Advertisement

Space Science Reviews

, Volume 171, Issue 1–4, pp 141–160 | Cite as

A Twin-CME Scenario for Ground Level Enhancement Events

  • G. LiEmail author
  • R. Moore
  • R. A. Mewaldt
  • L. Zhao
  • A. W. Labrador
Article

Abstract

Ground Level Enhancement (GLEs) events are extreme Solar Energetic Particle (SEP) events. Protons in these events often reach ∼GeV/nucleon. Understanding the underlying particle acceleration mechanism in these events is a major goal for Space Weather studies. In Solar Cycle 23, a total of 16 GLEs have been identified. Most of them have preceding CMEs and in-situ energetic particle observations show some of them are enhanced in ICME or flare-like material. Motivated by this observation, we discuss here a scenario in which two CMEs erupt in sequence during a short period of time from the same Active Region (AR) with a pseudo-streamer-like pre-eruption magnetic field configuration. The first CME is narrower and slower and the second CME is wider and faster. We show that the magnetic field configuration in our proposed scenario can lead to magnetic reconnection between the open and closed field lines that drape and enclose the first CME and its driven shock. The combined effect of the presence of the first shock and the existence of the open close reconnection is that when the second CME erupts and drives a second shock, one finds both an excess of seed population and an enhanced turbulence level at the front of the second shock than the case of a single CME-driven shock. Therefore, a more efficient particle acceleration will occur. The implications of our proposed scenario are discussed.

Keywords

Solar energetic particles Ground level enhancement events Diffusive shock acceleration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.J. Aschwanden, Gev particle acceleration in solar flares and ground level enhancement (GLE) events. Space Sci. Rev. (2011, submitted) Google Scholar
  2. W. Axford, The acceleration of galactic cosmic rays: origin of cosmic rays, in Proceedings of the Symposium, vol. 1 (Springer, Berlin, 1981), pp. 339–358 Google Scholar
  3. H. Cane, W. Erickson, N. Prestage, Solar flares, type III radio bursts, coronal mass ejections, and energetic particles. J. Geophys. Res. 107(A10), 14–1 (2002). doi: 10.1029/2001JA000320 CrossRefGoogle Scholar
  4. H. Cane, T. von Rosenvinge, C. Cohen, R. Mewaldt, Two components in major solar particle events. Geophys. Res. Lett. 30(12), 8017 (2003). doi: 10.1029/2002GL016580 ADSCrossRefGoogle Scholar
  5. E. Chane, C. Jacobs, B. Van der Holst, S. Poedts, D. Kimpe, On the effect of the initial magnetic polarity and of the background wind on the evolution of CME shocks. Astron. Astrophys. 432, 331–339 (2005). doi: 10.1051/0004-6361:20042005 ADSCrossRefGoogle Scholar
  6. C. Chen, Y. Wang, C. Shen, P. Ye, J. Zhang, S. Wang, Statistical study of coronal mass ejection source locations. II. Role of active regions in CME production. J. Geophys. Res (2011, submitted). doi: 10.1029/2011JA016844
  7. K.S. Cho, S.C. Bong, Y.H. Kim, Y.J. Moon, M. Dryer, A. Shanmugaraju, J. Lee, Y.D. Park, Low coronal observations of metric type II associated CMEs by MLSO coronameters. Astron. Astrophys. 491, 873–882 (2008). doi: 10.1051/0004-6361:20079013 ADSCrossRefGoogle Scholar
  8. E. Cliver, S. Kahler, D. Reames, Coronal shocks and solar energetic proton events. Astrophys. J. 605(2, Part 1), 902–910 (2004) ADSCrossRefGoogle Scholar
  9. C.M.S. Cohen, A.C. Cummings, R.A. Leske, R.A. Mewaldt, E.C. Stone, B.L. Dougherty, M.E. Wiedenbeck, E.R. Christian, T.T. von Rosenvinge, Inferred charge states of high energy solar particles from the solar isotope spectrometer on ace. Geophys. Res. Lett. 26, 149–152 (1999) ADSCrossRefGoogle Scholar
  10. C. Cohen, R. Mewaldt, A. Cummings, R. Leske, E. Stone, T. von Rosenvinge, M. Wiedenbeck, Variability of spectra in large solar energetic particle events, in Energy Release and Particle Acceleration in the Solar Atmosphere—Flares and Related Phenomena, ed. by B. Dennis, T. Kosugi, R. Lin. Advances in Space Research, vol. 32 (Pergamon-Elsevier, Oxford, 2003), pp. 2649–2654. doi: 10.1016/S2073-1177(03)00901-3 Google Scholar
  11. M. Desai, G. Mason, J. Dwyer, J. Mazur, R. Gold, S. Krimigis, C. Smith, R. Skoug, Evidence for a suprathermal seed population of heavy ions accelerated by interplanetary shocks near 1 AU. Astrophys. J. 588(2, Part 1), 1149–1162 (2003) ADSCrossRefGoogle Scholar
  12. M. Desai, G. Mason, M. Wiedenbeck, C. Cohen, J. Mazur, J. Dwyer, R. Gold, S. Krimigis, Q. Hu, C. Smith, R. Skoug, Spectral properties of heavy ions associated with the passage of interplanetary shocks at 1 AU. Astrophys. J. 611(2, Part 1), 1156–1174 (2004) ADSCrossRefGoogle Scholar
  13. L. Drury, An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep. Prog. Phys. 46(8), 973–1027 (1983) ADSCrossRefGoogle Scholar
  14. R.M. Evans, M.M. Opher, W.B. Manchester, T.I. Gombosi, Alfven profile in the lower corona: implications for shock formation. Astrophys. J. 687, 1355–1362 (2008) ADSCrossRefGoogle Scholar
  15. N. Gopalswamy, A. Lara, M.L. Kaiser, J.-L. Bougeret, Near-Sun and near-Earth manifestations of solar eruptions. J. Geophys. Res. 106, 25261–25278 (2001) ADSCrossRefGoogle Scholar
  16. N. Gopalswamy, S. Yashiro, S. Krucker, G. Stenborg, R. Howard, Intensity variation of large solar energetic particle events associated with coronal mass ejections. J. Geophys. Res. 109(A12) (2004). doi: 10.1029/2004JA010602
  17. N. Gopalswamy, E. Aguilar-Rodriguez, S. Yashiro, S. Nunes, M. Kaiser, R. Howard, Type II radio bursts and energetic solar eruptions. J. Geophys. Res. 110(A12), 12–07 (2005). doi: 10.1029/2005JA011158 Google Scholar
  18. N. Gopalswamy, W.T. Thompson, J.M. Davila, M.L. Kaiser, S. Yashiro, P. Maekelae, G. Michalek, J.L. Bougeret, R.A. Howard, Relation between type II bursts and cmes inferred from stereo observations. Sol. Phys. 259(1–2), 227–254 (2009). doi: 10.1007/s11207-009-9382-1 ADSCrossRefGoogle Scholar
  19. N. Gopalswamy, H. Xie, P. Makela, S. Akiyama, S. Yashiro, M.L. Kaiser, R.A. Howard, J.L. Bougeret, Interplanetary shocks lacking type II radio bursts. Astrophys. J. 710(2), 1111–1126 (2010a) ADSCrossRefGoogle Scholar
  20. N. Gopalswamy, H. Xie, S. Akiyama, P. Makela, I.G. Usoskin, Properties of Ground level enhancement events of solar cycle 23. Ind. J. Space and Radio Phys. 39, 240–248 (2010b) doi: 10.1088/0004-6256/710/2/1111 Google Scholar
  21. N. Gopalswamy, H. Xie, S. Yashiro, S. Akiyama, P. Mäkelä, I.G. Usoskin, Properties of Ground level enhancement events and the associated solar eruptions during solar cycle 23. Space Sci. Rev. (2011, submitted) Google Scholar
  22. G. Ho, G. Mason, E. Roelof, R. Gold, J. Mazur, Peak proton intensities and composition variations of heavy ions during large solar energetic particle events: Uleis observations, in Heliosphere at Solar Maximum, ed. by M. Potgieter, B. Heber, H. Fichtner, R. Marsden. Advances in Space Research, vol. 32 (Pergamon/Elsevier, Oxford, 2003), pp. 561–566. doi: 10.1016/S0273-1177(03)00355-7 Google Scholar
  23. F.M. Ipavich, A.B. Galvin, G. Gloeckler, D. Dovestadt, B. Klecker, Solar wind Fe and CNO measurements in high-speed flows. J. Geophys. Res. 91, 4133–4141 (1986) ADSCrossRefGoogle Scholar
  24. S.W. Kahler, Radio burst characteristics of solar proton flares. Astrophys. J. 261, 710–719 (1982) ADSCrossRefGoogle Scholar
  25. S.W. Kahler, Coronal mass ejections and solar energetic particle events, in High Energy Solar Physics: AIP Conference Proceedings, vol. 374 (1996), pp. 61–77 Google Scholar
  26. S.W. Kahler, D.V. Reames, J.T. Burkepile, A role for ambient energetic particle intensities in shock acceleration of solar energetic particles, in High Energy Solar Physics: Anticipating HESSI. ASP Conf., vol. 206 (2000), p. 468 Google Scholar
  27. B. Klecker, E. Moebius, M.A. Popecki, Ionic charge states of solar energetic particles: a clue to the source. Space Sci. Rev. 130(1–4), 273–282 (2007). doi: 10.1007/s11214-007-9207-1 ADSCrossRefGoogle Scholar
  28. G.A. Kovaltsov, A.F. Barghouty, L. Kocharov, V.M. Ostryakov, J. Torsti, Charge-equilibration of Fe ions accelerated in a hot plasma. Astron. Astrophys. 375, 1075–1081 (2001) ADSCrossRefGoogle Scholar
  29. A.W. Labrador, L.R. A, R.A. Mewaldt, E.C. Stone, T.T. von Rosenvinge, High energy ionic charge state composition in the October/November 2003 and January 20, 2005 Sep events, in Proceedings of the 29th ICRC, vol. 1 (2005), pp. 99–102 Google Scholar
  30. S.T. Lepri, T.H. Zurbuchen, L.A. Fisk, I.G. Richardson, H.V. Cane, G. Gloeckler, Iron charge distribution as an identifier of interplanetary coronal mass ejections. J. Geophys. Res. 106, 29231–29238 (2001) ADSCrossRefGoogle Scholar
  31. R.A. Leske, J.R. Cummings, R.A. Mewaldt, E.C. Stone, T.T. von Rosenvinge, Measurements of the ionic charge states of solar energetic particles using the geomagnetic-field. Astrophys. J. 452(2, Part 2), 149–152 (1995) ADSCrossRefGoogle Scholar
  32. G. Li, Diffusive shock acceleration and ground level events. Space Sci. Rev. (2011, submitted) Google Scholar
  33. G. Li, R.A. Mewaldt, Can multiple shocks trigger ground level events, in Proceedings of the 31st ICRC SH (2009), p. 1362 Google Scholar
  34. G. Li, G.P. Zank, Multiple CMEs and large gradual SEP events, in 29th ICRC Proceedings, vol. 1 (2005), p. 173 Google Scholar
  35. G. Li, G. Zank, W. Rice, Energetic particle acceleration and transport at coronal mass ejection-driven shocks. J. Geophys. Res. 108(A2), 10–1 (2003). doi: 10.1029/2002JA009666 CrossRefGoogle Scholar
  36. J. Lin, S. Mancuso, A. Vourlidas, Theoretical investigation of the onsets of type II radio bursts during solar eruptions. Astrophys. J. 649, 1110 (2006) ADSCrossRefGoogle Scholar
  37. G. Li, L. Ding, Y. Jiang, L. Zhao, The “twin-CME” scenario and large Solar Energetic Particle events in Solar Cycle 23. J. Geophys. Res. (2011, submitted) Google Scholar
  38. R.P. Lin et al., The Reuven Ramaty high-energy solar spectroscopic imager (Rhessi). Sol. Phys. 210, 3 (2002) ADSCrossRefGoogle Scholar
  39. N. Lugaz, W.B. Manchester, I. Roussev, G. Toth, T.I. Gombosi, Numerical investigation of the homologous coronal mass ejection events from active region 9236. Astrophys. J. 659, 788–800 (2007a) ADSCrossRefGoogle Scholar
  40. M. Lytova, L. Kocharov, Charge states of energetic solar ions from coronal shock acceleration. Astrophys. J. 620, 55–58 (2005) ADSCrossRefGoogle Scholar
  41. G.M. Mason, J.E. Mazur, J.R. Dwyer, 3he enhancements in large solar energetic particle events. Astrophys. J. 525, 133–136 (1999) ADSCrossRefGoogle Scholar
  42. G. Mason, J. Mazur, J. Dwyer, J. Jokipii, R. Gold, S. Krimigis, Abundances of heavy and ultraheavy ions in He-3-rich solar flares. Astrophys. J. 606(1, Part 1), 555–564 (2004) ADSCrossRefGoogle Scholar
  43. R. Mewaldt, C. Cohen, A. Labrador, R. Leske, G. Mason, M. Desai, M. Looper, J. Mazur, R. Selesnick, D. Haggerty, Proton, helium, and electron spectra during the large solar particle events of October-November 2003. J. Geoph. Res. 110(A9), (2005). doi: 10.1029/2005JA011038
  44. R. Mewaldt, C. Cohen, G. Mason, The source material for large solar energetic particle events, in Solar Eruptions and Energetic Particles, ed. by N. Gopalswamy et al. Geophysical Monograph Series, vol. 165, (2006), p. 115 CrossRefGoogle Scholar
  45. R.A. Mewaldt, C.M.S. Cohen, G.M. Mason, A.C. Cummings, M.I. Desai, R.A. Leske, J. Raines, E.C. Stone, M.E. Wiedenbeck, T.T. von Rosenvinge, T.H. Zurbuchen, On the differences in composition between solar energetic particles and solar wind. Space Sci. Rev. 130(1–4), 207–219 (2007). doi: 10.1007/s11214-007-9187-1 ADSCrossRefGoogle Scholar
  46. R. Mewaldt, M.D. Looper, C.M.S. Cohen, D.K. Haggerty, A.W. Labrador, R.A. Leske, G.M. Mason, J.E. Mazur, Spectra and properties of ground-level events during solar cycle 23, in 31st International Cosmic Ray Conference Proceedings, vol. 1 (2009) Google Scholar
  47. R.A. Mewaldt, L.M. D., C.M.S. Cohen, D.K. Haggerty, A.W. Labrador, R.A. Leske, G.M. Mason, J.E. Mazur, T.T. von Rosenvinge, Energy spectra, composition, and other properties of ground-level events during solar cycle 23. Space Sci. Rev. (2011, submitted) Google Scholar
  48. H. Moraal, K.G. McCracken, The time structure of ground level enhancements in solar cycle 23. Space Sci. Rev. (2011). doi: 10.1007/s11214-011-9742-7 Google Scholar
  49. N.V. Nitta, Y. Liu, M.L. DeRosa, R.W. Nightingale, Active regions associated with ground-level events. Space Sci. Rev. (2011, submitted) Google Scholar
  50. N.V. Nitta, H.S. Hudson, Recurrent FLARE/CME events from an emerging flux region. Geophys. Res. Lett. 28, 3801–3804 (2001) ADSCrossRefGoogle Scholar
  51. D.V. Reames, J.P. Meyer, T.T. von Rosenvinge, Energetic-particle abundances in impulsive solar flare events. Astrophys. J. Suppl. Ser. 90, 649–667 (1994) ADSCrossRefGoogle Scholar
  52. D.V. Reames, Solar release times of energetic particles in ground-level events. Astrophys. J. 693(1), 812–821 (2009). doi: 10.1088/0004-637X/693/1/812 ADSCrossRefGoogle Scholar
  53. D. Reames, Coronal abundances determined from energetic particles. Adv. Space Res. 15, 41–51 (1995) ADSCrossRefGoogle Scholar
  54. D. Reames, Particle acceleration at the sun and in the heliosphere. Space Sci. Rev. 90, 413–491 (1999) ADSCrossRefGoogle Scholar
  55. M.J. Reiner, M.L. Kaiser, N. Gopalswamy, H. Aurass, G. Mann, A. Vourlidas, M. Maksimovic, Statistical analysis of coronal shock dynamics implied by radio and white-light observations. J. Geophys. Res. 106, 25279 (2001) ADSCrossRefGoogle Scholar
  56. W. Rice, G. Zank, G. Li, Particle acceleration and coronal mass ejection driven shocks: shocks of arbitrary strength. J. Geophys. Res. 108(A10), 5–1 (2003). doi: 10.1029/2002JA009756 CrossRefGoogle Scholar
  57. I. Richardson, H. Cane, The fraction of interplanetary coronal mass ejections that are magnetic clouds: evidence for a solar cycle variation. Geophys. Res. Lett. 31(18), (2004). doi: 10.1029/2004GL020958
  58. K. Schrijver, M.L. DeRosa, Photospheric and heliospheric magnetic fields. Sol. Phys. 212, 165–200 (2003) ADSCrossRefGoogle Scholar
  59. A.Y. Shih, R.P. Lin, D.M. Smith, Rhessi observations of the proportional acceleration of relativistic > 0.3 MeV electrons and > 30 MeV protons in solar flares. Astrophys. J. Lett. 698(2), 152–157 (2009). doi: 10.1088/0004-637X/698/2/L152 ADSCrossRefGoogle Scholar
  60. A.J. Tylka, P.R. Boberg, J.H. Adams, L.P. Beahm, W.F. Dietrich, T. Kleis, The mean ionic charge state of solar energetic Fe ions above 200 MeV per nucleon. Astrophys. J. 444, 109–113 (1995) ADSCrossRefGoogle Scholar
  61. A.J. Tylka, P.R. Boberg, R.E. McGuire, C.K. Ng, D.V. Reames, Temporal evolution in the spectra of gradual solar energetic particle events. 2000 Symposium, in AIP Conference Proceedings, vol. 528, (2000), pp. 147–152 CrossRefGoogle Scholar
  62. A.J. Tylka, C.M.S. Cohen, W.F. Dietrich, C.G. Maclennan, R.E. Mcguire, C.K. Ng, D.V. Reames, Evidence for remant flares suprathermal in the source population of solar energetic particles in the 2000 Bastille day event. Astrophys. J. 558, 59–63 (2001) ADSCrossRefGoogle Scholar
  63. A.J. Tylka, C.M.S. Cohen, W.F. Dietrich, S. Krucker, R.E. Mcguire, R.A. Mewaldt, C.K. Ng, D.V. Reames, G.H. Share, Onsets and release times in solar particle events, in 28th ICRC Proceedings, vol. 1 (2003) Google Scholar
  64. A. Tylka, C. Cohen, W. Dietrich, M. Lee, C. Maclennan, R. Mewaldt, C. Ng, D. Reames, Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events. Astrophys. J. 625(1, Part 1), 474–495 (2005) ADSCrossRefGoogle Scholar
  65. R. von Steiger, N.A. Schwadron, L.A. Fisk, J. Geiss, G. Gloeckler, S. Hefti, B. Wilken, R.F. Wimmer-Schweingruber, T.H. Zurbuchen, Composition of quasi-stationary solar wind flows from Ulysses/solar wind ion composition spectrometer. J. Geophys. Res. 105, 27217–27238 (2000) ADSCrossRefGoogle Scholar
  66. A. Wang, S.T. Wu, N. Gopalswamy, Magnetohydrodynamic analysis of the January 20, 2001, CME-CME interaction effect. Geophys. Monogr. 156, 185 (2005) CrossRefGoogle Scholar
  67. G. Zank, W. Rice, C. Wu, Particle acceleration and coronal mass ejection driven shocks: a theoretical model. J. Geophys. Res. 105(A11), 25079–25095 (2000) ADSCrossRefGoogle Scholar
  68. T.V. Zaqarashvili, R. Oliver, J.L. Ballester, Spectral line width decrease in the solar corona: resonant energy conversion from Alfven to acoustic waves. Astron. Astrophys. 456, 13–16 (2006) ADSCrossRefGoogle Scholar
  69. T.H. Zurbuchen, L.A. Fisk, G. Gloeckler, R. von Steiger, The solar wind composition throughout the solar cycle: a continuum of dynamic states. Geophys. Res. Lett. 29, 1352–1010292001013946 (2002) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • G. Li
    • 1
    Email author
  • R. Moore
    • 2
  • R. A. Mewaldt
    • 3
  • L. Zhao
    • 1
  • A. W. Labrador
    • 3
  1. 1.Department of Physics and CSPARUniversity of Alabama in HuntsvilleHuntsvilleUSA
  2. 2.Space Science Office, VP62Marshall Space Flight CenterHuntsvilleUSA
  3. 3.SRLPasadenaUSA

Personalised recommendations