Space Science Reviews

, Volume 172, Issue 1–4, pp 325–342 | Cite as

Anisotropy in Space Plasma Turbulence: Solar Wind Observations

  • T. S. Horbury
  • R. T. Wicks
  • C. H. K. Chen


The local magnetic field induces many types of anisotropy in plasma turbulence, changing the rate of energy transfer and affecting the propagation of energetic particles. It is challenging to measure this anisotropy in the solar wind due to the limited number of sampling points and measurement difficulties and many aspects remain poorly understood. Nevertheless, in recent years considerable theoretical and experimental progress has been made in understanding the anisotropy of turbulence, the latter through new methods and multi-spacecraft data. A short review of recent work is presented, concentrating on observations rather than theory and discussing the principal limitations and restrictions of such measurements. Key results are discussed: the variation in observed power with angle of the magnetic field to the solar wind flow, and evidence for variations in the spectral index, on scales both above and below the ion gyroradius. A comparison of single and multi-spacecraft analysis methods applied to the same data intervals shows excellent agreement and provides measurements of anisotropy throughout the inertial range. Current outstanding issues are discussed along with their possible resolution.


Turbulence Plasmas Solar wind 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. O. Alexandrova, C. Lacombe, A. Mangeney, Spectra and anisotropy of magnetic fluctuations in the Earth’s magnetosheath: Cluster observations. Ann. Geophys. 26, 3585–3596 (2008) CrossRefADSGoogle Scholar
  2. S.D. Bale, P.J. Kellogg, F.S. Mozer, T.S. Horbury, H. Reme, Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 94(21), 215002 (2005). doi: 10.1103/PhysRevLett.94.215002 CrossRefADSGoogle Scholar
  3. S.D. Bale, J.C. Kasper, G.G. Howes, E. Quataert, C. Salem, D. Sundkvist, Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind. Phys. Rev. Lett. 103, 211101 (2009). doi: 10.1103/PhysRevLett.103.211101 CrossRefADSGoogle Scholar
  4. B. Bavassano, M. Dobrowolny, G. Fanfoni, F. Mariani, N.F. Ness, Statistical properties of MHD fluctuations associated with high-speed streams from Helios-2 observations. Sol. Phys. 78, 373–384 (1982). doi: 10.1007/BF00151617 CrossRefADSGoogle Scholar
  5. J.W. Belcher, L. Davis, Large-amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 76, 3534–3563 (1971) CrossRefADSGoogle Scholar
  6. J.W. Bieber, W. Wanner, W.H. Matthaeus, Dominant two-dimensional solar wind turbulence with implications for cosmic ray transport. J. Geophys. Res. 101, 2511–2522 (1996). doi: 10.1029/95JA02588 CrossRefADSGoogle Scholar
  7. S. Boldyrev, Spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 96(11), 115002 (2006). doi: 10.1103/PhysRevLett.96.115002 CrossRefADSGoogle Scholar
  8. J.E. Borovsky, Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU? J. Geophys. Res. 113, 8110 (2008). doi: 10.1029/2007JA012684 CrossRefGoogle Scholar
  9. S. Bourouaine, E. Marsch, F.M. Neubauer, Correlations between the proton temperature anisotropy and transverse high-frequency waves in the solar wind. Geophys. Res. Lett. 37, L14104 (2010). doi: 10.1029/2010GL043697 CrossRefADSGoogle Scholar
  10. S. Bourouaine, E. Marsch, F.M. Neubauer, On the relative speed and temperature ratio of solar wind alpha particles and protons: collisions versus wave effects. Astrophys. J. Lett. 728, L3 (2011). doi: 10.1088/2041-8205/728/1/L3 CrossRefADSGoogle Scholar
  11. R. Bruno, V. Carbone, The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 2, 4 (2005) ADSGoogle Scholar
  12. B.D.G. Chandran, Scattering of energetic particles by anisotropic magnetohydrodynamic turbulence with a Goldreich-Sridhar power spectrum. Phys. Rev. Lett. 85(22), 4656 (2000) CrossRefADSGoogle Scholar
  13. C.H.K. Chen, T.S. Horbury, A.A. Schekochihin, R.T. Wicks, O. Alexndrova, J. Mitchell, Anisotropy of solar wind turbulence between ion and electron scales. Phys. Rev. Lett. 104, 255002 (2010a). doi: 10.1103/PhysRevLett.104.255002 CrossRefADSGoogle Scholar
  14. C.H.K. Chen, R.T. Wicks, T.S. Horbury, A.A. Schekochihin, Interpreting power anisotropy measurements in plasma turbulence. Astrophys. J. Lett. 711, 79–83 (2010b). doi: 10.1088/2041-8205/711/2/L79 CrossRefADSGoogle Scholar
  15. C.H.K. Chen, A. Mallet, T.A. Yousef, A.A. Schekochihin, T.S. Horbury, Anisotropy of Alfvénic turbulence in the solar wind and numerical simulations. Mon. Not. R. Astron. Soc. (2011). doi: 10.1111/j.1365-2966.2011.18933.x Google Scholar
  16. J. Cho, A. Lazarian, The anisotropy of electron magnetohydrodynamic turbulence. Astrophys. J. Lett. 615, L41–L45 (2004) CrossRefADSGoogle Scholar
  17. S.R. Cranmer, W.H. Matthaeus, B.A. Breech, J.C. Kasper, Empirical constraints on proton and electron heating in the fast solar wind. Astrophys. J. 702(2), 1604–1614 (2009). doi: 10.1088/0004-637X/702/2/1604 CrossRefADSGoogle Scholar
  18. S. Dasso, L.J. Milano, W.H. Matthaeus, C.W. Smith, Anisotropy in fast and slow solar wind fluctuations. Astrophys. J. Lett. 635, 181–184 (2005). doi: 10.1086/499559 CrossRefADSGoogle Scholar
  19. M. Dobrowolny, A. Mangeney, P. Veltri, Fully developed anisotropic magnetohydrodynamic turbulence in interplanetary space. Phys. Rev. Lett. 45, 144–147 (1980) MathSciNetCrossRefADSGoogle Scholar
  20. W.M. Elsasser, The hydromagnetic equations. Phys. Rev. 79, 183 (1950). doi: 10.1103/PhysRev.79.183 CrossRefADSzbMATHGoogle Scholar
  21. O. Essenwanger, E.R. Reiter, Power spectrum, structure function, vertical wind shear, and turbulence in troposphere and stratosphere. Arch. Meteorol. Geophys. Bioklimatol. A, 18, 17–24 (1969) CrossRefGoogle Scholar
  22. M.A. Forman, R.T. Wicks, T.S. Horbury, Detailed fit of “critical balance” theory to solar wind turbulence measurements. Astrophys. J. 733, 76 (2011). doi: 10.1088/0004-637X/733/2/76 CrossRefADSGoogle Scholar
  23. R.W. Fredricks, F.V. Coroniti, Ambiguities in the deduction of rest frame fluctuation spectrums from spectrums computed in moving frames. J. Geophys. Res. 81, 5591–5595 (1976). doi: 10.1029/JA081i031p05591 CrossRefADSGoogle Scholar
  24. U. Frisch, Turbulence. The Legacy of A.N. Kolmogorov (1995) zbMATHGoogle Scholar
  25. S.P. Gary, Theory of Space Plasma Microinstabilities (Cambridge University Press, Cambridge, 2005) Google Scholar
  26. S.P. Gary, C.W. Smith, Short-wavelength turbulence in the solar wind: Linear theory of whistler and kinetic Alfven fluctuations. J. Geophys. Res. 114, A12105 (2009) CrossRefADSGoogle Scholar
  27. S. Galtier, S.V. Nazarenko, A.C. Newell, A. Pouquet, A weak turbulence theory for incompressible magnetohydrodynamics. J. Plasma Phys. 63, 447–488 (2000) CrossRefADSGoogle Scholar
  28. J.T. Gosling, R.M. Skoug, On the origin of radial magnetic fields in the heliosphere. J. Geophys. Res. 107, 1327 (2002). doi: 10.1029/2002JA009434 CrossRefGoogle Scholar
  29. P. Goldreich, S. Sridhar, Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence. Astrophys. J. 438, 763–775 (1995). doi: 10.1086/175121 CrossRefADSGoogle Scholar
  30. M.L. Goldstein, D.A. Roberts, W.H. Matthaeus, Magnetohydrodynamic turbulence in the solar wind. Annu. Rev. Astron. Astrophys. 33, 283–326 (1995b). doi: 10.1146/annurev.aa.33.090195.001435 CrossRefADSGoogle Scholar
  31. J. He, E. Marsch, C. Tu, S. Yao, H. Tian, Possible evidence of Alfvén-cyclotron waves in the angle distribution of magnetic helicity of solar wind turbulence. Astrophys. J. 731, 85 (2011a). doi: 10.1088/0004-637X/731/2/8 CrossRefADSGoogle Scholar
  32. J. He, E. Marsch, C. Tu, Q.-G. Zong, S. Yao, H. Tian, Two-dimensional correlation functions for density and magnetic field fluctuations in magnetosheath turbulence measured by the Cluster spacecraft. J. Geophys. Res. 116, A06207 (2011b). doi: 10.1029/2010JA015974 ADSGoogle Scholar
  33. T.S. Horbury, K. Osman, Multi-spacecraft turbulence analysis methods, in Multi-Spacecraft analysis Methods Revisited (ESA Publications, 2008) Google Scholar
  34. T.S. Horbury, B.T. Tsurutani, Ulysses measurements of turbulence, waves and discontinuities, in The Heliosphere near Solar Minimum: the Ulysses Perspective, ed. by A. Balogh, R.G. Marsden, E.J. Smith (Springer/Praxis, Chichester, 2001) Google Scholar
  35. T.S. Horbury, M.A. Forman, S. Oughton, Spacecraft observations of solar wind turbulence: an overview. Plasma Phys. Control. Fusion 47, 703–717 (2005). doi: 10.1088/0741-3335/47/12B/S52 CrossRefGoogle Scholar
  36. T.S. Horbury, M. Forman, S. Oughton, Anisotropic scaling of magnetohydrodynamic turbulence. Phys. Rev. Lett. 101(17), 175005 (2008). doi: 10.1103/PhysRevLett.101.175005 CrossRefADSGoogle Scholar
  37. P.S. Iroshnikov, Turbulence of a conducting fluid in a strong magnetic field. Sov. Astron. 7, 566 (1964) MathSciNetADSGoogle Scholar
  38. J.C. Kasper, A.J. Lazarus, S.P. Gary, Wind/SWE observations of firehose constraint on solar wind proton temperature anisotropy. Geophys. Res. Lett. 29(17), 170000-1 (2002) CrossRefGoogle Scholar
  39. A. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl. Akad. Nauk SSSR 30, 301–305 (1941) ADSGoogle Scholar
  40. R.H. Kraichnan, Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8, 1385–1387 (1965) MathSciNetCrossRefADSGoogle Scholar
  41. R.J. Leamon, C.W. Smith, N.F. Ness, W.H. Matthaeus, H.K. Wong, Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. 103, 4775 (1998) CrossRefADSGoogle Scholar
  42. Q.Y. Luo, D.J. Wu, Observations of anisotropic scaling of solar wind turbulence. Astrophys. J. Lett. 714, 138–141 (2010). doi: 10.1088/2041-8205/714/1/L138 CrossRefADSGoogle Scholar
  43. R.J. MacDowell, P.J. Kellogg, Waves and instabilities in the three-dimensional heliosphere, in The Heliosphere near Solar Minimum: the Ulysses Perspective (Springer, Berlin, 2001) Google Scholar
  44. D.M. Malaspina, P.J. Kellogg, S.D. Bale, R.E. Ergun, Measurements of rapid density fluctuations in the solar wind. Astrophys. J. 711, 322–327 (2010). doi: 10.1088/0004-637X/711/1/322 CrossRefADSGoogle Scholar
  45. S.A. Markovskii, B.J. Vasquez, C.W. Smith, Statistical analysis of the high-frequency spectral break of the solar wind turbulence at 1 AU. Astrophys. J. 675, 1576–1583 (2008). doi: 10.1086/527431 CrossRefADSGoogle Scholar
  46. J. Maron, P. Goldreich, Simulations of incompressible magnetohydrodynamic turbulence. Astrophys. J. 554, (2001). doi: 10.1086/321413
  47. E. Marsch, Solar wind responses to the solar activity cycle. Adv. Space Res. 38, 921–930 (2006) CrossRefADSGoogle Scholar
  48. E. Marsch, C.-Y. Tu, Intermittency, non-Gaussian statistics and fractal scaling of MHD fluctuations in the solar wind. Nonlinear Process. Geophys. 4, 101–124 (1997) CrossRefADSGoogle Scholar
  49. W.H. Matthaeus, M. Velli, Who needs turbulence? Space Sci. Rev. (2011). doi: 10.1023/A:1005092216668
  50. W.H. Matthaeus, M.L. Goldstein, D.A. Roberts, Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind. J. Geophys. Res. 95, 20673–20683 (1990) CrossRefADSGoogle Scholar
  51. Y. Narita, K.H. Glassmeier, R.A. Treumann, Wave-number spectra and intermittency in the terrestrial foreshock region. Phys. Rev. Lett. 97(19), 191101 (2006). doi: 10.1103/PhysRevLett.97.191101 CrossRefADSGoogle Scholar
  52. Y. Narita, K.H. Glassmeier, F. Sahraoui, M.L. Goldstein, Wave-vector dependence of magnetic-turbulence spectra in the solar wind. Phys. Rev. Lett. 104, 171101 (2010). doi: 10.1103/PhysRevLett.104.171101 CrossRefADSGoogle Scholar
  53. Y. Narita, S.P. Gary, S. Saito, K.H. Glassmeier, U. Motschmann, Dispersion relation analysis of solar wind turbulence. Geophys. Res. Lett. 38, L05101 (2011). doi: 10.1029/2010GL04658 CrossRefADSGoogle Scholar
  54. Z. Németh, G. Facskó, E.A. Lucek, Correlation functions of small-scale fluctuations of the interplanetary magnetic field. Sol. Phys. 266, 149–158 (2010). doi: 10.1007/s11207-010-9610-8 CrossRefADSGoogle Scholar
  55. R.M. Nicol, S.C. Chapman, R.O. Dendy, Quantifying the anisotropy and solar cycle dependence of “1/f” solar wind fluctuations observed by Advanced Composition Explorer. Astrophys. J. Lett. 703, 2138–2151 (2009). doi: 10.1088/0004-637X/703/2/2138 CrossRefADSGoogle Scholar
  56. K.T. Osman, T.S. Horbury, Multispacecraft measurement of anisotropic correlation functions in solar wind turbulence. Astrophys. J. Lett. 654, 103–106 (2007). doi: 10.1086/510906 CrossRefADSGoogle Scholar
  57. K.T. Osman, T.S. Horbury, Multi-spacecraft measurement of anisotropic power levels and scaling in solar wind turbulence. Ann. Geophys. 27, 3019–3025 (2009a) CrossRefADSGoogle Scholar
  58. K.T. Osman, T.S. Horbury, Quantitative estimates of the slab and 2-D power in solar wind turbulence using multispacecraft data. J. Geophys. Res. 114, 6103 (2009b). doi: 10.1029/2008JA014036 CrossRefGoogle Scholar
  59. S. Perri, A. Balogh, Stationarity in solar wind flows. Astrophys. J. 714(1), 937–943 (2010). doi: 10.1088/0004-637X/714/1/937 CrossRefADSGoogle Scholar
  60. J.C. Perez, S. Boldyrev, Strong magnetohydrodynamic turbulence with cross helicity. Phys. Plasmas 17(5), 055903 (2010) CrossRefADSGoogle Scholar
  61. J.-L. Pincon, K.-H. Glassmeier, Multi-spacecraft methods of wave field characterisation. in Multi-Spacecraft Analysis Methods Revisited (ESA Publications, 2008) Google Scholar
  62. J.J. Podesta, Dependence of solar-wind power spectra on the direction of the local mean magnetic field. Astrophys. J. 698, 986–999 (2009). doi: 10.1088/0004-637X/698/2/986 CrossRefADSGoogle Scholar
  63. J.J. Podesta, S.P. Gary, Magnetic helicity spectrum of solar wind fluctuations as a function of the angle with respect to the local mean magnetic field. Astrophys. J. 734, 15 (2011). doi: 10.1088/0004-637X/734/1/15 CrossRefADSGoogle Scholar
  64. J.J. Podesta, D.A. Roberts, M.L. Goldstein, Spectral exponents of kinetic and magnetic energy spectra in solar wind turbulence. Astrophys. J. 664, 543–548 (2007). doi: 10.1086/519211 CrossRefADSGoogle Scholar
  65. F. Sahraoui, M.L. Goldstein, P. Robert, Y.V. Khotyaintsev, Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale. Phys. Rev. Lett. 102(23), 231102 (2009). doi: 10.1103/PhysRevLett.102.231102 CrossRefADSGoogle Scholar
  66. F. Sahraoui, M.L. Goldstein, G. Belmont, P. Canu, L. Rezeau, Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind. Phys. Rev. Lett. 105, 131101 (2010). doi: 10.1103/PhysRevLett.105.131101 CrossRefADSGoogle Scholar
  67. A.A. Schekochihin, S.C. Cowley, W. Dorland, G.W. Hammett, G.G. Howes, E. Quataert, T. Tatsuno, Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. Ser. 182, 310–377 (2009). doi: 10.1088/0067-0049/182/1/310 CrossRefADSGoogle Scholar
  68. A. Seripienlert, D. Ruffolo, W.H. Matthaeus, P. Chuychai, Dropouts in solar energetic particles: associated with local trapping boundaries or current sheets? Astrophys. J. 711, 980–989 (2010). doi: 10.1088/0004-637X/711/2/980 CrossRefADSGoogle Scholar
  69. J.V. Shebalin, W.H. Matthaeus, D. Montgomery, Anisotropy in MHD turbulence due to a mean magnetic field. J. Plasma Phys. 29, 525–547 (1983) CrossRefADSGoogle Scholar
  70. C.W. Smith, J. L’Heureux, N.F. Ness, M.H. Acũna, L.F. Burlaga, J. Scheifele, The ACE magnetic fields experiment. Space Sci. Rev. 86, 613–632 (1998). doi: 10.1023/A:1005092216668 CrossRefADSGoogle Scholar
  71. C.W. Smith, K. Hamilton, B.J. Vasquez, R.J. Leamon, Dependence of the dissipation range spectrum of interplanetary magnetic fluctuations on the rate of energy cascade. Astrophys. J. Lett. 645, 85–88 (2006). doi: 10.1086/506151 CrossRefADSGoogle Scholar
  72. S. Sridhar, Magnetohydrodynamic turbulence in a strongly magnetised plasma. Astron. Nachr. 331, 93–100 (2010). doi: 10.1002/asna.20091130 CrossRefADSzbMATHGoogle Scholar
  73. G.I. Taylor, The spectrum of turbulence. Proc. R. Soc. Lond. Ser. A 164, 476–490 (1938) CrossRefADSGoogle Scholar
  74. J.A. Tessein, C.W. Smith, B.T. MacBride, W.H. Matthaeus, M.A. Forman, J.E. Borovsky, Spectral indices for multi-dimensional interplanetary turbulence at 1 AU. Astrophys. J. 692, 684–693 (2009). doi: 10.1088/0004-637X/692/1/684 CrossRefADSGoogle Scholar
  75. A. Tjulin, E.A. Lucek, I. Dandouras, Characterization of waves in the vicinity of an interplanetary directional discontinuity. J. Geophys. Res. 112, 12104 (2007). doi: 10.1029/2007JA012471 CrossRefGoogle Scholar
  76. C.-Y. Tu, E. Marsch, A model of solar wind fluctuations with two components: Alfvénic waves and convective structures. J. Geophys. Res. 98, 1257 (1993) CrossRefADSGoogle Scholar
  77. C.-Y. Tu, E. Marsch, MHD structures, waves and turbulence in the solar wind: Observations and theories. Space Sci. Rev. 73, 1–210 (1995) CrossRefADSGoogle Scholar
  78. C. Tu, E. Marsch, H. Rosenbauer, The dependence of MHD turbulence spectra on the inner solar wind stream structure near solar minimum. Geophys. Res. Lett. 17, 283–286 (1990). doi: 10.1029/GL017i003p00283 CrossRefADSGoogle Scholar
  79. J.M. Weygand, W.H. Matthaeus, S. Dasso, M.G. Kivelson, L.M. Kistler, C. Mouikis, Anisotropy of the Taylor scale and the correlation scale in plasma sheet and solar wind magnetic field fluctuations. J. Geophys. Res. 114, 7213 (2009). doi: 10.1029/2008JA013766 CrossRefGoogle Scholar
  80. R.T. Wicks, T.S. Horbury, C.H.K. Chen, A.A. Schekochihin, Power and spectral index anisotropy of the entire inertial range of turbulence in the fast solar wind. Mon. Not. R. Astron. Soc. 407231 (2010) Google Scholar
  81. R.T. Wicks, T.S. Horbury, C.H.K. Chen, A.A. Schekochihin, Anisotropy of imbalanced Alfvénic turbulence in fast solar wind. Phys. Rev. Lett. 106, 045001 (2011). doi: 110.1103/PhysRevLett.106.045001 CrossRefADSGoogle Scholar
  82. G. Zimbardo, Anomalous particle diffusion and Levy random walk of magnetic field lines in three-dimensional solar wind turbulence. Plasma Phys. Control. Fusion 47, B755–B767 (2005) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • T. S. Horbury
    • 1
  • R. T. Wicks
    • 1
  • C. H. K. Chen
    • 1
    • 2
  1. 1.Imperial College LondonLondonUK
  2. 2.Space Sciences LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations