Space Science Reviews

, Volume 163, Issue 1–4, pp 41–61 | Cite as

The Origin and Evolution of the Asteroid Belt—Implications for Vesta and Ceres

  • David P. O’Brien
  • Mark V. Sykes


Vesta and Ceres are the largest members of the asteroid belt, surviving from the earliest phases of Solar System history. They formed at a time when the asteroid belt was much more massive than it is today and were witness to its dramatic evolution, where planetary embryos were formed and lost, where the collisional environment shifted from accretional to destructive, and where the current size distribution of asteroids was sculpted by mutual collisions and most of the asteroids originally present were lost by dynamical processes. Since these early times, the environment of the asteroid belt has become relatively quiescent, though over the long history of the Solar System the surfaces of Vesta and Ceres continue to record and be influenced by impacts, most notably the south polar cratering event on Vesta. As a consequence of such impacts, Vesta has contributed a significant family of asteroids to the main belt, which is the likely source of the HED meteorites on Earth. No similar contribution to the main belt (or meteorites) is evident for Ceres. Through studies of craters, the surfaces of these asteroids will offer an opportunity for Dawn to probe the modern population of small asteroids in a size regime not directly observable from Earth.


Asteroids Asteroid dynamics Asteroid collisional evolution Asteroid Vesta Asteroid Ceres Asteroid families Planet formation Impacts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. E. Asphaug, Impact origin of the Vesta family. Meteorit. Planet. Sci. 32, 965–980 (1997) ADSGoogle Scholar
  2. W. Benz, E. Asphaug, Catastrophic disruptions revisited. Icarus 142, 5–20 (1999) ADSGoogle Scholar
  3. R.P. Binzel, S. Xu, Chips off of asteroid 4 Vesta—evidence for the parent body of basaltic achondrite meteorites. Science 260, 186–191 (1993) ADSGoogle Scholar
  4. R.P. Binzel, P. Farinella, V. Zappala, A. Cellino, Asteroid rotation rates—distributions and statistics, in Asteroids II, ed. by R.P. Binzel, T. Gehrels, M. Matthews (University of Arizona Press, Tucson, 1989), pp. 416–441 Google Scholar
  5. D.D. Bogard, D.H. Garrison, 39Ar-40Ar ages of eucrites and thermal history of asteroid 4 Vesta. Meteorit. Planet. Sci. 38, 669–710 (2003) ADSGoogle Scholar
  6. A.P. Boss, Giant planet formation by gravitational instability. Science 276, 1836–1839 (1997) ADSGoogle Scholar
  7. W.F. Bottke Jr., D. Vokrouhlicky, D.P. Rubincam, M. Broz, The effect of Yarkovsky thermal forces on the dynamical evolution of asteroids and meteoroids, in Asteroids III, ed. by W.F. Bottke, A. Cellino, P. Paolicchi, R.P. Binzel (University of Arizona Press, Tucson, 2002), pp. 395–408 Google Scholar
  8. W.F. Bottke, M.C. Nolan, R. Greenberg, R.A. Kolvoord, Velocity distributions among colliding asteroids. Icarus 107, 255–268 (1994) ADSGoogle Scholar
  9. W.F. Bottke, D.D. Durda, D. Nesvorny, R. Jedicke, A. Morbidelli, D. Vokrouhlicky, H. Levison, The fossilized size distribution of the main asteroid belt. Icarus 175, 111–140 (2005a) ADSGoogle Scholar
  10. W.F. Bottke, D.D. Durda, D. Nesvorny, R. Jedicke, A. Morbidelli, D. Vokrouhlicky, H.F. Levison, Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion. Icarus 179, 63–94 (2005b) ADSGoogle Scholar
  11. W.F. Bottke, D. Nesvorny, R.F. Grimm, A. Morbidelli, D.P. O’Brien, Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature 439, 821–824 (2006) ADSGoogle Scholar
  12. E. Bowell, K. Muinonen, L.H. Wasserman, A public domain asteroid orbit data base, in Proceedings of IAU Symposium 160: Asteroids, Comets, Meteors 1993, ed. by A. Milani, M. di Martino, A. Cellino (Kluwer Academic, Norwell, 1994), pp. 477–481. Google Scholar
  13. J. Castillo-Rogez, T.B. McCord, Ceres’ evolution and present state constrained by shape data. Icarus 205, 443–459 (2010) ADSGoogle Scholar
  14. J.E. Chambers, D.P. O’Brien, A.M. Davis, Accretion of planetesimals and the formation of rocky planets, in Protoplanetary Dust: Astrophysical and Cosmochemical Perspectives, ed. by D.A. Apai, D.S. Lauretta (Cambridge University Press, Cambridge, 2010), pp. 299–335 Google Scholar
  15. J.E. Chambers, G.W. Wetherill, Making the terrestrial planets: n-body integrations of planetary embryos in three dimensions. Icarus 136, 304–327 (1998) ADSGoogle Scholar
  16. J.E. Chambers, G.W. Wetherill, Planets in the asteroid belt. Meteorit. Planet. Sci. 36, 381–399 (2001) ADSGoogle Scholar
  17. J.E. Chambers, Planetary accretion in the inner Solar System. Earth Planet. Sci. Lett. 223, 241–252 (2004) ADSGoogle Scholar
  18. J.E. Chambers, A semi-analytic model for oligarchic growth. Icarus 180, 496–513 (2006) ADSGoogle Scholar
  19. J.E. Chambers, Planetesimal formation by turbulent concentration. Icarus 208, 505–517 (2010) ADSGoogle Scholar
  20. C.R. Chapman, D.R. Davis, Asteroid collisional evolution—evidence for a much larger early population. Science 190, 553–556 (1975) ADSGoogle Scholar
  21. C.R. Chapman, B.A. Cohen, D.H. Grinspoon, What are the real constraints on the existence and magnitude of the late heavy bombardment? Icarus 189, 233–245 (2007) ADSGoogle Scholar
  22. F.J. Ciesla, Dust coagulation and settling in layered protoplanetary disks. Astrophys. J. Lett. 654, 159–162 (2007) ADSGoogle Scholar
  23. G.J. Consolmagno, M.J. Drake, Composition and evolution of the eucrite parent body—evidence from rare earth elements. Geochim. Cosmochim. Acta 41, 1271–1282 (1977) ADSGoogle Scholar
  24. A. Coradini, D. Turrini, C. Federico, G. Magni, Vesta and Ceres: crossing the history of the Solar System. Space Sci. Rev. (2011, this issue). doi: 10.1007/s11214-011-9792-x
  25. J.N. Cuzzi, S.J. Weidenschilling, Particle-gas dynamics and primary accretion, in Meteorites and the Early Solar System II, ed. by D.S. Lauretta, H.Y. McSween Jr. (University of Arizona Press, Tucson, 2006), pp. 353–381 Google Scholar
  26. J.N. Cuzzi, R.C. Hogan, K. Shariff, Towards planetesimals: dense chondrule clumps in the protoplanetary nebula. Astrophys. J. 687, 1432–1447 (2008) ADSGoogle Scholar
  27. J.N. Cuzzi, R.C. Hogan, W.F. Bottke, Towards initial mass functions for asteroids and Kuiper Belt Objects. Icarus 208, 518–538 (2010) ADSGoogle Scholar
  28. J.N. Cuzzi, R.C. Hogan, J.M. Paque, A.R. Dobrovolskis, Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence. Astrophys. J. 546, 496–508 (2001) ADSGoogle Scholar
  29. D.R. Davis, E.V. Ryan, P. Farinella, Asteroid collisional evolution: results from current scaling algorithms. Planet. Space Sci. 42, 599–610 (1994) ADSGoogle Scholar
  30. D.R. Davis, C.R. Chapman, S.J. Weidenschilling, R. Greenberg, Collisional history of asteroids: evidence from Vesta and the Hirayama families. Icarus 63, 30–53 (1985) ADSGoogle Scholar
  31. M. Delbo, M. Gai, M.G. Lattanzi, S. Ligori, D. Loreggia, L. Saba, A. Cellino, D. Gandolfi, D. Licchelli, C. Blanco, M. Cigna, M. Wittkowski, MIDI observations of 1459 Magnya: first attempt of interferometric observations of asteroids with the VLTI. Icarus 181, 618–622 (2006) ADSGoogle Scholar
  32. C.P. Dullemond, C. Dominik, Dust coagulation in protoplanetary disks: a rapid depletion of small grains. Astron. Astrophys. 434, 971–986 (2005) zbMATHADSGoogle Scholar
  33. M. Duncan, Orbital stability and the structure of the Solar System, in Circumstellar Dust Disks and Planet Formation, ed. by R. Ferlet, A. Vidal-Madjar (Editions Frontieres, Gif-sur-Yvette, 1994), pp. 245–255 Google Scholar
  34. D.D. Durda, R. Greenberg, R. Jedicke, Collisional models and scaling laws: a new interpretation of the shape of the main-belt asteroid size distribution. Icarus 135, 431–440 (1998) ADSGoogle Scholar
  35. P. Farinella, C. Froeschle, C. Froeschle, R. Gonczi, G. Hahn, A. Morbidelli, G.B. Valsecchi, Asteroids falling onto the Sun. Nature 371, 315–317 (1994) ADSGoogle Scholar
  36. J.A. Fernandez, W.-H. Ip, Some dynamical aspects of the accretion of Uranus and Neptune—the exchange of orbital angular momentum with planetesimals. Icarus 58, 109–120 (1984) ADSGoogle Scholar
  37. B.J. Gladman, F. Migliorini, A. Morbidelli, V. Zappala, P. Michel, A. Cellino, C. Froeschle, H.F. Levison, M. Bailey, M. Duncan, Dynamical lifetimes of objects injected into asteroid belt resonances. Science 277, 197–201 (1997) ADSGoogle Scholar
  38. B.J. Gladman, D.R. Davis, C. Neese, R. Jedicke, G. Williams, J.J. Kavelaars, J. Petit, H. Scholl, M. Holman, B. Warrington, G. Esquerdo, P. Tricarico, On the asteroid belt’s orbital and size distribution. Icarus 202, 104–118 (2009) ADSGoogle Scholar
  39. P. Goldreich, W.R. Ward, The formation of planetesimals. Astrophys. J. 183, 1051–1062 (1973) ADSGoogle Scholar
  40. R.S. Gomes, Dynamical effects of planetary migration on the primordial asteroid belt. Astron. J. 114, 396–401 (1997) ADSGoogle Scholar
  41. R. Gomes, H.F. Levison, K. Tsiganis, A. Morbidelli, Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005) ADSGoogle Scholar
  42. J. Gradie, E. Tedesco, Compositional structure of the asteroid belt. Science 216, 1405–1407 (1982) ADSGoogle Scholar
  43. R. Greenberg, W.K. Hartmann, C.R. Chapman, J.F. Wacker, Planetesimals to planets—numerical simulation of collisional evolution. Icarus 35, 1–26 (1978) ADSGoogle Scholar
  44. T.A. Heppenheimer, Secular resonances and the origin of eccentricities of Mars and the asteroids. Icarus 41, 76–88 (1980) ADSGoogle Scholar
  45. R.H. Hewins, H.E. Newsom, Igneous activity in the early Solar System, in Meteorites and the Early Solar System, ed. by J.F. Kerridge, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 73–101 Google Scholar
  46. K.A. Holsapple, The scaling of impact processes in planetary sciences. Annu. Rev. Earth Planet. Sci. 21, 333–373 (1993) ADSGoogle Scholar
  47. K.A. Holsapple, I. Giblin, K. Housen, A. Nakamura, E. Ryan, Asteroid impacts: laboratory experiments and scaling laws, in Asteroids III, ed. by W.F. Bottke, A. Cellino, P. Paolicchi, R.P. Binzel (University of Arizona Press, Tucson, 2002), pp. 443–462 Google Scholar
  48. B.A. Ivanov, H.J. Melosh, E. Pierazzo, The south pole impact crater on Vesta: numerical modeling. Lunar Plan. Sci. Conf. 42, Abstract no. 1717 (2011) Google Scholar
  49. R. Jedicke, J. Larsen, T. Spahr, Observational selection effects in asteroid surveys, in Asteroids III, ed. by W.F. Bottke, A. Cellino, P. Paolicchi, R.P. Binzel (University of Arizona Press, Tucson, 2002), pp. 71–87 Google Scholar
  50. A. Johansen, A. Youdin, Protoplanetary disk turbulence driven by the streaming instability: nonlinear saturation and particle concentration. Astrophys. J. 662, 627–641 (2007) ADSGoogle Scholar
  51. A. Johansen, J.S. Oishi, M.-M. Mac Low, H. Klahr, T. Henning, A. Youdin, Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025 (2007) ADSGoogle Scholar
  52. M. Jutzi, E. Asphaug, Mega-ejecta on asteroid Vesta. Geophys. Res. Lett. 38, L01102 (2011) Google Scholar
  53. T. Kleine, K. Mezger, H. Palme, E. Scherer, C. Munker, Early core formation in asteroids and late accretion of chondrite parent bodies: evidence from 182Hf-182W in CAIs, metal-rich chondrites, and iron meteorites. Geochim. Cosmochim. Acta 69, 5805–5818 (2005) ADSGoogle Scholar
  54. T. Kleine, M. Touboul, B. Bourdon, F. Nimmo, K. Mezger, H. Palme, S.B. Jacobsen, Q.-Z. Yin, A.N. Halliday, Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009) ADSGoogle Scholar
  55. Z. Knezevic, A. Milani, Proper element catalogs and asteroid families. Astron. Astrophys. 403, 1165–1173 (2003). ADSGoogle Scholar
  56. E. Kokubo, S. Ida, On runaway growth of planetesimals. Icarus 123, 180–191 (1996) ADSGoogle Scholar
  57. E. Kokubo, S. Ida, Oligarchic growth of protoplanets. Icarus 131, 171–178 (1998) ADSGoogle Scholar
  58. S.J. Kortenkamp, G.W. Wetherill, Terrestrial planet and asteroid formation in the presence of giant planets. I. Relative velocities of planetesimals subject to Jupiter and Saturn perturbations. Icarus 143, 60–73 (2000) ADSGoogle Scholar
  59. G.A. Krasinsky, E.V. Pitjeva, M.V. Vasilyev, E.I. Yagudina, Hidden mass in the asteroid belt. Icarus 158, 98–105 (2002) ADSGoogle Scholar
  60. M. Lecar, F. Franklin, The solar nebula, secular resonances, gas drag, and the asteroid belt. Icarus 129, 134–146 (1997) ADSGoogle Scholar
  61. M. Lecar, F.A. Franklin, On the original distribution of the asteroids I. Icarus 20, 422–436 (1973) ADSGoogle Scholar
  62. A. Lemaitre, P. Dubru, Secular resonances in the primitive solar nebula. Celest. Mech. Dyn. Astron. 52, 57–78 (1991) zbMATHADSGoogle Scholar
  63. H.F. Levison, W.F. Bottke, M. Gounelle, A. Morbidelli, D. Nesvorny, K. Tsiganis, Contamination of the asteroid belt by primordial trans-Neptunian objects. Nature 460, 364–366 (2009) ADSGoogle Scholar
  64. R. Malhotra, The origin of Pluto’s peculiar orbit. Nature 365, 819–821 (1993) ADSGoogle Scholar
  65. R. Malhotra, The origin of Pluto’s orbit: implications for the Solar System beyond Neptune. Astron. J. 110, 420–429 (1995) ADSGoogle Scholar
  66. F. Marzari, P. Farinella, D.R. Davis, Origin, aging, and death of asteroid families. Icarus 142, 63–77 (1999) ADSGoogle Scholar
  67. F. Marzari, A. Cellino, D.R. Davis, P. Farinella, V. Zappala, V. Vanzani, Origin and evolution of the Vesta asteroid family. Astron. Astrophys. 316, 248–262 (1996) ADSGoogle Scholar
  68. J. Masiero, A.K. Mainzer, T. Grav, J.M. Bauer, R. Cutri, J. Dailey, M. Delbo, R.S. McMillan, M. Mueller, R.G. Walker, E.L. Wright, WISE results for the main belt asteroids. Lunar Plan. Sci. Conf. 42, Abstract no. 1304 (2011) Google Scholar
  69. T.B. McCord, J.B. Adams, T.V. Johnson, Vesta Asteroid, spectral reflectivity and compositional implications. Science 168, 1445–1447 (1970) ADSGoogle Scholar
  70. T.B. McCord, C. Sotin, Ceres: evolution and current state. J. Geophys. Res. 110, E05009 (2005) Google Scholar
  71. T.B. McCord, J. Castillo-Rogez, A.S. Rivkin, Ceres: its origin, evolution and structure and Dawn’s potential contribution. Space Sci. Rev. (2011, this issue). doi: 10.1007/s11214-010-9729-9
  72. H.Y. McSween Jr., D.W. Mittlefehldt, A.W. Beck, R.G. Mayne, T.J. McCoy, HED meteorites and their relationship to the geology of Vesta and the Dawn mission. Space Sci. Rev. (2011, this issue). doi: 10.1007/s11214-010-9637-z
  73. F. Migliorini, P. Michel, A. Morbidelli, D. Nesvorny, V. Zappala, Origin of multikilometer Earth- and Mars-crossing asteroids: a quantitative simulation. Science 281, 2022–2024 (1998) ADSGoogle Scholar
  74. D.A. Minton, R. Malhotra, A record of planet migration in the main asteroid belt. Nature 457, 1109–1111 (2009) ADSGoogle Scholar
  75. D.A. Minton, R. Malhotra, Dynamical erosion of the asteroid belt and implications for large impacts in the inner Solar System. Icarus 207, 744–757 (2010) ADSGoogle Scholar
  76. A. Morbidelli, Origin and evolution of near Earth asteroids. Celest. Mech. Dyn. Astron. 73, 39–50 (1999) zbMATHADSGoogle Scholar
  77. A. Morbidelli, B. Gladman, Orbital and temporal distributions of meteorites originating in the asteroid belt. Meteorit. Planet. Sci. 33, 999–1016 (1998) ADSGoogle Scholar
  78. A. Morbidelli, D. Vokrouhlicky, The Yarkovsky-driven origin of near-Earth asteroids. Icarus 163, 120–134 (2003) ADSGoogle Scholar
  79. A. Morbidelli, H.F. Levison, K. Tsiganis, R. Gomes, Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435, 462–465 (2005) ADSGoogle Scholar
  80. A. Morbidelli, A. Crida, The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus 191, 158–171 (2007) ADSGoogle Scholar
  81. A. Morbidelli, W.F. Bottke, D. Nesvorny, H.F. Levison, Asteroids were born big. Icarus 204, 558–573 (2009) ADSGoogle Scholar
  82. M. Nagasawa, H. Tanaka, S. Ida, Orbital evolution of asteroids during depletion of the Solar Nebula. Astron. J. 119, 1480–1497 (2000) ADSGoogle Scholar
  83. M. Nagasawa, S. Ida, H. Tanaka, Origin of high orbital eccentricity and inclination of asteroids. Earth Planets Space 53, 1085–1091 (2001) ADSGoogle Scholar
  84. M. Nagasawa, S. Ida, H. Tanaka, Excitation of orbital inclinations of asteroids during depletion of a protoplanetary disk: dependence on the disk configuration. Icarus 159, 322–327 (2002) ADSGoogle Scholar
  85. D. Nesvorny, A. Morbidelli, Three-body mean motion resonances and the chaotic structure of the asteroid belt. Astron. J. 116, 3029–3037 (1998) ADSGoogle Scholar
  86. D. Nesvorny, F. Roig, B. Gladman, D. Lazzaro, V. Carruba, T. Mothe-Diniz, Fugitives from the Vesta family. Icarus 193, 85–95 (2008) ADSGoogle Scholar
  87. D. Nesvorny, HCM asteroid families V1.0. EAR-A-VARGBDET-5-NESVORNYFAM-V1.0, NASA Planetary Data System (2010) Google Scholar
  88. G. Neukum, B.A. Ivanov, W.K. Hartmann, Cratering records in the inner Solar System in relation to the lunar reference system. Space Sci. Rev. 96, 55–86 (2001) ADSGoogle Scholar
  89. L.E. Nyquist, T. Kleine, C.-Y. Shih, Y.D. Reese, The distribution of short-lived radioisotopes in the early Solar System and the chronology of asteroid accretion, differentiation, and secondary mineralization. Geochim. Cosmochim. Acta 73, 5115–5136 (2009) ADSGoogle Scholar
  90. D.P. O’Brien, R. Greenberg, Steady-state size distributions for collisional populations: analytical solution with size-dependent strength. Icarus 164, 334–345 (2003) ADSGoogle Scholar
  91. D.P. O’Brien, A. Morbidelli, H.F. Levison, Terrestrial planet formation with strong dynamical friction. Icarus 184, 39–58 (2006) ADSGoogle Scholar
  92. D.P. O’Brien, A. Morbidelli, W.F. Bottke, The primordial excitation and clearing of the asteroid belt—revisited. Icarus 191, 434–452 (2007) ADSGoogle Scholar
  93. D.P. O’Brien, The Yarkovsky effect is not responsible for small crater depletion on Eros and Itokawa. Icarus 203, 112–118 (2009) ADSGoogle Scholar
  94. J.W. Parker, L.A. McFadden, C.T. Russell, S.A. Stern, M.V. Sykes, P.C. Thomas, E.F. Young, Ceres: high-resolution imaging with HST and the determination of physical properties. Adv. Space Res. 38, 2039–2042 (2006) ADSGoogle Scholar
  95. J.-M. Petit, A. Morbidelli, J. Chambers, The primordial excitation and clearing of the asteroid belt. Icarus 153, 338–347 (2001) ADSGoogle Scholar
  96. J.-M. Petit, A. Morbidelli, G.B. Valsecchi, Large scattered planetesimals and the excitation of the small body belts. Icarus 141, 367–387 (1999) ADSGoogle Scholar
  97. J.-M. Petit, J. Chambers, F. Franklin, M. Nagasawa, Primordial excitation and depletion of the main belt, in Asteroids III, ed. by W.F. Bottke, A. Cellino, P. Paolicchi, R.P. Binzel (University of Arizona Press, Tucson, 2002), pp. 711–738 Google Scholar
  98. J.B. Pollack, O. Hubickyj, P. Bodenheimer, J.J. Lissauer, M. Podolak, Y. Greenzweig, Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996) ADSGoogle Scholar
  99. K. Righter, M.J. Drake, A magma ocean on Vesta: core formation and petrogenesis of eucrites and diogenites. Meteorit. Planet. Sci. 32, 929–944 (1997) ADSGoogle Scholar
  100. C.T. Russell, A. Coradini, U. Christensen, M.C. de Sanctis, W.C. Feldman, R. Jaumann, U. Keller, A.S. Konopliv, T.B. McCord, L.A. McFadden, H.Y. McSween, S. Mottola, G. Neukum, C.M. Pieters, T.H. Prettyman, C.A. Raymond, D.E. Smith, M.V. Sykes, B.G. Williams, J. Wise, M.T. Zuber, Dawn: a journey in space and time. Planet. Space Sci. 52, 465–489 (2004) ADSGoogle Scholar
  101. C.T. Russell, M.A. Barucci, R.P. Binzel, M.T. Capria, U. Christensen, A. Coradini, M.C. De Sanctis, W.C. Feldman, R. Jaumann, H.U. Keller, A.S. Konopliv, T.B. McCord, L.A. McFadden, K.D. McKeegan, H.Y. McSween, S. Mottola, A. Nathues, G. Neukum, C.M. Pieters, T.H. Prettyman, C.A. Raymond, H. Sierks, D.E. Smith, T. Spohn, M.V. Sykes, F. Vilas, M.T. Zuber, Exploring the asteroid belt with ion propulsion: Dawn mission history, status and plans. Adv. Space Res. 40, 193–201 (2007) ADSGoogle Scholar
  102. A. Ruzicka, G.A. Snyder, L.A. Taylor, Vesta as the howardite, eucrite and diogenite parent body: implications for the size of a core and for large-scale differentiation. Meteorit. Planet. Sci. 32, 825–840 (1997) ADSGoogle Scholar
  103. V.S. Safronov, Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets (Nauka Press, Moscow, 1969) (English Translation: NASA TTF-677) Google Scholar
  104. V.S. Safronov, On the origin of asteroids, in Asteroids, ed. by T. Gehrels (University of Arizona Press, Tucson, 1979), pp. 975–991 Google Scholar
  105. R.G. Strom, R. Malhotra, T. Ito, F. Yoshida, D.A. Kring, The origin of planetary impactors in the inner Solar System. Science 309, 1847–1850 (2005) ADSGoogle Scholar
  106. J.S. Stuart, A near-Earth asteroid population estimate from the LINEAR survey. Science 294, 1691–1693 (2001) ADSGoogle Scholar
  107. M.V. Sykes, F. Vilas, Closing in on HED meteorite sources. Earth Planets Space 53, 1077–1083 (2001) ADSGoogle Scholar
  108. E.F. Tedesco, P.V. Noah, M. Noah, S.D. Price, The supplemental IRAS minor planet survey. Astron. J. 123, 1056–1085 (2002) ADSGoogle Scholar
  109. F. Tera, D.A. Papanastassiou, G.J. Wasserburg, Isotopic evidence for a terminal lunar cataclysm. Earth Planet. Sci. Lett. 22, 1–21 (1974) ADSGoogle Scholar
  110. P.C. Thomas, R.P. Binzel, M.J. Gaffey, A.D. Storrs, E.N. Wells, B.H. Zellner, Impact excavation on asteroid 4 Vesta: Hubble Space Telescope results. Science 277, 1492–1495 (1997a) ADSGoogle Scholar
  111. P.C. Thomas, R.P. Binzel, M.J. Gaffey, B.H. Zellner, A.D. Storrs, E. Wells, Vesta: spin pole, size, and shape from HST images. Icarus 128, 88–94 (1997b) ADSGoogle Scholar
  112. P.C. Thomas, J.W. Parker, L.A. McFadden, C.T. Russell, S.A. Stern, M.V. Sykes, E.F. Young, Differentiation of the asteroid Ceres as revealed by its shape. Nature 437, 224–226 (2005) ADSGoogle Scholar
  113. A. Trinquier, J.-L. Birck, C.J. Allegre, C. Gopel, D. Ulfbeck, 53Mn-53Cr systematics of the early Solar System revisited. Geochim. Cosmochim. Acta 72, 5146–5163 (2008) ADSGoogle Scholar
  114. K. Tsiganis, R. Gomes, A. Morbidelli, H.F. Levison, Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005) ADSGoogle Scholar
  115. D. Turrini, G. Magni, A. Coradini, Probing the history of Solar System through the cratering records on Vesta and Ceres. Mon. Not. R. Astron. Soc. 413, 2439–2466 (2011) ADSGoogle Scholar
  116. K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011) ADSGoogle Scholar
  117. W.R. Ward, Solar nebula dispersal and the stability of the planetary system. I—Scanning secular resonance theory. Icarus 47, 234–264 (1981) ADSGoogle Scholar
  118. P.H. Warren, Magnesium oxide-iron oxide mass balance constraints and a more detailed model for the relationship between eucrites and diogenites. Meteorit. Planet. Sci. 32, 945–963 (1997) ADSGoogle Scholar
  119. S.J. Weidenschilling, Aerodynamics of solid bodies in the solar nebula. Mon. Not. R. Astron. Soc. 180, 57–70 (1977a) ADSGoogle Scholar
  120. S.J. Weidenschilling, The distribution of mass in the planetary system and solar nebula. Astrophys. Space Sci. 51, 153–158 (1977b) ADSGoogle Scholar
  121. S.J. Weidenschilling, Dust to planetesimals—settling and coagulation in the solar nebula. Icarus 44, 172–189 (1980) ADSGoogle Scholar
  122. S.J. Weidenschilling, Initial sizes of planetesimals and accretion of the asteroids. Icarus (2011). doi: 10.1016/j.icarus.2011.05.024
  123. S.J. Weidenschilling, D. Spaute, D.R. Davis, F. Marzari, K. Ohtsuki, Accretional evolution of a planetesimal swarm. Icarus 128, 429–455 (1997) ADSGoogle Scholar
  124. G.W. Wetherill, Origin of the asteroid belt, in Asteroids II, ed. by R.P. Binzel, T. Gehrels, M.S. Matthews (University of Arizona Press, Tucson, 1989), pp. 661–680 Google Scholar
  125. G.W. Wetherill, An alternative model for the formation of the asteroids. Icarus 100, 307–325 (1992) ADSGoogle Scholar
  126. G.W. Wetherill, G.R. Stewart, Accumulation of a swarm of small planetesimals. Icarus 77, 330–357 (1989) ADSGoogle Scholar
  127. G.W. Wetherill, G.R. Stewart, Formation of planetary embryos—effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. Icarus 106, 190–209 (1993) ADSGoogle Scholar
  128. L. Wilson, K. Keil, Volcanic eruptions and intrusions on the asteroid 4 Vesta. J. Geophys. Res. 101, 18,927–18,940 (1996) ADSGoogle Scholar
  129. J. Wisdom, Meteorites may follow a chaotic route to Earth. Nature 315, 731–733 (1985) ADSGoogle Scholar
  130. A.N. Youdin, J. Goodman, Streaming instabilities in protoplanetary disks. Astrophys. J. 620, 459–469 (2005) ADSGoogle Scholar
  131. M. Zuber, H. McSween, R.P. Binzel, L.T. Elkins-Tanton, A.S. Konopliv, C.M. Pieters, D.E. Smith, Origin, internal structure and evolution of 4 Vesta. Space Sci. Rev. (2011, this issue). doi: 10.1007/s11214-011-9806-8

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Planetary Science InstituteTucsonUSA

Personalised recommendations