Space Science Reviews

, 158:471 | Cite as

Effects of Magnetic Fields in the Solar Atmosphere on Global Oscillations

Article

Abstract

Helioseismology is practically the only efficient experimental way of probing the solar interior. Without it, the results of theoretical solar models would remain untested and, consequently, less reliable when applying them for investigating remote stars. Hence, having a firm understanding of the applicability and reliability of helioseismology and the awareness of its limits are essential in solar physics and also in astrophysics. One of the weaknesses of the currently popular helioseismic models is that they allow only limited interaction between the global acoustic oscillation modes and the magnetic lower solar atmosphere, although, observations confirm strong coupling of helioseismic oscillations to the atmospheric magnetic field. The present article overviews the attempts of taking into account atmospheric magnetic effects in the theoretical models of global solar oscillations.

Keywords

Sun Helioseismology Global oscillations Solar atmosphere Magnetic field MHD 

References

  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1970) Google Scholar
  2. K.T. Bachmann, T.M. Brown, P-mode frequency variation in relation to global solar activity. Astrophys. Lett. 411, 45–48 (1993). doi:10.1086/186908 ADSCrossRefGoogle Scholar
  3. S. Basu, What does helioseismology tell us about solar cycle related structural changes in the Sun?, in From Solar Min to Max: Half a Solar Cycle with SOHO, ed. by A. Wilson. ESA Special Publication, vol. 508, (2002), pp. 7–14 Google Scholar
  4. D.C. Braun, Y. Fan, Helioseismic measurements of the subsurface meridional flow. Astrophys. Lett. 508, 105–108 (1998). doi:10.1086/311727 ADSCrossRefGoogle Scholar
  5. W.R. Campbell, B. Roberts, Magnetic effects on solar P-modes, in Advances in Helio- and Asteroseismology, ed. by J. Christensen-Dalsgaard, S. Frandsen, IAU Symposium, vol. 123 (1988), pp. 161–165 CrossRefGoogle Scholar
  6. W.R. Campbell, B. Roberts, The influence of a chromospheric magnetic field on the solar p- and f-modes. Astrophys. J. 338, 538–556 (1989). doi:10.1086/167216 ADSCrossRefGoogle Scholar
  7. W.J. Chaplin, S. Basu, Perspectives in global helioseismology and the road ahead. Sol. Phys. 251, 53–75 (2008). doi:10.1007/s11207-008-9136-5 ADSCrossRefGoogle Scholar
  8. W.J. Chaplin, Y. Elsworth, G.R. Isaak, R. Lines, C.P. McLeod, B.A. Miller, R. New, An analysis of solar p-mode frequencies extracted from BiSON data: 1991–1996. Mon. Not. R. Astron. Soc. 300, 1077–1090 (1998). doi:10.1046/j.1365-8711.1998.01999.x ADSCrossRefGoogle Scholar
  9. W.J. Chaplin, Y. Elsworth, G.R. Isaak, B.A. Miller, R. New, The solar cycle as seen by low-l p-mode frequencies: comparison with global and decomposed activity proxies. Mon. Not. R. Astron. Soc. 352, 1102–1108 (2004). doi:10.1111/j.1365-2966.2004.07998.x ADSCrossRefGoogle Scholar
  10. J. Christensen-Dalsgaard, On adiabatic non-radial oscillations with moderate or large L. Mon. Not. R. Astron. Soc. 190, 765–791 (1980) ADSGoogle Scholar
  11. J. Christensen-Dalsgaard, Helioseismology. Rev. Mod. Phys. 74, 1073–1129 (2002). doi:10.1103/RevModPhys.74.1073 ADSCrossRefGoogle Scholar
  12. A. Claverie, G.R. Isaak, C.P. McLeod, H.B. van der Raay, T.R. Cortes, Solar structure from global studies of the 5-minute oscillation. Nature 282, 591–594 (1979). doi:10.1038/282591a0 ADSCrossRefGoogle Scholar
  13. V.M. Čadež, P. Vanlommel, Effects of localized horizontal flow patterns on eigenfrequencies of stellar global modes. Serbian Astron. J. 171, 19–27 (2005) ADSGoogle Scholar
  14. F. Deubner, Observations of low wavenumber nonradial eigenmodes of the sun. Astron. Astrophys. 44, 371–375 (1975) ADSGoogle Scholar
  15. T.L. Duvall Jr., J.W. Harvey, Observations of solar oscillations of low and intermediate degree. Nature 302, 24–27 (1983). doi:10.1038/302024a0 ADSCrossRefGoogle Scholar
  16. W.A. Dziembowski, P.R. Goode, Sources of oscillation frequency increase with rising solar activity. Astrophys. J. 625, 548–555 (2005). doi:10.1086/429712 ADSCrossRefGoogle Scholar
  17. P.M. Edwin, B. Roberts, Wave propagation in a magnetically structured atmosphere. III—The slab in a magnetic environment. Sol. Phys. 76, 239–259 (1982). doi:10.1007/BF00170986 ADSCrossRefGoogle Scholar
  18. Y. Elsworth, R. Howe, G.R. Isaak, C.P. McLeod, R. New, Variation of low-order acoustic solar oscillations over the solar cycle. Nature 345, 322–324 (1990). doi:10.1038/345322a0 ADSCrossRefGoogle Scholar
  19. R. Erdélyi, Analytical solutions for cusp resonance in dissipative MHD. Sol. Phys. 171, 49–59 (1997) ADSCrossRefGoogle Scholar
  20. R. Erdélyi, Magnetic coupling of waves and oscillations in the lower solar atmosphere: can the tail wag the dog? Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 364, 351–381 (2006a). doi:10.1098/rsta.2005.1703 ADSCrossRefGoogle Scholar
  21. R. Erdélyi, Magnetic seismology of the lower solar atmosphere, in Proceedings of SOHO 18/GONG 2006/HELAS I, Beyond the Spherical Sun. ESA Special Publication, vol. 624 (2006b) Google Scholar
  22. R. Erdélyi, Y. Taroyan, The influence of a steady state on P- and F-modes, in Magnetic Fields and Solar Processes, ed. by A. Wilson et al. ESA Special Publication, vol. 448 (1999), p. 81 Google Scholar
  23. R. Erdélyi, Y. Taroyan, Effect of a steady flow and an atmospheric magnetic field on the solar P- and F-modes, in Recent Insights into the Physics of the Sun and Heliosphere: Highlights from SOHO and Other Space Missions, ed. by P. Brekke, B. Fleck, J.B. Gurman. IAU Symposium, vol. 203 (2001), p. 208 Google Scholar
  24. R. Erdélyi, E. Varga, M. Zétényi, Magnetoacoustic-gravity surface waves in steady plasmas, in Magnetic Fields and Solar Processes, ed. by A. Wilson et al. ESA Special Publication, vol. 448 (1999), p. 269 Google Scholar
  25. R. Erdélyi, A. Kerekes, N. Mole, Influence of random magnetic field on solar global oscillations: The incompressible f-mode. Astron. Astrophys. 431, 1083–1088 (2005). doi:10.1051/0004-6361:20041456 ADSCrossRefGoogle Scholar
  26. D.J. Evans, B. Roberts, The influence of a chromospheric magnetic field on the solar p- and f-modes. II—Uniform chromospheric field. Astrophys. J. 356, 704–719 (1990). doi:10.1086/168878 ADSCrossRefGoogle Scholar
  27. D.J. Evans, B. Roberts, The sensitivity of chromospherically induced p- and f-mode frequency shifts to the height of the magnetic canopy. Astrophys. J. 371, 387–395 (1991). doi:10.1086/169899 ADSCrossRefGoogle Scholar
  28. D.J. Evans, B. Roberts, Interpretation of solar-cycle variability in high-degree p-mode frequencies. Nature 355, 230–232 (1992). doi:10.1038/355230a0 ADSCrossRefGoogle Scholar
  29. C. Foullon, Helioseismology and Diagnostics of Internal Magnetic Layers. PhD thesis, School of Mathematics and Statistics, University of St. Andrews, Scotland, UK (2002) Google Scholar
  30. C. Foullon, V.M. Nakariakov, Independent signals from the influence of internal magnetic layers on the frequencies of solar p-modes. Astrophys. Lett. 714, 68–72 (2010). doi:10.1088/2041-8205/714/1/L68 ADSCrossRefGoogle Scholar
  31. C. Foullon, B. Roberts, The influence of internal magnetic layers on the frequencies of solar p-modes. Astron. Astrophys. 439, 713–726 (2005). doi:10.1051/0004-6361:20041910 ADSCrossRefGoogle Scholar
  32. P.M. Giles, T.L. Duvall Jr., A.G. Kosovichev, P.H. Scherrer, Solar meridional circulation and rotation determined by time-distance helioseismology using MDI data from SOHO. Bull. Am. Astron. Soc. 29, 914 (1997) ADSGoogle Scholar
  33. M. Goossens, M.S. Ruderman, Conservation laws and connection formulae for resonant MHD waves. Phys. Scr. Vol. T 60, 171–184 (1995). doi:10.1088/0031-8949/1995/T60/021 ADSCrossRefGoogle Scholar
  34. M. Goossens, R. Erdélyi, M.S. Ruderman, Resonant MHD waves in the solar atmosphere. Space Sci. Rev., 125 (2010). doi:10.1007/s11214-010-9702-7
  35. M. Goossens, J.V. Hollweg, T.S. Sakurai, Resonant behaviour of MHD waves on magnetic ux tubes III. Efect of equilibrium ow. Sol. Phys. 138, 233–255 (1992) Google Scholar
  36. M. Goossens, M.S. Ruderman, J.V. Hollweg, Dissipative MHD solutions for resonant Alfvén wves in 1-dimensional magnetic ux tubes. Sol. Phys. 157, 75–102 (1995) ADSCrossRefGoogle Scholar
  37. R. Howard, B.J. Labonte, The sun is observed to be a torsional oscillator with a period of 11 years. Astrophys. Lett. 239, 33–36 (1980). doi:10.1086/183286 ADSCrossRefGoogle Scholar
  38. R. Howe, J. Christensen-Dalsgaard, F. Hill, R.W. Komm, R.M. Larsen, J. Schou, M.J. Thompson, J. Toomre, Helioseismic detection of temporal variations of solar rotation rate near the base of the convection zone. Bull. Am. Astron. Soc. 31, 1530 (1999) ADSGoogle Scholar
  39. R. Howe, R. Komm, F. Hill, Variations in solar sub-surface rotation from GONG data 1995–1998. Sol. Phys. 192, 427–435 (2000) ADSCrossRefGoogle Scholar
  40. R. Howe, D.A. Haber, B.W. Hindman, R. Komm, F. Hill, I. Gonzalez Hernandez, Helioseismic frequency shifts in active regions, in Subsurface and Atmospheric Influences on Solar Activity, ed. by R. Howe, R.W. Komm, K.S. Balasubramaniam, G.J.D. Petrie, Astronomical Society of the Pacific Conference Series, vol. 383 (2008), pp. 305–312 Google Scholar
  41. R. Ishikawa, S. Tsuneta, Spatial and temporal distributions of transient horizontal magnetic fields with deep exposure. Astrophys. Lett. 718, 171–175 (2010). doi:10.1088/2041-8205/718/2/L171 ADSCrossRefGoogle Scholar
  42. R. Ishikawa, S. Tsuneta, J. Jurčák, Three-dimensional view of transient horizontal magnetic fields in the photosphere. Astrophys. J. 713, 1310–1321 (2010). doi:10.1088/0004-637X/713/2/1310 ADSCrossRefGoogle Scholar
  43. R. Jain, B. Roberts, Magnetoacoustic surface waves at a single interface. Sol. Phys. 133, 263–280 (1991). doi:10.1007/BF00149890 ADSCrossRefGoogle Scholar
  44. R. Jain, B. Roberts, Do p-mode frequency shifts suggest a hotter chromosphere at solar maximum? Astrophys. J. 414, 898–907 (1993). doi:10.1086/173133 ADSCrossRefGoogle Scholar
  45. R. Jain, B. Roberts, Solar cycle variations in p-modes and chromospheric magnetism. Sol. Phys. 152, 261–266 (1994). doi:10.1007/BF01473213 ADSCrossRefGoogle Scholar
  46. S.M. Jefferies, T.L. Duvall Jr., J.W. Harvey, M.A. Pomerantz, Helioseismology from the south pole: results from the 1987 Campaign, in Progress of Seismology of the Sun and Stars, ed. by Y. Osaki, H. Shibahashi. Lecture Notes in Physics, vol. 367 (Springer, Berlin, 1990), pp. 135–143. doi:10.1007/3-540-53091-6_74 CrossRefGoogle Scholar
  47. A. Kerekes, R. Erdélyi, N. Mole, A novel approach to the solar interior-atmosphere eigenvalue problem. Astrophys. J. 683, 527–535 (2008a). doi:10.1086/589614 ADSCrossRefGoogle Scholar
  48. A. Kerekes, R. Erdélyi, N. Mole, Effects of random flows on the solar f mode: II. Horizontal and vertical flow. Sol. Phys. 251, 469–489 (2008b). doi:10.1007/s11207-008-9229-1 ADSCrossRefGoogle Scholar
  49. R.W. Komm, R.F. Howard, J.W. Harvey, Meridional flow of small photospheric magnetic features. Sol. Phys. 147, 207–223 (1993). doi:10.1007/BF00690713 ADSCrossRefGoogle Scholar
  50. R.W. Komm, R. Howe, F. Hill, Solar-cycle changes in gong P-mode widths and amplitudes 1995–1998. Astrophys. J. 531, 1094–1108 (2000). doi:10.1086/308518 ADSCrossRefGoogle Scholar
  51. H. Lamb, Hydrodynamics (1932) MATHGoogle Scholar
  52. J.W. Leibacher, R.F. Stein, A new description of the solar five-minute oscillation. Astrophys. Lett. 7, 191–192 (1971) ADSGoogle Scholar
  53. R.B. Leighton, R.W. Noyes, G.W. Simon, Velocity fields in the solar atmosphere. I. Preliminary report. Astrophys. J. 135, 474–482 (1962). doi:10.1086/147285 ADSCrossRefGoogle Scholar
  54. K.G. Libbrecht, M.F. Woodard, Observations of solar cycle variations in solar P-mode frequencies and splittings, in Progress of Seismology of the Sun and Stars, ed. by Y. Osaki, H. Shibahashi. Lecture Notes in Physics, vol. 367 (Springer, Berlin, 1990a), pp. 145–156. doi:10.1007/3-540-53091-6_75 CrossRefGoogle Scholar
  55. K.G. Libbrecht, M.F. Woodard, Solar-cycle effects on solar oscillation frequencies. Nature 345, 779–782 (1990b). doi:10.1038/345779a0 ADSCrossRefGoogle Scholar
  56. B.W. Lites, M. Kubo, H. Socas-Navarro, T. Berger, Z. Frank, R. Shine, T. Tarbell, A. Title, K. Ichimoto, Y. Katsukawa, S. Tsuneta, Y. Suematsu, T. Shimizu, S. Nagata, The horizontal magnetic flux of the quiet-Sun internetwork as observed with the Hinode spectro-polarimeter. Astrophys. J. 672, 1237–1253 (2008). doi:10.1086/522922 ADSCrossRefGoogle Scholar
  57. M. Mȩdrek, K. Murawski, B. Roberts, Damping and frequency reduction of the f-mode due to turbulent motion in the solar convection zone. Astron. Astrophys. 349, 312–316 (1999) ADSGoogle Scholar
  58. A.J. Miles, B. Roberts, On the properties of magnetoacoustic surface waves. Sol. Phys. 119, 257–278 (1989). doi:10.1007/BF00146179 ADSCrossRefGoogle Scholar
  59. A.J. Miles, B. Roberts, Magnetoacoustic-gravity surface waves. I—Constant Alfven speed. Sol. Phys. 141, 205–234 (1992). doi:10.1007/BF00155176 ADSCrossRefGoogle Scholar
  60. A.J. Miles, H.R. Allen, B. Roberts, Magnetoacoustic-gravity surface waves. II—Uniform magnetic field. Sol. Phys. 141, 235–251 (1992). doi:10.1007/BF00155177 ADSCrossRefGoogle Scholar
  61. N. Mole, R. Erdélyi, A. Kerekes, Turbulence and surface gravity waves on the Sun, in Non-linear Science and Complexity, vol. 368, ed. by A. Luo, L. Dai, H. Hamidzadeh (World Scientific, Singapore, 2007), pp. 13–23 Google Scholar
  62. N. Mole, A. Kerekes, R. Erdélyi, Effects of random flows on the solar f mode: I. Horizontal flow. Sol. Phys. 251, 453–468 (2008). doi:10.1007/s11207-008-9250-4 ADSCrossRefGoogle Scholar
  63. K. Murawski, M. Goossens, Random velocity field corrections to the f-mode. 3: A photospheric random flow and chromospheric magnetic field. Astron. Astrophys. 279, 225–234 (1993) ADSGoogle Scholar
  64. K. Murawski, B. Roberts, Random velocity field corrections of the f-mode. I. Horizontal flows. Astron. Astrophys. 272, 595 (1993a) ADSGoogle Scholar
  65. K. Murawski, B. Roberts, Random velocity field corrections of the f-mode. II. Vertical and horizontal flow. Astron. Astrophys. 272, 601 (1993b) ADSGoogle Scholar
  66. K. Petrovay, R. Erdélyi, M.J. Thompson, The effect of abnormal granulation on acoustic wave travel times and mode frequencies. Sol. Phys. 240, 197–209 (2007). doi:10.1007/s11207-006-0180-8 ADSCrossRefGoogle Scholar
  67. K. Petrovay, A. Kerekes, R. Erdélyi, An analytic interface dynamo over a shear layer of finite depth. Geophys. Astrophys. Fluid Dyn. 104, 619–630 (2010). doi:10.1080/03091929.2010.508455 MathSciNetADSCrossRefGoogle Scholar
  68. B. Pintér, The influence of the atmospheric magnetic field on solar oscillation modes. PhD thesis, Katholieke Universiteit Leuven, Belgium (1999) Google Scholar
  69. B. Pintér, Modelling solar atmospheric gravity oscillation modes. Astron. Nachr. 329, 503 (2008a). doi:10.1002/asna.200710985 ADSMATHCrossRefGoogle Scholar
  70. B. Pintér, Modelling the coupling role of magnetic fields in helioseismology. Sol. Phys. 251, 329–340 (2008b). doi:10.1007/s11207-008-9128-5 ADSCrossRefGoogle Scholar
  71. B. Pintér, M. Goossens, Oscillations in a magnetic solar model. I. Parallel propagation in a chromospheric and coronal magnetic field with constant Alfvén speed. Astron. Astrophys. 347, 321–334 (1999) ADSGoogle Scholar
  72. B. Pintér, R. Erdélyi, R. New, Damping of helioseismic modes in steady state. Astron. Astrophys. 372, 17–20 (2001a). doi:10.1051/0004-6361:20010544 ADSCrossRefGoogle Scholar
  73. B. Pintér, R. New, R. Erdélyi, Rotational splitting of helioseismic modes influenced by a magnetic atmosphere. Astron. Astrophys. 378, 1–4 (2001b). doi:10.1051/0004-6361:20011061 ADSCrossRefGoogle Scholar
  74. B. Pintér, R. Erdélyi, R. New, M. Goossens, Influence of equilibrium flows and the atmospheric magnetic field on solar oscillation modes, in SOHO 10/GONG 2000 Workshop: Helio- and Asteroseismology at the Dawn of the Millennium, ed. by A. Wilson, P.L. Pallé. ESA Special Publication, vol. 464 (2001c), pp. 227–230 Google Scholar
  75. B. Pintér, R. Erdélyi, M. Goossens, Global oscillations in a magnetic solar model. II. Oblique propagation. Astron. Astrophys. 466, 377–388 (2007). doi:10.1051/0004-6361:20041632 ADSCrossRefGoogle Scholar
  76. B. Pintér, R. Jain, D. Tripathi, H. Isobe, Prominence seismology: wavelet analysis of filament oscillations. Astrophys. J. 680, 1560–1568 (2008). doi:10.1086/588273 ADSCrossRefGoogle Scholar
  77. B. Roberts, Wave propagation in a magnetically structured atmosphere—Part Two—Waves in a magnetic slab. Sol. Phys. 69, 39–56 (1981a). doi:10.1007/BF00151254 ADSCrossRefGoogle Scholar
  78. B. Roberts, Wave propagation in a magnetically structured atmosphere. I—Surface waves at a magnetic interface. Sol. Phys. 69, 27–38 (1981b). doi:10.1007/BF00151253 ADSCrossRefGoogle Scholar
  79. B. Roberts, W.R. Campbell, Magnetic field corrections to solar oscillation frequencies. Nature 323, 603–605 (1986). doi:10.1038/323603a0 ADSCrossRefGoogle Scholar
  80. M. Ruderman, W.J. Tirry, M. Goossens, Resonant Alfvén waves in a non-stationary dissipative layer. J. Plasma Phys. 54, 129–148 (1995) ADSCrossRefGoogle Scholar
  81. T. Sakurai, M. Goossens, J.V. Hollweg, Resonant behaviour of MHD waves on magnetic flux tubes. Part I—Connection formulae at the resonant surfaces. Sol. Phys. 133, 227–245 (1991a). doi:10.1007/BF00149888 ADSCrossRefGoogle Scholar
  82. T. Sakurai, M. Goossens, J.V. Hollweg, Resonant behaviour of magnetohydrodynamic waves on magnetic flux tubes—Part Two. Sol. Phys. 133, 247–262 (1991b). doi:10.1007/BF00149889 ADSCrossRefGoogle Scholar
  83. D. Salabert, R.A. García, P.L. Pallé, S.J. Jiménez-Reyes, Frequency shifts of the individual low-degree P-modes during solar cycle 23 and its extended minimum, in SOHO-23: Understanding a Peculiar Solar Minimum, ed. by S.R. Cranmer, J.T. Hoeksema, J.L. Kohl. Astronomical Society of the Pacific Conference Series, vol. 428 (2010), pp. 51–56 Google Scholar
  84. D. Salabert, R.A. García, P.L. Pallé, A. Jiménez, Global p-mode oscillations throughout the complete solar cycle 23 and the beginning of cycle 24. J. Phys. Conf. Ser. 271(1), 012030–012033 (2011). doi:10.1088/1742-6596/271/1/012030 ADSCrossRefGoogle Scholar
  85. Y. Taroyan, Global resonant MHD waves in the magnetosphere. Publ. Astron. Dep. Eotvos Lorand University 13, 177–180 (2003) ADSGoogle Scholar
  86. Y. Taroyan, MHD Waves and Instabilities in Steady States. PhD thesis, The University of Sheffield (2004) Google Scholar
  87. W.J. Tirry, M. Goossens, Quasi-modes as dissipative MHD eigenmodes: results for 1-dimensional equilibrium states. Astrophys. J. 471, 501–509 (1996) ADSCrossRefGoogle Scholar
  88. W.J. Tirry, M. Goossens, B. Pintér, V. Čadež, P. Vanlommel, Resonant damping of solar p-modes by the chromospheric magnetic field. Astrophys. J. 503, 422 (1998). doi:10.1086/305958 ADSCrossRefGoogle Scholar
  89. J. Toomre, J. Christensen-Dalsgaard, R. Howe, R.M. Larsen, J. Schou, M.J. Thompson, Time variability of rotation in solar convection zone from SOI-MDI. Sol. Phys. 192, 437–448 (2000) ADSCrossRefGoogle Scholar
  90. S.C. Tripathy, F. Hill, K. Jain, J.W. Leibacher, Changes to global mode parameters over a solar cycle, in Proceedings of SOHO 18/GONG 2006/HELAS I, Beyond the Spherical Sun. ESA Special Publication, vol. 624, 2006, pp. 93–99 Google Scholar
  91. S. Tsuneta, K. Ichimoto, Y. Katsukawa, S. Nagata, M. Otsubo, T. Shimizu, Y. Suematsu, M. Nakagiri, M. Noguchi, T. Tarbell, A. Title, R. Shine, W. Rosenberg, C. Hoffmann, B. Jurcevich, G. Kushner, M. Levay, B. Lites, D. Elmore, T. Matsushita, N. Kawaguchi, H. Saito, I. Mikami, L.D. Hill, J.K. Owens, The solar optical telescope for the Hinode mission: an overview. Sol. Phys. 249, 167–196 (2008). doi:10.1007/s11207-008-9174-z ADSCrossRefGoogle Scholar
  92. R.K. Ulrich, The five-minute oscillations on the solar surface. Astrophys. J. 162, 993–1002 (1970). doi:10.1086/150731 ADSCrossRefGoogle Scholar
  93. P. Vanlommel, V.M. Čadež, Solar p and g modes in a model with a convection layer above a sub-adiabatic interior. Sol. Phys. 196, 227–244 (2000) ADSCrossRefGoogle Scholar
  94. P. Vanlommel, A. Debosscher, J. Andries, M. Goossens, Influence of a uniform coronal magnetic field on solar p modes: coupling to slow resonant MHD waves. Sol. Phys. 205, 1–24 (2002) ADSCrossRefGoogle Scholar
  95. E. Varga, R. Erdélyi, Effects of steady flow on magnetoacoustic-gravity surface waves. Publ. Astron. Dep. Eotvos Lorand University 11, 83 (2001) ADSGoogle Scholar
  96. M.F. Woodard, R.W. Noyes, Change of solar oscillation eigenfrequencies with the solar cycle. Nature 318, 449–450 (1985). doi:10.1038/318449a0 ADSCrossRefGoogle Scholar
  97. V.I. Zhukov, The resonant absorption of 5-min oscillations in the solar atmosphere. Sol. Phys. 173, 15–24 (1997a) ADSCrossRefGoogle Scholar
  98. V.I. Zhukov, Resonant absorption and the spectrum of 5-min oscillations of the Sun. Astron. Astrophys. 322, 302–306 (1997b) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Solar System Physics Research and Exploration Group, Institute of Mathematics and PhysicsAberystwyth University, Penglais CampusCeredigionUK
  2. 2.Solar Physics and Space Plasma Research Centre (SP²RC), School of Mathematics and StatisticsUniversity of SheffieldSheffieldUK

Personalised recommendations