Space Science Reviews

, Volume 176, Issue 1–4, pp 333–342 | Cite as

10Be Production in the Atmosphere by Galactic Cosmic Rays

  • Daniel Matthiä
  • Klaudia Herbst
  • Bernd Heber
  • Thomas Berger
  • Günther Reitz
Article

Abstract

Galactic cosmic ray nuclei and energetic protons produced in solar flares and accelerated by coronal mass ejections are the main sources of high-energy particles of extraterrestrial origin in near-Earth space and inside the Earth’s atmosphere. The intensity of galactic cosmic rays inside the heliosphere is strongly influenced by the modulation of the interstellar source particles on their way through interplanetary space. Among others, this modulation depends on the activity of the Sun, and the resulting intensity of the energetic particles in the atmosphere is an indicator of the solar activity. Therefore, rare isotopes found in historical archives and produced by spallation reactions of primary and secondary hadrons of cosmic origin in the atmosphere, so-called cosmogenic nuclides, can be used to reconstruct the solar activity in the past. The production rate of 10Be, one of the cosmogenic nuclides most adequate to study the solar activity, is presented showing its variations with geographic latitude and altitude and the dependence on different production cross-sections present in literature. In addition, estimates for altitude integrated production rates of 10Be at different locations since the early nineteen sixties are shown.

Keywords

Galactic cosmic rays Cosmogenic nuclides Solar activity Monte-Carlo calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003) ADSCrossRefGoogle Scholar
  2. E. Bard et al., Earth Planet. Sci. Lett. 150, 453 (1997) ADSCrossRefGoogle Scholar
  3. J. Beer et al., Nature 331, 675 (1988) MathSciNetADSCrossRefGoogle Scholar
  4. J. Beer et al., Nature 347, 33 (1990) CrossRefGoogle Scholar
  5. L.J. Gleeson, W.I. Axford, Astrophys. J. 154, 1011 (1968) ADSCrossRefGoogle Scholar
  6. B. Heber et al., Geophys. Res. Lett. 26, 2133 (1999) ADSCrossRefGoogle Scholar
  7. U. Heikkilä, J. Beer, J. Feichter, Atmos. Chem. Phys. 8, 2797 (2008) ADSCrossRefGoogle Scholar
  8. U. Heikkilä et al., Atmos. Chem. Phys. 9, 515 (2009) ADSCrossRefGoogle Scholar
  9. K. Herbst et al., J. Geophys. Res. (2010). doi:10.1029/2009JD012557 Google Scholar
  10. J. Masarik, J. Beer, J. Geophys. Res. 104(D10), 12099 (1999) ADSCrossRefGoogle Scholar
  11. S. Maus et al., Geophys. J. Int. 161, 561 (2005) CrossRefGoogle Scholar
  12. K.G. McCracken et al., J. Geophys. Res. (2004). doi:10.1029/2004JA010685 Google Scholar
  13. J.A. Simpson, Space Sci. Rev. 93, 11 (2000) ADSCrossRefGoogle Scholar
  14. D.F. Smart, M.A. Shea, Adv. Space Res. 44, 1107 (2009) ADSCrossRefGoogle Scholar
  15. F. Steinhilber, J.A. Abreu, J. Beer, Astrophys. Space Sci. Trans. 4, 1 (2008) ADSCrossRefGoogle Scholar
  16. G. Usoskin et al., J. Geophys. Res. (2002). doi:10.1029/2002JA009343 Google Scholar
  17. G. Usoskin et al., Astron. Astrophys. (2004). doi:10.1051/0004-6361:20031533 Google Scholar
  18. G. Usoskin, K. Alanko-Huotari, G.A. Kovaltsov, K. Mursula, J. Geophys. Res. (2005). doi:10.1029/2005JA011250 Google Scholar
  19. M. Vonmoos, J. Beer, R. Muscheler, J. Geophys. Res. (2006). doi:10.1029/2005JA011500 Google Scholar
  20. W.R. Webber, P.R. Higbie, J. Geophys. Res. 108(A9), 1355 (2003) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Daniel Matthiä
    • 1
  • Klaudia Herbst
    • 2
  • Bernd Heber
    • 2
  • Thomas Berger
    • 1
  • Günther Reitz
    • 1
  1. 1.German Aerospace CenterInstitute of Aerospace MedicineCologneGermany
  2. 2.Institut für Experimentelle und Angewandte PhysikChristian-Albrechts-UniversitätKielGermany

Personalised recommendations