Advertisement

Space Science Reviews

, Volume 163, Issue 1–4, pp 77–93 | Cite as

Origin, Internal Structure and Evolution of 4 Vesta

  • Maria T. Zuber
  • Harry Y. McSweenJr.
  • Richard P. Binzel
  • Linda T. Elkins-Tanton
  • Alexander S. Konopliv
  • Carle M. Pieters
  • David E. Smith
Article

Abstract

Asteroid 4 Vesta is the only preserved intact example of a large, differentiated protoplanet like those believed to be the building blocks of terrestrial planet accretion. Vesta accreted rapidly from the solar nebula in the inner asteroid belt and likely melted due to heat released due to the decay of 26Al. Analyses of meteorites from the howardite-eucrite-diogenite (HED) suite, which have been both spectroscopically and dynamically linked to Vesta, lead to a model of the asteroid with a basaltic crust that overlies a depleted peridotitic mantle and an iron core. Vesta’s crust may become more mafic with depth and might have been intruded by plutons arising from mantle melting. Constraints on the asteroid’s moments of inertia from the long-wavelength gravity field, pole position and rotation, informed by bulk composition estimates, allow tradeoffs between mantle density and core size; cores of up to half the planetary radius can be consistent with plausible mantle compositions. The asteroid’s present surface is expected to consist of widespread volcanic terrain, modified extensively by impacts that exposed the underlying crust or possibly the mantle. Hemispheric heterogeneity has been observed by poorly resolved imaging of the surface that suggests the possibility of a physiographic dichotomy as occurs on other terrestrial planets. Vesta might have had an early magma ocean but details of the early thermal structure are far from clear owing to model uncertainties and paradoxical observations from the HEDs. Petrological analysis of the eucrites coupled with thermal evolution modeling recognizes two possible mechanisms of silicate-metal differentiation leading to the formation of the basaltic achondrites: equilibrium partial melting or crystallization of residual liquid from the cooling magma ocean. A firmer understanding the plethora of complex physical and chemical processes that contribute to melting and crystallization will ultimately be required to distinguish among these possibilities. The most prominent physiographic feature on Vesta is the massive south polar basin, whose formation likely re-oriented the body axis of the asteroid’s rotation. The large impact represents the likely major mechanism of ejection of fragments that became the HEDs. Observations from the Dawn mission hold the promise of revolutionizing our understanding of 4 Vesta, and by extension, the nature of collisional, melting and differentiation processes in the nascent solar system.

Keywords

Vesta Asteroid Crust Mantle Core Evolution Impact 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.M.O.D. Alexander, A.P. Boss, R.W. Carlson, Evolution of the inner solar system: A meteoritic perspective. Science 293, 64–68 (2001) ADSCrossRefGoogle Scholar
  2. Y. Amelin, A.N. Krot, I.D. Hutcheon, A.A. Ulyanov, Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297 (2002) Google Scholar
  3. G. Arrhenius, S.K. Asunmaa, Aggregation of grains in space. Moon 8, 368–391 (1973) ADSCrossRefGoogle Scholar
  4. J. Baer, S.R. Chesley, Astrometric masses of 21 asteroids, and an integrated asteroid ephemeris. Celest. Mech. Dyn. Astron. 100, 27–42 (2008) zbMATHADSMathSciNetCrossRefGoogle Scholar
  5. J.-A. Barrat, A. Yamaguchi, M. Benoit, J. Cotton, M. Bohn, Geochemistry of diogenites: Still more diversity in their parental melts. Meteorit. Planet. Sci. 43, 1759–1775 (2008) ADSCrossRefGoogle Scholar
  6. J.-A. Barrat, A. Yamaguchi, B. Zanda, C. Bollinger, M. Bohn, Relative chronology of crust formation on asteroid Vesta: Insights from the geochemistry of diogenites. Geochim. Cosmochim. Acta 74, 6218–6231 (2010) ADSCrossRefGoogle Scholar
  7. K.S. Bartels, T.L. Grove, High-pressure experiments on magnesian eucrite compositions: Constraints on magmatic processes in the eucrite parent body, in Proc. 21st Lunar Planet. Sci. Conf. (1991), pp. 351–365 Google Scholar
  8. A.W. Beck, H.Y. McSween, Diogenites as polymict breccias composed of orthopyroxenite and harzburgite. Meteorit. Planet. Sci. 45, 850–872 (2010) ADSCrossRefGoogle Scholar
  9. S.V.W. Beckwith, A.I. Sarget, R.S. Chini, R. Guesten, A survey for circumstellar disks around young stellar objects. Astron. J. 99, 924–945 (1990) ADSCrossRefGoogle Scholar
  10. R.P. Binzel, S. Xu, Chips off of asteroid 4 Vesta: Evidence for the parent bodies of basaltic achondrites. Science 260, 186–191 (1993) ADSCrossRefGoogle Scholar
  11. R.P. Binzel, M.J. Gaffey, P.C. Thomas, B.H. Zellner, A.D. Storrs, E.N. Wells, Geologic mapping of Vesta from 1994 Hubble Space Telescope images. Icarus 128, 95–103 (1997) ADSCrossRefGoogle Scholar
  12. R.P. Binzel et al., Interiors of small bodies: Foundations and perspectives. Planet. Space Sci. 51, 443–454 (2003) ADSCrossRefGoogle Scholar
  13. J.S. Boesenberg, J.S. Delaney, A model composition of the basaltic achondrite planetoid. Geochim. Cosmochim. Acta 61, 3205–3225 (1997) ADSCrossRefGoogle Scholar
  14. A.P. Boss, Temperatures in protoplanetary disks. Annu. Rev. Earth Planet. Sci. 26, 53–80 (1998) ADSCrossRefGoogle Scholar
  15. W.F. Bottke, D. Nesvorny, R.E. Grimm, A. Morbidelli, D.P. O’Brien, Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature 439, 821–824 (2006) ADSCrossRefGoogle Scholar
  16. A. Bouvier, M. Wadhwa, The age of the solar system redefined by the oldest Pb-Pb age of a meteoritic inclusion. Nat. Geosci. 3, 637–641 (2010) ADSCrossRefGoogle Scholar
  17. L.E. Bowman, M.N. Spilde, J.J. Papike, Automated energy dispersive spectrometer modealanalysis applied to diogenites. Meteorit. Planet. Sci. 32, 869–875 (1997) ADSCrossRefGoogle Scholar
  18. T.H. Burbine et al., Vesta, Vestoids, and the howardite, eucrite, diogenite group: Relationships and the origin of spectral differences. Meteorit. Planet. Sci. 36, 761–781 (2001) ADSCrossRefGoogle Scholar
  19. A.G.W. Cameron, Origin of the solar system. Annu. Rev. Astron. Astrophys. 26, 441–472 (1988) ADSCrossRefGoogle Scholar
  20. J.E. Chambers, Planetary accretion in the inner solar system. Earth Planet. Sci. Lett. 224, 241–252 (2004) ADSCrossRefGoogle Scholar
  21. J.E. Chambers, G.W. Wetherill, Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus 136, 304–327 (1998) ADSCrossRefGoogle Scholar
  22. J. Connelly, Y. Amelin, A.N. Krot, M. Bizzarro, Chronology of the solar system’s oldest solids. Astophys. J. Lett. 675, 121–124 (2008) ADSCrossRefGoogle Scholar
  23. G.J. Consolmagno, M.J. Drake, Composition and evolution of the eucrite parent body: Evidence from rare Earth elements. Geochim. Cosmochim. Acta 41, 1271–1282 (1977) ADSCrossRefGoogle Scholar
  24. G.J. Consolmagno, D.T. Britt, The density and porosity of meteorites from the Vatican collection. Meteorit. Planet. Sci. 33, 1231–1241 (1998) ADSCrossRefGoogle Scholar
  25. J.N. Cuzzi, A.R. Dobrovolskis, J.M. Champney, Particle-gas dynamics in the midplane of a protoplanetary nebula. Icarus 106, 102–134 (1993) ADSCrossRefGoogle Scholar
  26. M.C. De Sanctis et al., The VIR spectrometer. Space Sci. Rev. (2011). doi: 10.1007/s11214-010-9668-5 Google Scholar
  27. M.J. Drake, The eucrite/Vesta story. Meteorit. Planet. Sci. 36, 501–513 (2001) ADSCrossRefGoogle Scholar
  28. G. Dreibus, H. Wanke, The bulk composition of the eucrite parent body and its bearing on planetary evolution. Z. Naturforsch. 35a, 204–216 (1980) ADSGoogle Scholar
  29. J.D. Drummond, R.Q. Fugate, J.C. Christou, E.K. Hege, Full adaptive optics images of asteroids Ceres and Vesta; Rotational poles and triaxial ellipsoid dimensions. Icarus 132, 80–99 (1998) ADSCrossRefGoogle Scholar
  30. C.P. Dullemond, D. Hollenbach, I. Kamp, P. D’Alessio, Evolution of circumstellar disks around normal stars: Placing our solar system in context, in Protostars and Planets V, ed. by B. Reipurth, D. Jewitt, K. Keil (Univ. Ariz. Press, Tucson, 2007), pp. 555–572 Google Scholar
  31. L.T. Elkins-Tanton, E. Maroon, M.J. Krawczynski, T.L. Grove, Magma ocean solidification processes on Vesta, in 39th Lunar Planet. Sci. Conf. (2008) Google Scholar
  32. C. Federico, A. Frigeri, C. Pauselli, A. Coradini, Vesta Thermal Evolution Revisited. Lunar Planet., Sci. Conf. XXXIX, #1719 (2008) Google Scholar
  33. A. Fienga et al., INPOP08, a 4-D planetary ephemeris: From asteroid and time-scale computations to ESA Mars Express and Venus Express contributions. Astron. Astrophys. 507, 279–289 (2009) CrossRefGoogle Scholar
  34. A. Fujiwara, T. Kadono, A. Nakamura, Cratering experiments into curved surfaces and their implications for craters on small satellites. Icarus 105, 345–350 (1993) ADSCrossRefGoogle Scholar
  35. M.J. Gaffey, Surface lithologic heterogeneity of asteroid 4 Vesta. Icarus 127, 130–157 (1997) ADSCrossRefGoogle Scholar
  36. A. Ghosh, H.Y.J. McSween, A thermal model for the differentiation of asteroid 4 Vesta, based on radiogenic heating. Icarus 134, 187–206 (1998) ADSCrossRefGoogle Scholar
  37. R.C. Greenwood, I.A. Franchi, A. Jambon, P.C. Buchanan, Widespread magma oceans on asteroidal bodies in the early solar system. Nature 435, 916–918 (2005) ADSCrossRefGoogle Scholar
  38. G. Gupta, S. Sahijpal, Differentiation of Vesta and the parent bodies of other achondrites. J. Geophys. Res. 115 (2010). doi: 10.1029/2009JE003525
  39. K.E. Hainsch, E.A. Lada, C.J. Lada, Disk frequencies and lifetimes in young clusters. Astrophys. J. 553, L153–L156 (2001) ADSCrossRefGoogle Scholar
  40. A.N. Halliday, T. Kleine, Meteorites and the timing, mechanisms, and conditions of terrestrial planet accretion and early differentiation, in Meteorites and the Early Solar System II, ed. by D.S. Lauretta, H.Y. McSween (Univ. Ariz. Press, Tucson, 2006), pp. 775–801 Google Scholar
  41. A.N. Halliday, D.-C. Lee, Tungsten isotopes and the early development of the Earth and Moon. Geochim. Cosmochim. Acta 63, 4157–4179 (1999) ADSCrossRefGoogle Scholar
  42. A.W. Harris, B.D. Warner, P. Praves, Asteroid Lightcurve Derived Data. NASA Planetary Data System (2006) Google Scholar
  43. L. Hartmann, Accretion Processes in Star Formation, Cambridge Astrophysics Series, vol. 32 (Cambridge Univ. Press, Cambridge, 2000), 239 pp. Google Scholar
  44. W.K. Hartmann, Planet formation: Mechanism of early growth. Icarus 33, 50–61 (1978) ADSCrossRefGoogle Scholar
  45. R.H. Hewins, H.E. Newsom, Igneous activity in the early solar system, in Meteorites and the Early Solar System, ed. by J.F. Kerridge, M.S. Matthews (Univ. Ariz. Press, Tucson, 1988), pp. 73–101 Google Scholar
  46. K.A. Holsapple, The scaling of impact processes in planetary sciences. Annu. Rev. Earth Planet. Sci. 21, 333–373 (1993) ADSCrossRefGoogle Scholar
  47. Y. Ikeda, H. Takeda, A model for the origin of basaltic achondrites based on the Ysmsyo 7308 howardite. J. Geophys. Res. Suppl. 90, C649–C663 (1985) ADSGoogle Scholar
  48. A. Johansen, J.S. Oishi, M.-M.M. Low, H. Klahr, T. Henning, A. Youdin, Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025 (2007) ADSCrossRefGoogle Scholar
  49. J.H. Jones, The composition of the mantle of the eucrite parent body and the origin of eucrites. Geochim. Cosmochim. Acta 48, 641–648 (1984) ADSCrossRefGoogle Scholar
  50. JPL Small-body Data Browser, 4 Vesta: Jet Propulsion Laboratory, Pasadena, CA, 2003, http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=4
  51. M. Jutzi, E. Asphaug, Mega-ejecta on asteroid Vesta. Geophys. Res. Lett. 38 (2011). doi: 10.1029/2010GL045517
  52. Y.N. Kattoum, A.J. Dombard, Calculating the topography of a differentiated Vesta. Geophys. Res. Lett. 36 (2009). doi: 10.1029/2009GL041155
  53. K. Keil, Geological history of asteroid 4 Vesta: The “smallest terrestrial planet”, in Asteroids III, ed. by J.W.F. Bottke, A. Cellino, P. Paolicchi, R.P. Binzel (Univ. Ariz. Press, Tucson, 2002), pp. 573–584 Google Scholar
  54. T. Kleine et al., Hf-W chronometry and the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009) ADSCrossRefGoogle Scholar
  55. E. Kokubo, S. Ida, Oligarchic growth of protoplanets. Icarus 131, 171–178 (1998) ADSCrossRefGoogle Scholar
  56. A.S. Konopliv et al., A global solution for the gravity field, rotation, landmarks, and ephemeris of Eros. Icarus 166, 289–299 (2002) ADSCrossRefGoogle Scholar
  57. A.S. Konopliv, C.F. Yoder, E.M. Standish, D.-N. Yuan, W.L. Sjogren, A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182, 23–50 (2006) ADSCrossRefGoogle Scholar
  58. A.S. Konopliv et al., Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 111 (2011a). doi: 10.1016/j.icarus.2010.10.004
  59. A.S. Konopliv, S. Asmar, B.G. Bills, D.E. Smith, M.T. Zuber, Gravity investigation. Space Sci. Rev. (2011b). doi: 10.1007/s11214-011-9794-8 Google Scholar
  60. M. Kuzmanoski, G. Apostollovska, B. Novaković, The mass of (4) Vesta derived from its largest gravitational effects. Astron. J. 140, 880–886 (2010) ADSCrossRefGoogle Scholar
  61. W.A. Lawson, E.D. Feigelson, D.P. Huenemoerder, An improved H-R diagram for Chamaeleon I pre-main sequence stars. Mon. Not. R. Astron. Soc. 280, 335–354 (1996) Google Scholar
  62. Z.M. Leinhardt, D.C. Richardson, T. Quinn, Direct, N-body simulations of rubble pile collisions. Icarus 146, 133–151 (2000) ADSCrossRefGoogle Scholar
  63. J.S. Lewis, Physics and Chemistry of the Solar System (Academic Press, San Diego, 2004), 670 pp. Google Scholar
  64. J.J. Lissauer, Planet formation. Annu. Rev. Astron. Astrophys. 31, 129–174 (1993) ADSCrossRefGoogle Scholar
  65. J. Longhi, V. Pan, Phase equilibia constraints on the howardite-eucrite-diogenite association, in Proc. 18th Lunar Planet. Sci. Conf. (1988), pp. 459–470 Google Scholar
  66. G.W. Lugmair, A. Shukolyukov, Early solar system time scales according to 53Mn-53Cr systematics. Geochim. Cosmochim. Acta 62, 2863–2886 (1998) ADSCrossRefGoogle Scholar
  67. G.W. Lugmair, A. Shukolyukov, Early solar system events and timescales. Meteorit. Planet. Sci. 36, 1017–1026 (2001) ADSCrossRefGoogle Scholar
  68. J.I. Lunine, Processing of material in the solar nebula, in From Stardust to Planetisemals, ed. by Y.J. Pendleton, A.G.G.M. Tielens. ASP Conference Series, vol. 122, pp. 271–279 (1997) Google Scholar
  69. J. Marshall, J.N. Cuzzi, Electrostatic enhancement of coagulation in protoplanetary nebulae, in XXXII Lunar Planet. Sci. Conf. (2001), p. 1262 Google Scholar
  70. D.W.J. McCarthy, J.D. Freeman, J.D. Drummond, High resolution images of Vesta at 1.65 μm. Icarus 108, 285–297 (1994) ADSCrossRefGoogle Scholar
  71. M.U. McCaughrean, C.R. O’Dell, Direct imaging of circumstellar disks in the Orion nebula. Astron. J. 111, 1977–1987 (1996) ADSCrossRefGoogle Scholar
  72. T.B. McCord, J.B. Adams, T.V. Johnson, Asteroid Vesta: Spectral reflectivity and compositional implications. Science 168, 1445–1447 (1970) ADSCrossRefGoogle Scholar
  73. H.Y. McSween, A. Ghosh, R.E. Grimm, L. Wilson, E.D. Young, Thermal evolution models of asteroids, in Asteroids III, ed. by J.W.F. Bottke, A. Cellino, P. Paolicchi, R.P. Binzel (Univ. Ariz. Press, Tucson, 2003), pp. 559–571 Google Scholar
  74. H.Y.J. McSween, D.W. Mittlefehldt, A.W. Beck, R.G. Mayne, T.J. McCoy, HED meteorites and their relationship to the geology of Vesta and the Dawn Mission. Space Sci. Rev. (2011) Google Scholar
  75. G. Michalak, Determination of asteroid masses I. (1) Ceres, (2) Pallas and (4) Vesta. Astron. Astrophys. 360, 363–374 (2000) ADSGoogle Scholar
  76. R.L. Millis, J.L. Elliot, Direct determination of asteroid diameters from occultation observations, in Asteroids, ed. by T. Gehrels (Univ. Ariz. Press, Tucson, 1979), pp. 98–118 Google Scholar
  77. D.W. Mittlefehldt, The genesis of diogenites and HED parent body petrogenesis. Geochim. Cosmochim. Acta 58, 1537–1552 (1994) ADSCrossRefGoogle Scholar
  78. D.W. Mittlefehldt, T.J. McCoy, C.A. Goodrich, A. Kracher, Non-chondritic meteorites from asteroidal bodies, in Planetary Materials, ed. by J.J. Papike. Rev. Mineral., vol. 36 (Mineral. Soc. Am., Chantilly, 1998), pp. 4-1–4-195 Google Scholar
  79. H. Miyamoto, H. Takeda, Evidence for excavation of deep crustal material of a Vesta-like body from Ca compositional gradients in pyroxene. Earth Planet. Sci. Lett. 122, 343–349 (1994) ADSCrossRefGoogle Scholar
  80. H. Miyamoto, T. Mikouchi, K. Kaneda, Thermal history of the Ibitira noncumulate eucrite as inferred from pyroxene exsolution lamellae: Evidence for reheating and rapid cooling. Meteorit. Planet. Sci. 36, 231–237 (2001) ADSCrossRefGoogle Scholar
  81. H.E. Newsom, Molybdenum in eucrites: Evidence for a metal core in the eucrite parent body, in Proc. 15 Lunar Planet. Sci. Conf. (1985), pp. C613–C617 Google Scholar
  82. D.P. O’Brien, A. Morbidelli, W.F. Bottke, The primordial excitation and clearing of the asteroid belt—Revisited. Icarus 191, 434–452 (2007) ADSCrossRefGoogle Scholar
  83. C.M. Pieters et al., Asteroid-meteorite links: The Vesta conundrum(s), in Asteroids, Comets, Meteors, ed. by C.M. Pieters et al. (Int. Astron. Un., Paris, 2005). doi: 10.1017/S1743921305006794 Google Scholar
  84. E.V. Pitjeva, High-precision ephemerides of planets—EPM and determination of some astronomical constants. Sol. Syst. Res. 39, 176–186 (2005) ADSCrossRefGoogle Scholar
  85. T.H. Prettyman et al., Dawn’s gamma ray and neutron detector (GRAND). Space Sci. Rev. (2011) Google Scholar
  86. C.A. Raymond, T. Roatsch, F. Preusker, D.E. Smith, M.T. Zuber, Topography investigation. Space Sci. Rev. (2011) Google Scholar
  87. K. Righter, M.J. Drake, Core formation in Earth’s Moon, Mars, and Vesta. Icarus 124, 513–529 (1996) ADSCrossRefGoogle Scholar
  88. K. Righter, M.J. Drake, A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites. Meteorit. Planet. Sci. 32, 929–944 (1997) ADSCrossRefGoogle Scholar
  89. C.T. Russell, C.A. Raymond, The Dawn Discovery mission to Vesta and Ceres. Space Sci. Rev. (2011) Google Scholar
  90. C.T. Russell et al., Dawn mission to Vesta and Ceres: Symbiosis between terrestrial observations and robotic exploration. Earth Moon, Planets 101, 65–91 (2007) ADSCrossRefGoogle Scholar
  91. A. Ruzicka, G.A. Snyder, L.A. Taylor, Vesta as the howardite, eucrite and diogenite parent body: Implications for the size of the coe and for large-scale differentiation. Meteorit. Planet. Sci. 32, 825–840 (1997) ADSCrossRefGoogle Scholar
  92. M. Schiller, J.A. Baker, M. Bizzarro, J. Creech, A.J. Irving, Timing and Mechanisms of the Evolution of the Magma Ocean on the HED Parent Body (Meteoritical Soc., New York, 2010) Google Scholar
  93. E.R.D. Scott, Chondrites and the protoplanetary disk. Annu. Rev. Earth Planet. Sci. 35, 577–620 (2007) ADSCrossRefGoogle Scholar
  94. E.R.D. Scott, R.C. Greenwood, I.A. Franchi, I.S. Sanders, Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites. Geochim. Cosmochim. Acta 73, 5835–5853 (2009) ADSCrossRefGoogle Scholar
  95. A. Shukolyukov, G.W. Langmuir, Chronology of asteroid accretion and differentiation, in Asteroids III, ed. by J.W.F. Bottke, A. Cellino, P. Paolicchi, R.P. Binzel (Univ. Ariz. Press, Tucson, 2002), pp. 687–695 Google Scholar
  96. H. Sierks, et al., The dawn framing camera. Space Sci. Rev. (2011) Google Scholar
  97. E.M. Standish, Suggested GM values for Ceres, Pallas, and Vesta. IOM 312.F-01-006, Jet Propulsion Laboratory, Pasadena, 2001 Google Scholar
  98. E. Stolper, Petrogenesis of eucrite, howardite and diogenite meteorites. Nature 258, 220–222 (1975) ADSCrossRefGoogle Scholar
  99. E.M. Stolper, Experimental petrology of eucrite meteorites. Geochim. Cosmochim. Acta 41, 587–611 (1977) ADSCrossRefGoogle Scholar
  100. S.E. Strom, S. Edwards, M.F. Skrutskie, Evolutionary time scales for circumstellar disks associated with intermediate and solar-type stars, in Protostars and Planets III, ed. by E.H. Levy, J.I. Lunine (Univ. Ariz. Press, Tucson, 1993), pp. 837–866 Google Scholar
  101. H. Takeda, A layered-crust model of a howardite parent body. Icarus 40, 455–470 (1997) ADSCrossRefGoogle Scholar
  102. H. Takeda, H. Mori, J.S. Delaney, M. Prinz, G.E. Harlow, T. Ishii, Mineralogical comparison of Antarctic and non-Antarctic HED (howardites-eucrites-diogenites) achondrites. Mem. Nat. Inst. Polar Res. 30, 181–205 (1983) (Spec. Issue) ADSGoogle Scholar
  103. P.C. Thomas, R.P. Binzel, M.J. Gaffey, B.H. Zellner, A.D. Storrs, E. Wells, Vesta: Spin pole, size, and shape from HST images. Icarus 128, 88–94 (1997a) ADSCrossRefGoogle Scholar
  104. P.C. Thomas, R.P. Binzel, M.J. Gaffey, A.D. Storrs, E.N. Wells, B.H. Zellner, Impact excavation on asteroid 4 Vesta: Hubble Space Telescope results. Science 277, 1492–1495 (1997b) ADSCrossRefGoogle Scholar
  105. M. Wadhwa, S.S. Russell, Timescales of accretion and differentiation in the early solar system: The meteoritic evidence, in Protostars and Planets IV, ed. by V. Mannings, A.P. Boss, S.S. Russell (Univ. Ariz. Press, Tucson, 2000), pp. 995–1018 Google Scholar
  106. P.H. Warren, The magma ocean concept and lunar evolution. Annu. Rev. Earth Planet. Sci. 13, 201–240 (1985) ADSCrossRefGoogle Scholar
  107. P.H. Warren, G.W. Kallemeyn, H. Huber, F. Ulf-Møller, W. Choe, Geochim. Cosmochim. Acta 73, 5918 (2009) ADSCrossRefGoogle Scholar
  108. S.J. Weidenschilling, Dust to planetesimals. Icarus 44, 172–189 (1980) ADSCrossRefGoogle Scholar
  109. S.J. Weidenschilling, J.N. Cuzzi, Formation of planetesimals in the solar nebula, in Protostars and Planets III, ed. by E.H. Levy, J.I. Lunine (Univ. Ariz. Press, Tucson, 1993), pp. 1031–1060 Google Scholar
  110. S.J. Weidenschilling, D. Spaute, D.R. Davis, F. Marzari, K. Phtsuki, Accretional evolution of a planetesimal swarm 2. The terrestrial zone. Icarus 127, 429–455 (1997) ADSCrossRefGoogle Scholar
  111. G.W. Wetherill, Origin of the asteroid belt, in Asteroids II, ed. by R.P. Binzel, T. Gehrels, M.S. Matthews (Univ. Ariz. Press, Tucson, 1989) Google Scholar
  112. G.W. Wetherill, An alternative model for the formation of the asteroids. Icarus 100, 307–325 (1992) ADSCrossRefGoogle Scholar
  113. G.W. Wetherill, Provenance of the terrestrial planets. Geochim. Cosmochim. Acta 58, 4513–4520 (1994) ADSCrossRefGoogle Scholar
  114. G. Wurm, J. Blum, J.E. Colwell, Aerodynamical sticking of dust aggregates. Phys. Res. E64, 46,301–46,309 (2001) Google Scholar
  115. B.D. Zellner, D.J. Tholen, E.F. Tedesco, The eight-color asteroid survey: Results for 589 minor planets. Icarus 61, 355–416 (1985) ADSCrossRefGoogle Scholar
  116. N.E.B. Zellner, S. Gibbard, I. de Pater, Near-IR imaging of asteroid 4 Vesta. Icarus 177, 190–195 (2005) ADSCrossRefGoogle Scholar
  117. M. Zema, M.C. Domeneghetti, G.M. Molin, V. Tazzoli, Cooling rates of diogenites: A study of Fe2+−Mg ordering in orthopyroxene by single-crystal x-ray diffraction. Meteorit. Planet. Sci. 32, 855–862 (1997) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Maria T. Zuber
    • 1
  • Harry Y. McSweenJr.
    • 2
  • Richard P. Binzel
    • 1
  • Linda T. Elkins-Tanton
    • 1
  • Alexander S. Konopliv
    • 3
  • Carle M. Pieters
    • 4
  • David E. Smith
    • 1
  1. 1.Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Planetary Geoscience Institute and Department of Earth & Planetary SciencesUniversity of TennesseeKnoxvilleUSA
  3. 3.Jet Propulsion LaboratoryPasadenaUSA
  4. 4.Department of Geological Sciences, Box 1846Brown UniversityProvidenceUSA

Personalised recommendations