Space Science Reviews

, 160:95 | Cite as

Properties of Near-Earth Magnetic Reconnection from In-Situ Observations

Article

Abstract

Many properties of magnetic reconnection have been determined from in-situ spacecraft observations in the Earth’s magnetosphere. Recent studies have focused on ion scale lengths and have largely confirmed theoretical predictions. In addition, some interesting features of reconnection regions on electron scale lengths have been identified. These recent studies have demonstrated the need for combined plasma and field measurements on electron scale lengths in the reconnection diffusion regions at the magnetopause and in the magnetotail. They have also indicated that measurements, such as those that will be made by the Magnetospheric Multiscale mission in the near future, will have a significant impact on understanding magnetic reconnection as a fundamental plasma process.

Keywords

Magnetic reconnection Magnetosphere Magnetospheric multiscale Plasma physics 

References

  1. M. André et al., Thin electron-scale layers at the magnetopause. Geophys. Res. Lett. 31 (2004). doi:10.1029/2003GL018137
  2. S.V. Badman, S.W.H. Cowley, Significance of Dungey-cycle flows in Jupiter’s and Saturn’s magnetospheres and their identification on closed equatorial field lines. Ann. Geophys. (2007). doi:10.5194/angeo-25-941-2007 Google Scholar
  3. A. Balogh et al., The cluster magnetic field investigation: scientific objectives and instrumentation, ESA SP-1159, 95 (1993) Google Scholar
  4. W. Baumjohann, The near Earth plasma sheet—an AMPTE/IRM perspective. Space Sci. Rev. 64, 141 (1993) ADSGoogle Scholar
  5. A.L. Borg et al., Cluster encounter of a magnetic reconnection diffusion region in the near-Earth magnetotail on September 19, 2003. Geophys. Res. Lett. (2005). doi:10.1029/2005GL023794 Google Scholar
  6. J.L. Burch, J.F. Drake, Reconnecting magnetic fields. Am. Sci. 97, 392 (2009) Google Scholar
  7. P.A. Cassak, M.A. Shay, Scaling of asymmetric magnetic reconnection: General theory and collisional simulations. Phys. Plasmas 14, 102114 (2007) ADSGoogle Scholar
  8. P.A. Cassak, M.A. Shay, Scaling of asymmetric Hall magnetic reconnection. Geophys. Res. Lett. (2008). doi:10.1029/2008GL035268 Google Scholar
  9. C. Cattell et al., Cluster observations of electron holes in association with magnetotail reconnection and comparison to simulations. J. Geophys. Res. (2005). doi:10.1029/2004JA010519 MATHGoogle Scholar
  10. L.-J. Chen, Multispacecraft observations of the electron current sheet, neighboring magnetic islands, and electron acceleration during magnetotail reconnection. Phys. Plasmas (2009). doi:10.1063/1.3112744 Google Scholar
  11. W. Daughton, J. Scudder, H. Karimabadi, Fully kinetic simulations of undriven magnetic reconnection with open boundary conditions. Phys. Plasmas (2006). doi:10.1063/1.2218817 Google Scholar
  12. F. deHoffmann, E. Teller, Magneto-hydrodynamic shocks. Phys. Rev. 80, 692 (1950) MathSciNetADSGoogle Scholar
  13. X.H. Deng et al., Geotail encounter with reconnection diffusion region in the Earth’s magnetotial: Evidence of multiple X lines collisionless reconnection? J. Geophys. Res. (2004). doi:10.1029/2003JA010031 Google Scholar
  14. J.F. Drake et al., Formation of electron holes and particle energization during magnetic reconnection. Science 299, 873 (2003) ADSGoogle Scholar
  15. J.F. Drake, M. Swisdak, K.M. Schoeffler, B.N. Rogers, S. Kobayashi, Formation of secondary islands during magnetic reconnection. Geophys. Res. Lett. (2006). doi:10.1029/2006GL025957 Google Scholar
  16. J.F. Drake, M.A. Shay, M. Swisdak, The Hall fields and fast magnetic reconnection. Phys. Plasmas 15 (2008). doi:10.1063/1.2900194
  17. J.F. Drake et al., Ion heating resulting from pickup in magnetic reconnection exhausts. J. Geophys. Res. (2009). doi:10.1029/2008JA013701 Google Scholar
  18. J.W. Dungey, Conditions for the occurrence of electrical discharges in astrophysical systems. Philos. Mag. 44, 725 (1953) Google Scholar
  19. J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47 (1961) ADSGoogle Scholar
  20. J.P. Eastwood et al., Multi-point observations of the Hall electromagnetic field and secondary island formation during magnetic reconnection. J. Geophys. Res. (2007). doi:10.1029/2006JA012158 Google Scholar
  21. J.P. Eastwood, T.D. Phan, M. Øieroset, M.A. Shay, Average properties of the magnetic ion diffusion region in the Earth’s magnetotail: The 2001–2005 Cluster observations and comparison with simulations. J. Geophys. Res. (2010). doi:10.1029/2009JA014962 MATHGoogle Scholar
  22. L.A. Frank, K.L. Ackerson, R.P. Lepping, Hot tenuous plasmas, fireballs, and boundary layers in the Earth’s magnetotail. J. Geophys. Res. (1976). doi:10.1029/JA081i034p05859 Google Scholar
  23. M. Fujimoto et al., Observations of earthward streaming electrons at the trailing boundary of a plasmoid. Geophys. Res. Lett. 24, 2893 (1997) ADSGoogle Scholar
  24. S.A. Fuselier, H.U. Frey, K.J. Trattner, S.B. Mende, J.L. Burch, Cusp aurora dependence on interplanetary magnetic field B z. J. Geophys. Res. (2002). doi:10.1029/2001JA900165 Google Scholar
  25. S.A. Fuselier, K.J. Trattner, S.M. Petrinec, C.J. Owen, H. Rème, Computing the reconnection rate at the Earth’s magnetopause using two spacecraft observations. J. Geophys. Res. (2005). doi:10.1029/2004JA010805 Google Scholar
  26. S.A. Fuselier, S.M. Petrinec, K.J. Trattner, Anti-parallel magnetic reconnection rates at the Earth’s magnetopause. J. Geophys. Res. (2010). doi:10.1029/2010JA015302 MATHGoogle Scholar
  27. J.T. Gosling, R.M. Skoug, D.J. McComas, C.W. Smith, Direct evidence for magnetic reconnection in the solar wind near 1 AU. J. Geophys. Res. (2005). doi:10.1029/2004JA010809 MATHGoogle Scholar
  28. J.T. Gosling, S. Eriksson, R.M. Skoug, D.J. McComas, R.J. Forsyth, Petschek-type magnetic reconnection exhausts in the solar wind well beyond 1 AU: Ulysses. Astrophys. J. (2006a). doi:10.1086/503544 Google Scholar
  29. J.T. Gosling, S. Eriksson, R. Schwenn, Petschek-type magnetic reconnection exhausts in the solar wind well inside 1 AU: Helios. J. Geophys. Res. (2006b). doi:10.1029/2006JA011863 Google Scholar
  30. S.T. Griffiths et al., A probability assessment of encountering dayside magnetopause diffusion regions. J. Geophys. Res. (2011). doi:10.1029/2010JA015136 Google Scholar
  31. G. Gustafsson et al., The spherical probe electric field and wave experiment for Cluster, ESA SP-1159, 17 (1993) Google Scholar
  32. S.E. Haaland et al., Four-spacecraft determination of magnetopause orientation, motion, and thickness: comparison with results from single-spacecraft methods. Ann. Geophys. 22, 1347 (2004) ADSGoogle Scholar
  33. M. Hesse, Dissipation in magnetic reconnection with a guide magnetic field. Phys. Plasmas 13, 1220107 (2006) Google Scholar
  34. M. Hesse, J. Birn, M. Kuznetsova, Collisionless magnetic reconnection: Electron processes and transport modeling. J. Geophys. Res. 196, 3721 (2001) ADSGoogle Scholar
  35. M. Hesse, M. Kuznetsova, J. Birn, The role of electron heat flux in guide-field magnetic reconnection. Phys. Plasmas 11, 125387 (2004) ADSGoogle Scholar
  36. E.W. Hones Jr., Observations in the Earth’s magnetotail relating to magnetic merging. Sol. Phys. (1976). doi:10.1007/BF00152248 Google Scholar
  37. E. Hones (ed.), Magnetic Reconnection in Space and Laboratory Plasmas. Geophysical Monograph, vol. 30 (American Geophysical Union, Washington DC, 1984) Google Scholar
  38. B. Hultqvist, M. Øieroset (eds.), Transport Across the Boundaries of the Magnetosphere (Kluwer, Dordrecht, 1997). Reprinted from Space Science Reviews, vol. 80, nos. 1–2 (1997) Google Scholar
  39. B. Hultqvist et al. (eds.), Magnetospheric Plasma Sources and Losses (Kluwer Academic, Dordrecht, 1999). Reprinted from Space Sci. Rev., vol. 88, nos. 1–2 (1999) Google Scholar
  40. C.M. Jackman et al., A multi-instrument view of tail reconnection at Saturn. J. Geophys. Res. (2008). doi:10.1029/2008JA013592 MATHGoogle Scholar
  41. H. Karimabadi, W. Daughton, J. Scudder, Multi-scale structure of the electron diffusion region. Geophys. Res. Lett. (2007). doi:10.1029/2007GL030306 MATHGoogle Scholar
  42. M.G. Kivelson, D.J. Southwood, Dynamical consequences of two modes of centrifugal instability in Jupiter’s outer magnetosphere. J. Geophys. Res. (2005). doi:10.1029/2005JA011176 Google Scholar
  43. A. Klimas, M. Hesse, S. Zenitani, Particle-in-cell simulations of collisionless reconnection with open outflow boundaries. Phys. Plasmas (2008). doi:10.1063/1.2965826 Google Scholar
  44. E.A. Kronberg, J. Woch, N. Krupp, A. Lagg, K.K. Khurana, K.-H. Glassmeier, Mass release at Jupiter: Substorm-like processes in the Jovian magnetotail. J. Geophys. Res. (2005). doi:10.1029/2004JA010777 Google Scholar
  45. R.H. Levy, H.E. Petschek, G.L. Siscoe, Aerodynamic aspects of the magnetospheric flow. AIAA J. 2, 2065 (1964) Google Scholar
  46. M. Lockwood, M.F. Smith, The variation of reconnection rate at the dayside magnetopause and cusp ion precipitation. J. Geophys. Res. 97, 14841 (1992) ADSGoogle Scholar
  47. M. Manapat et al., Field-aligned electrons at the lobe/plasma sheet boundary in the mid-to-distant magnetotail and their association with reconnection. Geophys. Res. Lett. (2006). doi:10.1029/2005GL024971 Google Scholar
  48. H.J. McAndrews et al., Evidence of reconnection at Saturn’s magnetosphere. J. Geophys. Res. (2008). doi:10.1029/2007JA012581 Google Scholar
  49. F.S. Mozer, Criteria for and statistics of electron diffusion regions associated with subsolar magnetic field reconnection. J. Geophys. Res. (2005). doi:10.1029/2005JA011258 Google Scholar
  50. F.S. Mozer, A. Hull, Scaling the energy conversion rate from magnetic field reconnection to different bodies. Phys. Plasmas 17, 102906 (2010) ADSGoogle Scholar
  51. F.S. Mozer, P.L. Pritchett, Electron physics of asymmetric magnetic field reconnection. Space Sci. Rev. (2011). doi:10.1007/s11214-010-9681-8 Google Scholar
  52. F.S. Mozer, A. Retinò, Quantitative estimates of magnetic field reconnection properties from electric and magnetic field measurements. J. Geophys. Res. (2007). doi:10.1029/2007JA012406 MATHGoogle Scholar
  53. F.S. Mozer, S.D. Bale, T.D. Phan, Observations of ion and electron diffusion regions at a sub-solar magnetopause reconnection event. Phys. Rev. Lett. 89, 015002 (2002) ADSGoogle Scholar
  54. F.S. Mozer, S.D. Bale, T.D. Phan, J.A. Osborne, Observations of electron diffusion regions at the subsolar magnetopause. Phys. Rev. Lett. (2003). doi:10.1103/PhysRevLett.91.245002 015002 Google Scholar
  55. F.S. Mozer, V. Angelopoulos, J. Bonnell, K.H. Glassmeier, J.P. McFadden, THEMIS observations of modified Hall fields in asymmetric magnetic field reconnection. Geophys. Res. Lett. (2008a). doi:10.1029/2007GL033033 MATHGoogle Scholar
  56. F.S. Mozer, P.L. Pritchett, J. Bonnell, D. Sundkvist, M.T. Chang, Observations and simulations of asymmetric magnetic field reconnection. J. Geophys. Res. (2008b). doi:10.1029/2008JA013535 MATHGoogle Scholar
  57. T. Nagai, Location of magnetic reconnection in the magnetotail. Space Sci. Rev. (2006). doi:10.1107/s11214-006-6216-4 Google Scholar
  58. T. Nagai et al., Geotail observations of the Hall current system: Evidence of magnetic reconnection in the magnetotail. J. Geophys. Res. 106, 25929 (2001) ADSGoogle Scholar
  59. T. Nagai et al., Structure of the Hall current system in the vicinity of the magnetic reconnection site. J. Geophys. Res. (2003). doi:10.1029/2003JA009900 Google Scholar
  60. T. Nagai et al., Construction of magnetic reconnection in the near-Earth magnetotail with Geotail. J. Geophys. Res. (2010). doi:10.1029/2010JA016283 Google Scholar
  61. R. Nakamura et al., Cluster observations of an ion-scale current sheet in the magnetotail under the presence of a guide field. J. Geophys. Res. (2008). doi:10.1029/2007JA012760 Google Scholar
  62. M. Øieroset et al., In situ detection of collisionless reconnection in the Earth’s magnetotail. Nature 412, 414 (2001) ADSGoogle Scholar
  63. T.G. Onsager, M.F. Thomsen, R.C. Elphic, J.T. Gosling, Model of electron and ion distributions in the plasma sheet boundary layer. J. Geophys. Res. 96, 20999 (1991) ADSGoogle Scholar
  64. T.G. Onsager et al., Low-altitude observations and modeling of quasi-steady magnetopause reconnection. J. Geophys. Res. 100, 11831 (1995) ADSGoogle Scholar
  65. C.J. Owen et al., Cluster observations of “crater” flux transfer events at the dayside high-latitude magnetopause. J. Geophys. Res. (2008). doi:10.1029/2007JA012701 Google Scholar
  66. E.N. Parker, The solar flare phenomenon and the theory of reconnection and annihilation of magnetic fields. Astron. Astrophys. Suppl. Ser. 8, 177 (1963) ADSGoogle Scholar
  67. G. Paschmann, Recent in situ observations of magnetic reconnection in near-Earth space. Geophys. Res. Lett. (2008). doi:10.1029/2008GL035297 Google Scholar
  68. G. Paschmann et al., Plasma acceleration at the Earth’s magnetopause: Evidence for reconnection. Nature (1979). doi:10.1038/282243a0 Google Scholar
  69. S.M. Petrinec, S.A. Fuselier, On continuous versus discontinuous neutral lines at the dayside magnetopause for southward interplanetary magnetic field. Geophys. Res. Lett. 1519 (2003). doi:10.1029/2002GL016565
  70. H.E. Petschek, Magnetic field annihilation, in The Physics of Solar Flares, ed. by W.N. Hess (NASA, Washington DC, 1964), p. 425 Google Scholar
  71. T.-D. Phan, G. Paschmann, Low-latitude dayside magnetopause and boundary layer for high magnetic shear 1. Structure and motion. J. Geophys. Res. 101, 7801 (1996) ADSGoogle Scholar
  72. T.-D. Phan et al., Extended magnetic reconnection at the Earth’s magnetopause from detection of bi-directional jets. Nature 404, 848 (2000) ADSGoogle Scholar
  73. T.-D. Phan, B.U.Ö. Sonnerup, R.P. Lin, Fluid and kinetics signatures of reconnection at the dawn tail magnetopause: Wind observations. J. Geophys. Res. 106, 25489 (2001) ADSGoogle Scholar
  74. T.-D. Phan et al., Simultaenous Cluster and IMAGE observations of cusp reconnection and auroral proton spot for northward IMF. Geophys. Res. Lett. (2003). doi:10.1029/2003GL016885 Google Scholar
  75. T.D. Phan et al., Cluster observations of continuous reconnection at the magnetopause under steady interplanetary magnetic field conditions. Ann. Geophys. 22, 2355 (2004) ADSGoogle Scholar
  76. T.D. Phan et al., A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind. Nature (2006). doi:10.1038/nature04393 Google Scholar
  77. T.-D. Phan et al., Evidence for an elongated (>60 ion skin depths) electron diffusion region during fast magnetic reconnection. Phys. Rev. Lett. (2007). doi:10.1103/PhysRevLett.99255002 Google Scholar
  78. P.L. Pritchett, Geospace environment modeling magnetic reconnection challenge: Simulations with a full particle electromagnetic code. J. Geophys. Res. 106, 3793 (2001) ADSGoogle Scholar
  79. A. Retinò et al., Cluster multispacecraft observations at the high-latitude duskside magnetopause: implications for continuous and component magnetic reconnection. Ann. Geophys. 23, 461 (2005) ADSGoogle Scholar
  80. A. Runov et al., Current sheet structure near magnetic X-line observed by Cluster. Geophys. Res. Lett. (2003). doi:10.1029/2002GL016730 MATHGoogle Scholar
  81. C.T. Russell, R.C. Elphic, Initial ISEE magnetometer results: Magnetopause observations. Space Sci. Rev. 22, 681 (1978) ADSGoogle Scholar
  82. C.T. Russell, R.C. Elphic, ISEE observations of flux transfer events at the dayside magnetopause. Geophys. Res. Lett. 6, 33 (1979) ADSGoogle Scholar
  83. C.T. Russell, R.J. Walker, Flux transfer events at Mercury. J. Geophys. Res. 90, 11067 (1985) (1985) ADSGoogle Scholar
  84. C.T. Russell, K.K. Khurana, D.E. Huddleston, M.G. Kivelson, Localized reconnection in the near Jovian magnetotail. Science (1988). doi:10.1126/science.280.5366.1061 Google Scholar
  85. M. Scholer, Magnetic flux transfer at the magnetopause based on single X-line bursty reconnection. Geophys. Res. Lett. 15, 291 (1988) ADSGoogle Scholar
  86. J.D. Scudder, F.S. Mozer, N.C. Maynard, C.T. Russell, Fingerprints of collisionless reconnection at the separator. I. Ambipolar Hall signatures. J. Geophys. Res. (2002). doi:10.1029/2001JA000126 Google Scholar
  87. M.A. Shay, J.F. Drake, B.N. Rogers, R.E. Denton, The scaling of collisionless, magnetic reconnection for large systems. Geophys. Res. Lett. (1999). doi:10.1029/1999GL900481 Google Scholar
  88. M.A. Shay, J.F. Drake, M. Swisdak, Two-scale structure of the electron dissipation region during collisionless magnetic reconnection. Phys. Rev. Lett. (2007). doi:10.1103/PhysRevLett.99.155002 Google Scholar
  89. J.A. Slavin et al., MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere. Science (2009). doi:10.1126/science.1172011 Google Scholar
  90. P. Song, B.U.Ö. Sonnerup, M.F. Thomsen (eds.), Physics of the Magnetopause, Geophysical Monograph, vol.  90 (American Geophysical Union, Washington DC, 1995) Google Scholar
  91. B.U.Ö. Sonnerup, Magnetic field reconnection, in Solar System Plasma Physics III, ed. by L.T. Lanzertotti, C.F. Kennel, E.N. Parker (North-Holland, New York, 1979), p. 45 Google Scholar
  92. B.U.Ö. Sonnerup, L.J. Cahill Jr., Magnetopause stricter and attitude from Explorer 12 observations. J. Geophys. Res. 72, 171 (1967) ADSGoogle Scholar
  93. B.U.Ö. Sonnerup et al., Evidence for magnetic field reconnection at the Earth’s magnetopause. J. Geophys. Res. 86, 10049 (1981) ADSGoogle Scholar
  94. D.J. Southwood, C.J. Farrugia, M.A. Saunders, What are flux transfer events? Planet. Space Sci. 36, 503 (1988) ADSGoogle Scholar
  95. P.A. Sweet, The neutral point theory of solar flares, in Electromagnetic Phenomena in Cosmical Physics, ed. by B. Lehnert (Cambridge University Press, London, 1958), p. 123 Google Scholar
  96. M. Swisdak, B.N. Rogers, J.F. Drake, M.A. Shay, Diamagnetic suppression of component magnetic reconnection at the magnetopause. J. Geophys. Res. (2003). doi:10.1029/2002JA009726 Google Scholar
  97. W.-L. Teh et al., THEMIS observations of a secondary magnetic island within the Hall electromagnetic field region at the magnetopause. Geophys. Res. Lett. (2010). doi:10.1029/2010GL045056 Google Scholar
  98. K.J. Trattner et al., Temporal versus spatial interpretation of cusp ion structures observed by two spacecraft. J. Geophys. Res. (2002a). doi:10.1029/2001JA000181 Google Scholar
  99. K.J. Trattner, S.A. Fuselier, W.K. Peterson, C.W. Carlson, Spatial features observed in the cusp under steady solar wind conditions. J. Geophys. Res. (2002b). doi:10.1029/2001JA000262 Google Scholar
  100. K.J. Trattner et al., Cusp structures combining multi-spacecraft observations with ground-based observations. Ann. Geophys. 21, 2031 (2003) ADSGoogle Scholar
  101. K.J. Trattner, J.S. Mulcock, S.M. Petrinec, S.A. Fuselier, Location of the reconnection line at the magnetopause during southward IMF conditions. Geophys. Res. Lett. (2007a). doi:10.1029/2006GL028397 Google Scholar
  102. K.J. Trattner, J.S. Mulcock, S.M. Petrinec, S.A. Fuselier, Probing the boundary between antiparallel and component reconnection during southward interplanetary magnetic field conditions. J. Geophys. Res. (2007b). doi:10.1029/2007012270JA Google Scholar
  103. K.J. Trattner, S.M. Petrinec, S.A. Fuselier, W.K. Petersen, R. Friedel, Cusp energetic ions as tracers for particle transport into the magnetosphere. J. Geophys. Res. (2010). doi:10.1029/2009JA014919 Google Scholar
  104. L. Trenchi et al., Occurrence of reconnection jets at the dayside magnetopause, Double Star observations. J. Geophys. Res. (2008). doi:10.1029/2007JA012774 Google Scholar
  105. A. Vaivads, A. Retinò, M. André, Microphysics of magnetic reconnection. Space Sci. Rev. (2006). doi:10.1007/s11214-006-7019-3 Google Scholar
  106. A. Vaivads et al., Structure of the magnetic reconnection diffusion region from four-spacecraft observations. Phys. Rev. Lett. (2004). doi:10.1103/PhysRevLett.93.105001 Google Scholar
  107. V.M. Vasyliunas, Theoretical models of magnetic field line merging. Rev. Geophys. (1975). doi:10.1029/RG013i001p00303 Google Scholar
  108. M.F. Vogt et al., Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations. J. Geophys. Res. (2010). doi:10.1029/2009JA015098 Google Scholar
  109. H. Zhang et al., Cluster observations of collisionless Hall reconnection at high-latitude magnetopause. J. Geophys. Res. (2008). doi:10.1029/2007JA012789 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Lockheed Martin Advanced Technology CenterPalo AltoUSA
  2. 2.Southwest Research InstituteSan AntonioUSA

Personalised recommendations