geophys. Res. 99, 6527–6536 (1984) ADSGoogle Scholar
  57. C.N. Keller, V.G. Anicich, T.E. Cravens, Model of Titan’s ionosphere with detailed hydrocarbon ion chemistry. Planet. Space Sci. 46, 1157–1174 (1998) ADSGoogle Scholar
  58. M.C. Kelley, The Earth’s Ionosphere (Academic Press, San Diego, 2009) Google Scholar
  59. A.J. Kliore, A.F. Nagy, E.A. Marouf, R.G. French, F.M. Flasar, N.J. Rappaport, A. Anabttawi, S.W. Asmar, D.S. Kahann, E. Barbinis, G.L. Goltz, D.U. Fleischman, D.J. Rochblatt, First results from the Cassini radio occultations of the Titan ionosphere. J. Geophys. Res. 113, A09317 (2008) Google Scholar
  60. Yu.N. Kulikov et al., Atmospheric and water loss from early Venus. Planet. Space Sci. 54, 1425 (2006) ADSGoogle Scholar
  61. H. Lammer, H.I.M. Lichtenegger, C. Kolb, I. Ribas, E.F. Guinan, R. Abart, S.J. Bauer, Loss of water from Mars: implications for the oxidation of the soil. Icarus 165, 9 (2003) ADSGoogle Scholar
  62. H. Lammer et al., Coronal mass ejection (CME) activity of low mass M start’s as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pickup of Earth-like exoplanets in close-in habitable zones. Astrobiology 7, 185 (2007) ADSGoogle Scholar
  63. J.S. Lee, J.P. Doering, T.A. Potemra, L.H. Brace, Measurement of the ambient photoelectron spectrum from AE. I: AE-E measurements below 300 km in solar minimum conditions. Planet. Space Sci. 28, 947 (1980a) ADSGoogle Scholar
  64. J.S. Lee, J.P. Doering, T.A. Potemra, L.H. Brace, Measurements of the ambient photoelectron spectrum from AE.II: AE-E measurements between 300 and 1000 km in solar minimum conditions. Planet. Space Sci. 28, 973 (1980b) ADSGoogle Scholar
  65. M.-C. Liang, Y.L. Yung, D.E. Shemansky, Photolytically generated aerosols in the mesosphere and thermosphere of Titan. Astrophys. J. Lett. 661, L199–L202 (2007) ADSGoogle Scholar
  66. D.R. Linder, A.J. Coates, R.D. Woodliffe, C. Alsop, A.D. Johnstone, M. Grande, A. Preece, B. Narheim, K. Svenes, D.T. Young, The Cassini CAPS electron spectrometer, in Measurement Techniques in Space Plasmas: Particles, ed. by R.E. Pfaff, J.E. Borovsky, D.T. Young. AGU Geophysical Monograph, vol. 102 (AGU, Washington DC, 1998), pp. 257–262 Google Scholar
  67. J.J. López-Moreno, G.J. Molina-Cuberos, M. Hamelin, R. Grard, F. Simões, R. Godard, K. Schwingenschuh, C. Béghin, J.J. Berthelier, V.J.G. Brown, P. Faulkner, F. Ferri, M. Fulchignoni, I. Jernej, J.M. Jerónimo, R. Rodrigo, R. Trautner, Structure of Titan’s low altitude ionized layer from relaxation probe onboard Huygens. Geophys. Res. Lett. 35, L22104 (2008) ADSGoogle Scholar
  68. P. Louarn, J.E. Wahlund, T. Chust, H. de Feraudy, A. Roux, B. Holback, P.O. Dovner, A.I. Eriksson, G. Holmgren, Observation of kinetic Alfven waves by the FREJA spacecraft. Geophys. Res. Lett. 21, 1847–1850 (1994) ADSGoogle Scholar
  69. R. Lundin, S. Barabash, Evolution of the martian atmosphere and hydrosphere: solar wind erosion studied by ASPERA-3 on Mars Express. Planet. Space Sci. 52, 1059 (2004) ADSGoogle Scholar
  70. R. Lundin et al., Solar wind-induced atmospheric erosion at Mars: First results from ASPERA-3 on Mars Express. Science 305, 1933 (2004) ADSGoogle Scholar
  71. Y.-J. Ma, A.F. Nagy, T.E. Cravens, I.V. Sokolov, K.C. Hansen, J.-E. Wahlund, F.J. Crary, A.J. Coates, M.K. Dougherty, Comparisons between MHD model calculations and observations of Cassini flybys of Titan. J. Geophys. Res. 111, A05207 (2006) Google Scholar
  72. Y.J. Ma, A.F. Nagy, Ion escape fluxes from Mars, Geophys. Res. Lett., L08201 (2007) Google Scholar
  73. G.P. Mantas, W.B. Hanson, Photoelectron fluxes in the Martian ionosphere. J. Geophys. Res. 84, 369–385 (1979) ADSGoogle Scholar
  74. M. Michael, S.N. Tripathi, P. Arya, A. Coates, A. Wellbrock, D.T. Young, High-altitude charged particles in the atmosphere of Titan. Planet. Space Sci. 59, 880–885 (2011) ADSGoogle Scholar
  75. R. Modolo et al., Far plasma wake of Titan from RPWS observations: a case study. Geophys. Res. Lett. 34, L24S04 (2007a) Google Scholar
  76. R. Modolo et al., Plasma environment in the wake of Titan from hybrid simulation: a case study. Geophys. Res. Lett. 34, L24S07 (2007b) Google Scholar
  77. R. Modolo, G.M. Chanteur, A global hybrid model for Titan’s interaction with the Kronian plasma: Application to the Cassini Ta flyby. J. Geophys. Res. 113, A01317 (2008) Google Scholar
  78. G.J. Molina-Cuberos, H. Lammer, W. Stumptner, K. Schwingenschuh, H.O. Rucker, J.J. Lopez-Moreno, R. Rodrigo, T. Tokano, Ionospheric layer induced by meteoric ionization in Titan’s atmosphere. Planet. Space Sci. 49, 143–153 (2001) ADSGoogle Scholar
  79. T.E. Moore, J.L. Horwitz, Stellar ablation of planetary atmospheres. Rev. Geophys. 45, RG3002 (2007) ADSGoogle Scholar
  80. M.W. Morooka et al., The electron density of Saturn’s magnetosphere. Ann. Geophys. 27, 2971 (2009) ADSGoogle Scholar
  81. I.C.F. Müller-Wodarg, R.V. Yelle, M. Mendillo, L.A. Young, A.D. Aylward, The thermosphere of Titan simulated by a global three-dimensional time-dependent model. J. Geophys. Res. 105, 20833–20856 (2000) Google Scholar
  82. I.C.F. Müller-Wodarg, R.V. Yelle, J. Cui, J.H. Waite Jr., Horizontal structures and dynamics of Titan’s thermosphere. J. Geophys. Res. 113, E10005 (2008) Google Scholar
  83. A.F. Nagy, P.M. Banks, Photoelectron fluxes in the ionosphere. J. Geophys. Res. 75, 6260–6270 (1970) ADSGoogle Scholar
  84. A.F. Nagy, A. Korosmezev, J. Kim, T.I. Gombosi, A two dimensional shock capturing, hydrodynamic model of the Venus ionosphere. Geophys. Res. Lett. 18, 801–804 (1991) ADSGoogle Scholar
  85. A.F. Nagy, Y. Liu, K.C. Hansen, K. Kabin, T.I. Gombosi, M.R. Combi, D.L. DeZeeuw, K.G. Powell, A.J. Kliore, The interaction between the magnetosphere of Saturn and Titan’s ionosphere. J. Geophys. Res. 106, 6151–6160 (2001) ADSGoogle Scholar
  86. N.F. Ness et al., The induced magnetosphere of Titan. J. Geophys. Res. 87, 1369 (1982) ADSGoogle Scholar
  87. F.M. Neubauer, D.A. Gurnett, J.D. Scudder, R.E. Hartle, Titan’s magnetospheric interaction, in Saturn, ed. by T. Gehrels, M.S. Matthews (Univ. Arizona Press, Tucson, 1984), pp. 760–787 Google Scholar
  88. F.M. Neubauer, H. Backes, M.K. Dougherty, A. Wennmacher, C.T. Russell, A. Coates, D. Young, N. Achilleos, N. André, C.S. Arridge, C. Bertucci, G.H. Jones, K.K. Khurana, T. Knetter, A. Law, G.R. Lewis, J. Saur, Titan’s near magnetotail from magnetic field and electron plasma observations and modeling: Cassini flybys TA, TB, and T3. J. Geophys. Res. 111, A10220 (2006) ADSGoogle Scholar
  89. T. Nygrén, L. Jalonen, J. Oksman, T. Turunen, The role of electric field and neutral wind direction in the formation of sporadic E-layers. J. Atmos. Sol.-Terr. Phys. 46, 373 (1984) ADSGoogle Scholar
  90. M. Pätzold, S. Tellmann, B. Häusler, D. Hinson, R. Schaa, G.L. Tyler, A sporadic third layer in the ionosphere of Mars. Science 310, 837–839 (2005) ADSGoogle Scholar
  91. M. Pätzold, S. Tellmann, B. Häusler, M.K. Bird, G.L. Tyler, A.A. Christou, P. Withers, A sporadic layer in the Venus lower ionosphere of meteoric origin. Geophys. Res. Lett. 36, L05203 (2009) Google Scholar
  92. M.H. Rees, Physics and Chemistry of the Upper Atmosphere (Cambridge University Press, Cambridge, 1989) Google Scholar
  93. I. Ribas, E.F. Guinan, M. Gudel, M. Audard, Evolution of the solar activity over time and effects on planetary atmospheres I: High-energy irradiances (1–1700 Å). Astrophys. J. 622, 680 (2005) ADSGoogle Scholar
  94. L. Rosenqvist et al., Titan ionospheric conductivities from Cassini measurements. Planet. Space Sci. 10, 1016 (2009) Google Scholar
  95. A.M. Rymer, H.T. Smith, A. Wellbrock, A.J. Coates, D.T. Young, Discrete classification and electron energy spectra of Titan’s varied magnetospheric environment. Geophys. Res. Lett. 36, 799 (2009) Google Scholar
  96. C. Sagan, B.N. Khare, W.R. Thompson, G.D. McDonald, M.R. Wing, J.L. Bada, T. Vo-Dinh, E.T. Arakawa, Polycyclic aromatic hydrocarbons in the atmospheres of Titan and Jupiter. Astrophys. J. 414(1), 399–405 (1993) ADSGoogle Scholar
  97. R.W. Schunk, A.F. Nagy, Ionospheres—Physics, Plasma Physics, and Chemistry (Cambridge University Press, Cambridge, 2009) Google Scholar
  98. I. Sillanpää, E. Kallio, P. Janhunen, W. Schmidt, K. Mursula, J. Vilppola, P. Tanskanen, Hybrid simulation study of ion escape at Titan for different orbital positions. Adv. Space Res. 38, 799–805 (2006) ADSGoogle Scholar
  99. E.C. Sittler Jr., A. Ali, J.F. Cooper, R.E. Hartle, R.E. Johnson, A.J. Coates, D.T. Young, Heavy ion formation in Titan’s ionosphere: magnetospheric introduction of free oxygen and a source of Titan’s aerosols?. Planet. Space Sci. 57, 1547–1557 (2009a) ADSGoogle Scholar
  100. E.C. Sittler et al., Energy deposition processes in Titan’s upper atmosphere and its induced magnetosphere, in Titan form Cassini-Huygens, ed. by R.H. Brown, J.-P. Lebreton, J.H. Waite (Springer, Berlin, 2009b). Chapter 16 Google Scholar
  101. K. Stasiewicz, Y. Khotyaintsev, M. Berthomier, J.-E. Wahlund, Identification of widespread turbulence of dispersive Alfven waves. Geophys. Res. Lett. 27, 173–176 (2000) ADSGoogle Scholar
  102. K. Szego et al., Charged particle environment of Titan during the T9 flyby. Geophys. Res. Lett. 34, L24S03 (2007) Google Scholar
  103. T. Tanaka, K. Murawski, Three-dimensional MHD simulation of the solar wind interaction with the ionosphere of Venus: Results of two-component reacting plasma simulation. J. Geophys. Res. 102, 19805–19822 (1997) ADSGoogle Scholar
  104. T. Turunen, J. Silén, T. Nygrén, L. Jalonen, Observation of a thin ES-layer by the EISCAT radar. Planet. Space Sci. 33, 1407 (1985) ADSGoogle Scholar
  105. E. Vigren, Dissociative recombination of organic molecular ions of relevance for interstellar clouds and Titan’s upper atmosphere. PhD Thesis, Stockholm University (2010). ISBN 978-91-7447-133-5 Google Scholar
  106. U. Von Zahn, P. von der Gathen, G. Hansen, Forced release of sodium from upper atmosphere dust particles. Geophys. Res. Lett. 8, 65 (1987) Google Scholar
  107. V. Vuitton, P. Lavvas, R.V. Yelle, M. Galand, A. Wellbrock, G.R. Lewis, A.J. Coates, J.-E. Wahlund, Negative ion chemistry in Titan’s upper atmosphere. Planet. Space Sci. 57, 1558–1572 (2009) ADSGoogle Scholar
  108. V. Vuitton, R.V. Yelle, M.J. McEwan, Ion chemistry and N-containing molecules in Titan’s upper atmosphere. Icarus 191, 722–742 (2007) ADSGoogle Scholar
  109. J.E. Wahlund, P. Louarn, T. Chust, H. de Feraudy, A. Roux, B. Holback, P.-O. Dovner, G. Holmgren, On ion acoustic turbulence and the nonlinear evolution of kinetic Alfven waves in aurora. Geophys. Res. Lett. 21, 1831–1834 (1994) ADSGoogle Scholar
  110. J.-E. Wahlund, A.I. Eriksson, B. Holback, M.H. Boehm, J. Bonnel, P.M. Kintner, C.E. Seyler, J.H. Clemmons, L. Eliasson, D.J. Knudsen, P. Norqvist, L.J. Zanetti, Broadband ELF plasma emission during auroral energization 1. Slow ion acoustic waves. J. Geophys. Res. 103, 4343–4375 (1998) ADSGoogle Scholar
  111. J.-E. Wahlund, R. Boström, G. Gustafsson, D.A. Gurnett, W.S. Kurth, A. Pedersen, T.F. Averkamp, G.B. Hospodarsky, A.M. Persoon, P. Canu, F.M. Neubauer, M.K. Dougherty, A.I. Eriksson, M.W. Morooka, R. Gill, M. André, L. Eliasson, I. Müller-Wodarg, Cassini measurements of cold plasma in the ionosphere of Titan. Science 308, 986–989 (2005) ADSGoogle Scholar
  112. J.-E. Wahlund, M. Galand, I. Müller-Wodarg, J. Cui, R.V. Yelle, F.J. Crary, K. Mandt, B. Magee, J.H. Waite Jr., D.T. Young, A.J. Coates, P. Garnier, K. Ågren, M. André, A.I. Eriksson, T.E. Cravens, V. Vuitton, D.A. Gurnett, W.S. Kurth, On the amount of heavy molecular ions in Titan’s ionosphere. Planet. Space Sci. 57, 1857–1865 (2009) ADSGoogle Scholar
  113. J.D. Whitehead, Production and prediction of sporadic E. Rev. Geophys. 8, 65 (1970) ADSGoogle Scholar
  114. R.C. Whitten, B. Baldwin, W.C. Knudsen, K.L. Miller, K. Spenner, The Venus ionosphere at grazing incidence of solar radiation—Transport of plasma to the night ionosphere. Icarus 51, 261–270 (1982) ADSGoogle Scholar
  115. E.H. Wilson, S.K. Atreya, Current state of modeling the photochemistry of Titan’s mutually dependent atmosphere and ionosphere. J. Geophys. Res. 109, E06002 (2004) Google Scholar
  116. P. Withers, Theoretical models of ionospheric electrodynamics and plasma transport. J. Geophys. Res. 113, A07301 (2008) Google Scholar
  117. J.H. Waite, H. Niemann, R.V. Yelle, W.T. Kasprzak, T.E. Cravens, J.G. Luhmann, R.L. McNutt, W.-H. Ip, D. Gell, V. De La Haye, I. Müller-Wordag, B. Magee, N. Borggren, S. Ledvina, G. Fletcher, E. Walter, R. Miller, S. Scherer, R. Thorpe, J. Xu, B. Block, K. Arnett, Ion neutral mass spectrometer results from the first flyby of Titan. Science 308, 982–986 (2005) ADSGoogle Scholar
  118. J.H. Waite Jr., D.T. Young, T.E. Cravens, A.J. Coates, F.J. Crary, B. Magee, J. Westlake, The process of Tholin formation in Titan’s upper atmosphere. Science 316, 870–875 (2007) ADSGoogle Scholar
  119. J.H. Waite Jr., D.T. Young, A.J. Coates, F.J. Crary, B.A. Magee, K.E. Mandt, J.H. Westlake, The source of heavy organics and aerosols in Titan’s atmosphere. Proc. Int. Astron. Union 4, 321–326 (2008) Google Scholar
  120. H.Y. Wei et al., Cold ionospheric plasma in Titan’s magnetotail. Geophys. Res. Lett. 34, L24S06 (2007) Google Scholar
  121. R.C. Witten, P.T. McCormick, D. Merritt, K.W. Thompson, R.R. Brynswold, C.J. Eich, W.C. Knudsen, K.L. Miller, Dynamics of the Venus ionosphere: a two-dimensional model study. Icarus 60, 317–326 (1984) ADSGoogle Scholar
  122. M. Yamauchi, J.-E. Wahlund, Role of the ionosphere for the atmospheric evolution of planets. Astrobiology 7, 5 (2007) Google Scholar
  123. R.V. Yelle, J. Cui, I.C.F. Müller-Wodarg, Methane escape from Titan’s atmosphere. J. Geophys. Res. 113, E10003 (2008) ADSGoogle Scholar
  124. D.T. Young, J.-J. Berthelier, M. Blanc, J.L. Burch, A.J. Coates, R. Goldstein, M. Grande, T.W. Hill, R.E. Johnson, V. Kelha, D.J. McComas, E.C. Sittler, K.R. Svenes, K. Szegv, P. Tanskanen, K. Ahola, D. Anderson, S. Bakshi, R.A. Baragiola, B.L. Barraclough, R. Black, S. Bolton, T. Booker, R. Bowman, P. Casey, G. Dirks, N. Eaker, J.T. Gosling, H. Hannula, C. Holmlund, H. Huomo, J.-M. Illiano, P. Jensen, M.A. Johnson, D. Linder, T. Luntama, S. Maurice, K. McCabe, B.T. Narheim, J.E. Nordholt, A. Preece, J. Rutzki, A. Ruitberg, K. Smith, S. Szalai, M.F. Thomsen, K. Viherkanto, T. Vollmer, T.E. Wahl, M. Wuest, T. Ylikorpi, C. Zinsmeyer, Cassini plasma spectrometer investigation. Space Sci. Rev. 114, 1–112 (2004) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • A. J. Coates
    • 1
  • J.-E. Wahlund
    • 2
  • K. Ågren
    • 2
  • N. Edberg
    • 2
  • J. Cui
    • 3
  • A. Wellbrock
    • 1
  • K. Szego
    • 4
  1. 1.Department of Space and Climate Physics, Mullard Space Science LaboratoryUniversity College LondonHolmbury St. Mary, DorkingUK
  2. 2.Swedish Institute of Space PhysicsUppsalaSweden
  3. 3.Department of Astronomy & Key Laboratory of Modern Astronomy and Astrophysics in Ministry of EducationNanjing UniversityNanjingChina
  4. 4.Research Institute for Particle and Nuclear PhysicsHungarian Academy of Sciences, KFKI-RMKIBudapestHungary

Personalised recommendations