Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Modeling of Venus, Mars, and Titan

Abstract

Increased computer capacity has made it possible to model the global plasma and neutral dynamics near Venus, Mars and Saturn’s moon Titan. The plasma interactions at Venus, Mars, and Titan are similar because each possess a substantial atmosphere but lacks a global internally generated magnetic field. In this article three self-consistent plasma models are described: the magnetohydrodynamic (MHD) model, the hybrid model and the fully kinetic plasma model. Chamberlain and Monte Carlo models of the Martian exosphere are also described. In particular, we describe the pros and cons of each model approach. Results from simulations are presented to demonstrate the ability of the models to capture the known plasma and neutral dynamics near the three objects.

References

  1. M.H. Acuña et al., J. Geophys. Res. 106(E10), 23403–23418 (2001)

  2. H. Backes et al., Science 308, 992 (2005). doi:10.1126/science.1109763

  3. S. Barabash et al., Science 315(5811), 501–503 (2007). doi:10.1126/science.1134358

  4. C.A. Barth et al., J. Geophys. Res. 76, 2213 (1971)

  5. R. Bauske et al., J. Geophys. Res. 103(A10), 23635–23638 (1998)

  6. M. Benna et al., Geophys. Res. Lett. 36, L04109 (2009). doi:10.1029/2008GL036718

  7. J.-L. Bertaux, Planet. Space Sci. 26, 431 (1978)

  8. C. Bertucci et al., Geophys. Res. Lett. 30(2), 1099 (2003). doi:10.1029/2002GL015713

  9. C. Bertucci et al., Science 321, 1475 (2008). doi:10.1126/science.1159780

  10. C. Bertucci et al., Space Sci. Rev. (2011, submitted)

  11. N. Besse et al., Int. J. Appl. Math. Comput. Sci. 17, 361–374 (2007). doi:10.2478/v10006-007-0030-3

  12. G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon, Oxford, 1994)

  13. C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985)

  14. A. Boesswetter et al., Ann. Geophys. 22, 4363–4379 (2004)

  15. A. Boesswetter et al., Ann. Geophys. 25, 1851–1864 (2007)

  16. S.W. Bougher et al., J. Geophys. Res. 104, 16591 (1999)

  17. L.H. Brace, A.J. Kliore, Space Sci. Rev. 55(1–4), 81–163 (1991). doi:10.1007/BF00177136

  18. D. Brain et al., Icarus 206, 139–151 (2010)

  19. S.H. Brecht, J.R. Ferrante, J. Geophys. Res. 96(A7), 11209–11220 (1991)

  20. S.H. Brecht, J. Geophys. Res. 102(A3), 4743–4750 (1997)

  21. S.H. Brecht et al., J. Geophys. Res. 105(A6), 13119–13130 (2000)

  22. S.H. Brecht et al., Icarus 206, 164–173 (2010)

  23. S.H. Brecht et al., Earth, Planets and Space. (2011, accepted)

  24. R.T. Brinkman, Planet. Space Sci. 19, 791–794 (1971)

  25. J.W. Chamberlain, Planet. Space Sci. 11, 901 (1963)

  26. J.W. Chamberlain, J. Geophys. Res. 82, 1 (1977)

  27. J.W. Chamberlain, Icarus 44, 651 (1980)

  28. E. Chassefière et al., Planet. Space Sci. 55, 343 (2007)

  29. J.-Y. Chaufray et al., J. Geophys. Res. 112, E09009 (2007). doi:10.1029/2007JE002915

  30. J.-Y. Chaufray et al., J. Geophys. Res. 114, E02006 (2009)

  31. Y. Chen, P.A. Cloutier, J. Geophys. Res. 108, 1382 (2003)

  32. F. Cipriani et al., J. Geophys. Res. 112, E7001 (2007)

  33. A.J. Coates et al., Geophys. Res. Lett. 34, L24S05 (2007). doi:10.1029/2007GL030919

  34. T.E. Cravens et al., Planet. Space Sci. 46, 1193 (1998)

  35. S.A. Curtis, R.E. Hartle, J. Geophys. Res. 83, 1551 (1978)

  36. E. Dubinin et al., Space Sci. Rev. 206, 209–238 (2006)

  37. E. Dubinin et al., Planet. Space Sci. (2008)

  38. F. Duru et al., J. Geophys. Res. 113, A07302 (2008). doi:10.1029/2008JA0130373

  39. F. Duru et al., Icarus 206(1), 74–82 (2010)

  40. H.J. Fahr, B. Shizgal, Rev. Geophys. Space Phys. 21, 75 (1983)

  41. P.D. Feldman et al., Icarus 214, 394 (2011)

  42. J.L. Fox, A.B. Hac, J. Geophys. Res. 102, 24,005 (1997)

  43. J.L. Fox, A.B. Hac, Icarus 204, 527 (2009)

  44. Y. Futaana et al., Space Sci. Rev. (2011, submitted)

  45. A. Glocer et al., J. Geophys. Res. 114, A12203 (2009). doi:10.1029/2009JA014418

  46. S.L. Guberman, in Physics of Ion–Ion and Electron–Ion Collisions, ed. by F. Brouillard, J.W. McGowan (Plenum, New York, 1983), pp. 167–200

  47. S.L. Guberman, in Dissociative Recombination: Theory Experiment and Applications, ed. by J.B.A. Mitchell, S.L. Guberman (World Scientific, Singapore, 1989), pp. 45–60

  48. J.S. Halekas et al., Geophys. Res. Lett. (2006). doi:10.1029/2006GL026229

  49. W.B. Hanson, G.P. Mantas, J. Geophys. Res. 93, 7538 (1988)

  50. D.S. Harned, J. Comput. Phys. 47, 452–462 (1982)

  51. E. Harnett, R. Winglee, Geophys. Res. Lett. 30 (2003). doi:10.1029/2003GL017852

  52. E. Harnett, R. Winglee, J. Geophys. Res. 110, A07226 (2005). doi:10.1029/2003JA010315

  53. E.M. Harnett, R.M. Winglee, J. Geophys. Res. 111, A09213 (2006). doi:10.1029/2006JA011724

  54. E.M. Harnett, R.M. Winglee, J. Geophys. Res. 112, A05207 (2007). doi:10.1029/2006JA012001

  55. E.M. Harnett, J. Geophys. Res. 114, A01208 (2009). doi:10.1029/2008JA013648

  56. R.E. Hartle et al., J. Geophys. Res. 87, 1383–1394 (1982). doi:10.1029/JA087iA03p01383

  57. R.E. Hartle et al., Geophys. Res. Lett. 33, L08201 (2006). doi:10.1029/2005GL024817

  58. R.R. Hodges, J. Geophys. Res. 78, 8055 (1973)

  59. R.R. Hodges, J. Geophys. Res. 85, 164 (1980)

  60. R.R. Hodges, J. Geophys. Res. 98, 3799 (1993)

  61. R.R. Hodges, J. Geophys. Res. 99, 23229 (1994)

  62. R.R. Hodges, J. Geophys. Res. 104, 8463 (1999)

  63. R.R. Hodges, J. Geophys. Res. 105, 6971 (2000)

  64. R. Jarvinen et al., Adv. Space Res. 41, 1361–1374 (2008)

  65. R.E. Johnson et al., J. Geophys. Res. 105, 1659 (2000)

  66. R.E. Johnson et al., Space Sci. Rev. 139, 355 (2008)

  67. K. Kabin et al., J. Geophys. Res. 104, 2451 (1999)

  68. K. Kabin et al., J. Geophys. Res. 105, 10,761 (2000)

  69. E. Kallio et al., J. Geophys. Res. 103, 4723 (1998)

  70. E. Kallio, P. Janhunen, J. Geophys. Res. 106, 5617–5634 (2001)

  71. E. Kallio et al., Geophys. Res. Lett. 31, L15703 (2004). doi:10.1029/2004GL020344

  72. E. Kallio et al., Planet. Space Sci. 54, 1472–1481 (2006)

  73. E. Kallio et al., Planet. Space Sci. 56, 796–801 (2008)

  74. E. Kallio et al., Icarus 206, 152–163 (2010)

  75. E. Kallio, R. Jarvinen, Earth, Planets and Space (2011, submitted)

  76. J. Kella et al., Science 276, 1530 (1997)

  77. V. Kharchenko et al., J. Geophys. Res. 105, 24,899 (2000)

  78. A. Kidder et al., J. Geophys. Res. 113, A02205 (2009). doi:10.1029/2008JA013100.

  79. J. Kim et al., J. Geophys. Res. 103, 29339 (1998)

  80. V.A. Krasnopolsky, Icarus 107, 5128 (2002)

  81. V.A. Krasnopolsky, Icarus 207, 638 (2010)

  82. M.A. Krestyanikova, V.I. Shematovitch, Sol. Syst. Res. 39, 22 (2005)

  83. A.B. Langdon, Part. Accel. 19, 223–225 (1986)

  84. F. Leblanc, R.E. Johnson, Planet. Space Sci. 49, 645 (2001)

  85. F. Leblanc, R.E. Johnson, J. Geophys. Res 107 (2002). doi:10.1029/2000JE001473

  86. F. Leblanc et al., J. Geophys.Res. 111, E09S11 (2006). doi:10.1029/2005JE002664

  87. S.A. Ledvina, T.E. Cravens, Planet. Space Sci. 46, 1175 (1998)

  88. S.A. Ledvina et al., J. Geophys. Res. 110, A06211 (2005). doi:10.1029/2004JA010771

  89. S.A. Ledvina et al., Space Sci. Rev. (2008). doi:10.1007/s11214-008-9384-6

  90. S.A. Ledvina et al., Earth Planet. Sci. (2011, submitted)

  91. H.I.M. Lichtenegger et al., Space Sci. Rev. 126, 469 (2006)

  92. H.I.M. Lichtenegger et al., Geophys. Res. Lett. 36, L10204 (2009)

  93. Y.J. Liu et al., Geophys. Res. Lett. 26(17), 2689–2692 (1999)

  94. Y.J. Liu et al., Adv. Space Res. 27, 1837 (2001)

  95. J.G. Luhmann, J. Geophys. Res. 101(E12), 29387–29393 (1996)

  96. J.G. Luhmann, T.E. Cravens, Space Sci. Rev. 55, 1 (1991). doi:10.1007/BF00177138

  97. R. Lundin et al., Geophys. Res. Lett. 17, 877 (1990)

  98. R. Lundin et al., Science 305, 1933–1936 (2004)

  99. R. Lundin et al., Science 311(5763), 980–983 (2006). doi:10.1126/science.1122071

  100. Y.J. Ma et al., J. Geophys. Res. 10, A10 (2002). doi:10.1029/2002JA009293

  101. Y.J. Ma et al., J. Geophys. Res. 109, A07211 (2004). doi:10.1029/2003JA010367

  102. Y. Ma et al., J. Geophys. Res. 111, A05207 (2006). doi:10.1029/2005JA011481

  103. Y.J. Ma et al., Geophys. Res. Lett. (2007). doi:10.1029/2007GL031627

  104. Y.-J. Ma et al., Space Sci Rev. 139(1–4) (2008). doi:10.1007/s11214-008-9389-1

  105. Y.J. Ma et al., J. Geophys. Res. 114, A03204 (2009). doi:10.1029/2008JA013676

  106. C. Mazelle et al., Space Sci. Rev. 111, 115–181 (2004)

  107. A. Matthews, J. Comput. Phys. 112, 102–116 (1994)

  108. M.B. McElroy, Science 175, 443–445 (1972)

  109. M.B. McElroy et al., Science 215, 1614 (1982)

  110. F.J. Mehr, M.A. Biondi, Phys. Rev. 181, 264 (1969)

  111. D.L. Mitchell et al., J. Geophys. Res. 106, 23419 (2001)

  112. R. Modolo et al., Ann. Geophys. 23, 433–444 (2005)

  113. R. Modolo et al., Ann. Geophys. 24, 3403–3410 (2006)

  114. R. Modolo et al., Geophys. Res. Lett. 34, L24S07 (2007). doi:10.1029/2007GL030489

  115. R. Modolo, G.M. Chanteur, J. Geophys. Res. 113, A01317 (2008). doi:10.1029/2007JA012453

  116. K. Moore et al., J. Geophys. Res. 96, 7779–7791 (1991)

  117. K. Murawski, R.S. Steinolfson, J. Geophys. Res. 101, 2547 (1996)

  118. A.F. Nagy, T.E. Cravens, Geophys. Res. Lett. 15, 433 (1988)

  119. A.F. Nagy et al., Ann. Geophys. 8, 251 (1990)

  120. A.F. Nagy et al., J. Geophys. Res. 106(A4), 6151–6160 (2001)

  121. A.F. Nagy et al., Space Sci. Rev. 111, 1 (2004). doi:10.1023/B:SPAC.0000032718.47512.92

  122. D. Najib et al., J. Geophys. Res. 116, A05204 (2011). doi:10.1029/2010JA016272

  123. F. Neubauer et al., J. Geophys. Res. 111, 10220 (2006)

  124. R. Peverall et al., J. Chem. Phys. 114, 6679 (2001)

  125. V. Pohjola, E. Kallio, Ann. Geophys. 28, 743–751 (2010)

  126. J.M. Rodriguez et al., Planet. Space Sci. 32, 1235 (1984)

  127. R.W. Schunk, A.F. Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry (Cambridge University Press, New York, 2009)

  128. V.I. Shematovich et al., J. Geophys. Res. 99, 23,217 (1994)

  129. H. Shimazu, Earth Planets Space 51, 383–393 (1999)

  130. B. Shizgal, Adv. Space Sci. 7, 73 (1987)

  131. B. Shizgal, J. Geophys. Res. 107, 14833 (1999a)

  132. B. Shizgal, Planet. Space Sci. 47, 163 (1999b)

  133. B.D. Shizgal, R. Blackmore, Planet. Space Sci. 34, 279 (1986)

  134. I. Sillanpää et al., J. Geophys. Res. 112, A12205 (2007). doi:10.1029/2007JA012348

  135. S. Simon et al., Ann. Geophys. 24, 1113–1135 (2006)

  136. S. Simon, A. Boesswetter, T. Bagdonat, U. Motschmann, J. Schuele, Ann. Geophys. 25, 117–144 (2007) doi:10.5194/angeo-25-117-2007

  137. S. Simon et al., Planet. Space Sci. 57, 2001–2015 (2009)

  138. G.R. Smith et al., J. Geophys. Res. 83, 3783 (1978)

  139. D. Snowden et al., J. Geophys. Res. 112, A1221 (2007). doi:10.1029/2007/JA012393

  140. A.I. Stewart et al., J. Geophys. Res. 97, 91 (1992)

  141. D.J. Strickland et al., J. Geophys. Res. 77, 4052 (1972)

  142. D.J. Strickland et al., J. Geophys. Res. 78, 4547 (1973)

  143. T. Tanaka, J. Geophys. Res. 98, 17251–17262 (1993)

  144. T. Tanaka, K. Murawski, J. Geophys. Res. 102, 19,805 (1997). doi:10.1029/97JA01474

  145. N. Terada et al., J. Geophys. Res. 114, A09208 (2009). doi:10.1029/2008JA013937

  146. G. Tóth et al., J. Comput. Phys. 227, 6967–6984 (2008)

  147. C. Tully, R.E. Johnson, Planet. Space Sci. 49, 533 (2001)

  148. T. Umeda et al., Comput. Phys. Commun. 156(1), 73–85 (2003). doi:10.1016/S0010-4655(03)00437-5

  149. T. Umeda, J. Geophys. Res. 115, A01204 (2010). doi:10.1029/2009JA014643

  150. A. Valeille et al., J. Geophys. Res. 114, E11005 (2009a)

  151. A. Valeille et al., J. Geophys. Res. 114, E11006 (2009b)

  152. S. Vennerstrom et al., Geophys. Res. Lett. 30, 1369 (2003)

  153. A. Vidal-Madjar, J.-L. Bertaux, Planet. Space Sci. 20, 1147 (1972)

  154. D. Vignes et al., Geophys. Res. Lett. 27, 49 (2000)

  155. J. Villasenor, O. Buneman, Comput. Phys. Commun. 69, 306 (1992)

  156. J.H. Waite et al., Science 308(5724), 982–986 (2005)

  157. J.E. Wahlund et al., Science 308, 986–989 (2005)

  158. H.Y. Wei et al., Geophys. Res. Lett. 34, L24S06 (2007). doi:10.1029/2007GL030701

  159. R.M. Winglee et al., J. Geophys. Res. 114, A05215 (2009). doi:10.1029/2008JA013343

  160. M.H.G. Zhang et al., J. Geophys. Res. 98, 10,915 (1993)

  161. T.L. Zhang et al., Geophys. Res. Lett. 37, L14202 (2010). doi:10.1029/2010GL044020

  162. J.F. Ziegler et al., The Stopping and Ranges of Ions in Matter (Pergamon, New York, 1985)

Download references

Author information

Correspondence to Esa Kallio.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Kallio, E., Chaufray, J., Modolo, R. et al. Modeling of Venus, Mars, and Titan. Space Sci Rev 162, 267–307 (2011). https://doi.org/10.1007/s11214-011-9814-8

Download citation

Keywords

  • Numerical modeling
  • Full kinetic model
  • Hybrid model
  • Magnetohydrodynamic model
  • Exosphere model
  • Venus
  • Mars
  • Titan
  • Planetary magnetospheres
  • Planetary exospheres