Space Science Reviews

, Volume 168, Issue 1–4, pp 113–145 | Cite as

Trends in the Neutral and Ionized Upper Atmosphere

  • Jan LaštovičkaEmail author
  • Stanley C. Solomon
  • Liying Qian


This article reviews our knowledge of long-term changes and trends in the upper atmosphere and ionosphere. These changes are part of complex and comprehensive pattern of long-term trends in the Earth’s atmosphere. They also have practical impact. For example, decreasing thermospheric density causes the lifetime of orbiting space debris to increase, which is becoming a significant threat to important satellite technologies. Since the first paper on upper atmosphere trends was published in 1989, our knowledge has progressed considerably. Anthropogenic emissions of greenhouse gases affect the whole atmosphere, not only the troposphere. They cause warming in the troposphere but cooling in the upper atmosphere. Greenhouse gases such as carbon dioxide are not the only driver of long-term changes and trends in the upper atmosphere and ionosphere. Anthropogenic changes of stratospheric ozone, long-term changes of geomagnetic and solar activity, and other drivers play a role as well, although greenhouse gases appear to be the main driver of long-term trends. This makes the pattern of trends more complex and variable. A consistent, although incomplete, scenario of trends in the upper atmosphere and ionosphere is presented. Trends in F2-region ionosphere parameters, in mesosphere-lower thermosphere dynamics, and in noctilucent or polar mesospheric clouds, are discussed in more detail. Advances in observational and theoretical analysis have explained some previous discrepancies in this global trend scenario. An important role in trend investigations is played by model simulations, which facilitate understanding of the mechanisms behind the observed trends.


Global change Long-term trends Ionosphere Upper atmosphere 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A.C. Aikin, M.L. Chanin, J. Nash, D.J. Kendig, Temperature trends in the lower mesosphere. Geophys. Res. Lett. 18(3), 416–419 (1991) ADSCrossRefGoogle Scholar
  2. R.A. Akmaev, Thermospheric resistance to “greenhouse cooling”: effect of the collisional excitation rate by atomic oxygen on the thermal response to CO2 forcing. J. Geophys. Res. 108(A7), 1292 (2003). doi: 10.1029/2003JA009896 CrossRefGoogle Scholar
  3. R.A. Akmaev, V.I. Fomichev, A model estimate of cooling in the mesosphere and lower thermosphere due to the CO2 increase over the last 3–4 decades. Geophys. Res. Lett. 27, 2113–2116 (2000) ADSCrossRefGoogle Scholar
  4. R.A. Akmaev, V.I. Fomichev, X. Zhu, Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere. J. Atmos. Sol.-Terr. Phys. 68, 1879–1889 (2006). doi: 10.1016/j.jastp.2006.03.008 ADSCrossRefGoogle Scholar
  5. L. Alfonsi, G. DeFranceschi, L. Perrone, Long term trends of the critical frequency of the F2 layer at northern and southern high latitude regions. Phys. Chem. Earth 27(6–8), 595–600 (2002) Google Scholar
  6. L. Alfonsi, G. DeFranceschi, G. De Santi, Geomagnetic and ionospheric data analysis over Antarctica: a contribution to the long term trends investigation. Ann. Geophys. 26, 1173–1179 (2008) ADSCrossRefGoogle Scholar
  7. A.J.G. Baumgaertner, A.J. McDonald, G.J. Fraser, G.E. Plank, Long-term observations of mean winds and tides in the upper mesosphere and lower thermosphere above Scott Base, Antarctica. J. Atmos. Sol.-Terr. Phys. 67, 1480–1496 (2005) ADSCrossRefGoogle Scholar
  8. G. Beig, The relative importance of solar activity and anthropogenic influences on the ion composition, temperature, and associated neutrals of the middle atmosphere. J. Geophys. Res. 105, 19841–19856 (2000) ADSCrossRefGoogle Scholar
  9. G. Beig, Trends in the mesopause region temperature and our present understanding—an update. Phys. Chem. Earth 31(1), 3–9 (2006). doi: 10.1016/j.pce.2005.03.007 CrossRefGoogle Scholar
  10. G. Beig, Recent advances in long-term trends of MLT-region, in 6th IAGA/ICMA/ CAWSES workshop “Long-Term Changes and Trends in the Atmosphere”. HAO-NCAR, Boulder (Book of abstracts, p. 12) (2010) Google Scholar
  11. G. Beig, P. Keckhut, R.P. Lowe, R.G. Roble, M.G. Mlynczak, J. Scheer, V.I. Fomichev, D. Offermann, W.J.R. French, M.G. Shepherd, A.I. Semenov, E.E. Remsberg, C.-Y. She, F.-J. Lübken, J. Bremer, B.R. Clemesha, J. Stegman, F. Sigernes, S. Fadnavis, Review of mesospheric temperature trends. Rev. Geophys. 41(4), 1015 (2003). doi: 10.1029/2002RG000121 ADSCrossRefGoogle Scholar
  12. P. Bencze, Geographical distribution of long-term changes in the height of the maximum electron density of the F region: a nonmigrating tidal effect? J. Geophys. Res. 111, A06304 (2009). doi: 10.1029/2008JA013492 CrossRefGoogle Scholar
  13. E. Blanc, Observations in the upper atmosphere of infrasonic waves from natural or artificial sources: a summary. Ann. Geophys. 3, 673–688 (1983) ADSGoogle Scholar
  14. S.W. Bougher, R.G. Roble, Comparative terrestrial planet thermospheres. 1. Solar cycle variations of global mean temperatures. J. Geophys. Res. 96, 11045–11055 (1991) ADSCrossRefGoogle Scholar
  15. J. Bremer, Trends in the ionospheric E- and F-regions over Europe. Ann. Geophys. 16, 986–996 (1998) ADSCrossRefGoogle Scholar
  16. J. Bremer, Trends in the thermosphere derived from global ionosonde observations. Adv. Space Res. 28(7), 997–1006 (2001) ADSCrossRefGoogle Scholar
  17. J. Bremer, Detection of long-term trends in the mesosphere-lower thermosphere from ground-based radio propagation measurements. Adv. Space Res. 35(8), 1398–1404 (2005) ADSCrossRefGoogle Scholar
  18. J. Bremer, Long-term trends in the ionospheric E and F1 regions. Ann. Geophys. 26, 1189–1197 (2008) ADSCrossRefGoogle Scholar
  19. J. Bremer, U. Berger, Mesospheric temperature trends derived from ground-based LF phase-height observations at middle latitudes: Comparison with model simulations. J. Atmos. Sol.-Terr. Phys. 64(7), 805–816 (2002) ADSCrossRefGoogle Scholar
  20. J. Bremer, L. Alfonsi, P. Bencze, J. Laštovička, A.V. Mikhailov, N. Rogers, Long-term trends in the ionosphere and upper atmosphere parameters. Ann. Geophys. 47 (Supplement to Nos. 2–3), 1009–1029 (2004) Google Scholar
  21. J. Bremer, P. Hoffmann, J. Höffner, R. Latteck, W. Singer, M. Zecha, O. Zeller, Long-term changes of mesospheric summer echoes at polar and middle latitudes. J. Atmos. Sol.-Terr. Phys. 68(17), 1940–1951 (2006) ADSCrossRefGoogle Scholar
  22. J. Bremer, P. Hoffmann, R. Latteck, W. Singer, M. Zecha, Long-term changes of (polar) mesosphere summer echoes. J. Atmos. Sol.-Terr. Phys. 71, 1571–1576 (2009b). doi: 10.1016/j.jastp.2009.03.010 ADSCrossRefGoogle Scholar
  23. J. Bremer, J. Laštovička, A.V. Mikhailov, D. Altadill, P. Bencze, D. Burešová, G. De Franceschi, C. Jacobi, S. Kouris, L. Perrone, E. Turunen, Climate of the upper atmosphere. Ann. Geophys. 52(3/4), 273–299 (2009a) Google Scholar
  24. J. Bremer, D. Peters, Influence of stratospheric ozone changes on long-term trends in the meso- and lower thermosphere. J. Atmos. Sol.-Terr. Phys. 70(11-12), 1473–1481 (2008). doi: 10.1016/j.jastp.2008.03.024 ADSCrossRefGoogle Scholar
  25. P.S. Cannon, N.C. Rogers, C.M. Hall, Trends in critical frequencies and layer heights over Tromso and their consequential impact for radio system modeling. Adv. Space Res. 34(9), 2085–2091 (2004) ADSCrossRefGoogle Scholar
  26. H. Chandra, G.D. Vyas, S. Sharma, Long-term changes in ionospheric parameters over Ahmedabad. Adv. Space Res. 20, 2161–2164 (1997) ADSCrossRefGoogle Scholar
  27. R.J. Cicerone, Greenhouse cooling up high. Nature 344, 104–105 (1990) ADSCrossRefGoogle Scholar
  28. B.R. Clemesha, D.M. Simonich, P.P. Batista, A long term trend in the height of the atmospheric sodium layer: possible evidence for global change. Geophys. Res. Lett. 19, 457–460 (1992) ADSCrossRefGoogle Scholar
  29. M.A. Clilverd, T.G.C. Clark, E. Clarke, H. Rishbeth, Increased magnetic storm activity from 1868 to 1995. J. Atmos. Sol.-Terr. Phys. 60, 1047–1056 (1998) ADSCrossRefGoogle Scholar
  30. M.A. Clilverd, T. Ulich, J.M. Jarvis, Residual solar cycle influence on trends in ionospheric F2-layer peak height. J. Geophys. Res., 108(A12), 1450 (2003) CrossRefGoogle Scholar
  31. I. Cnossen, A.D. Richmond, Modeling the effect of changes in the Earth’s magnetic field from 1957 to 1997 on the ionospheric hmF2 and foF2 parameters. J. Atmos. Sol.-Terr. Phys. 70(11–12), 1512–1524 (2008) ADSCrossRefGoogle Scholar
  32. A.D. Danilov, Long-term changes of the mesosphere and lower thermosphere temperature and composition. Adv. Space Res. 20(11), 2137–2147 (1997) ADSCrossRefGoogle Scholar
  33. A.D. Danilov, The method of determination of long-term trends in F2-region independent of geomagnetic activity. Ann. Geophys. 20, 1–11 (2002) CrossRefGoogle Scholar
  34. A.D. Danilov, Long-term trends in F2-layer parameters and their relation to other trends. Adv. Space Res. 35(8), 1405–1410 (2005) ADSCrossRefGoogle Scholar
  35. A.D. Danilov, Time and spatial variations in the ratio of nighttime and daytime critical frequencies of the F2 layer. J. Atmos. Sol.-Terr. Phys. 70(8–9), 1201–1212 (2008a) ADSCrossRefGoogle Scholar
  36. A.D. Danilov, Long-term trends in the relation between daytime and nighttime values of foF2. Ann. Geophys. 26(5), 1199–1206 (2008b) MathSciNetADSCrossRefGoogle Scholar
  37. A.D. Danilov, Scatter of hmF2 values as an indicator of trends in thermospheric dynamics. J. Atmos. Sol.-Terr. Phys. 71, 1586–1591 (2009). doi: 10.1016/j.jastp.2009.03.002 ADSCrossRefGoogle Scholar
  38. A.D. Danilov, L.B. Vanina-Dart, Parameters of the ionospheric F2 layer as a source of information on trends in thermospheric dynamics. Geomagn. Aeron. 50(2), 187–200 (2010) ADSCrossRefGoogle Scholar
  39. M.T. DeLand, E.P. Shettle, G.E. Thomas, J.J. Olivero, A quarter-century of satellite polar mesospheric cloud observations. J. Atmos. Sol.-Terr. Phys. 68, 9–29 (2006) ADSCrossRefGoogle Scholar
  40. M.T. DeLand, E.P. Shettle, G.E. Thomas, J.J. Olivero, Latitude-dependent long-term variations in polar mesospheric clouds from SBUV version 3 PMC data. J. Geophys. Res. 112, D10315 (2007). doi: 10.1029/2006JD007857 ADSCrossRefGoogle Scholar
  41. A.G. Elias, Trends in the F2 ionospheric layer due to long-term variations in the Earth’s magnetic field. J. Atmos. Sol.-Terr. Phys. 71, 1602–1609 (2009). doi: 10.1016/j.jastp.2009.05.014 ADSCrossRefGoogle Scholar
  42. A.G. Elias, N. Ortiz de Adler, Earth magnetic field and geomagnetic activity effects on long-term trends in the F2 layer at mid-high latitudes. J. Atmos. Sol.-Terr. Phys. 68(17), 1871–1878 (2006) ADSCrossRefGoogle Scholar
  43. J.T. Emmert, J.M. Picone, J.L. Lean, S.H. Knowles, Global change in the thermosphere: compelling evidence of a secular decrease in density. J. Geophys. Res. 109, A02301 (2004). doi: 10.1029/2003JA010176 CrossRefGoogle Scholar
  44. J.T. Emmert, J.M. Picone, R.R. Meier, Thermospheric global average density trends 1967-2007, derived from orbits of 5000 near-Earth objects. Geophys. Res. Lett. 35, L05101 (2008). doi: 10.1029/2007GL032809 CrossRefGoogle Scholar
  45. J.T. Emmert, J.L. Lean, J.M. Picone, Record low thermospheric density during the 2008 solar minimum. Geophys. Res. Lett. 37, L12102 (2010). doi: 10.1029/2010GL043671 ADSCrossRefGoogle Scholar
  46. V.I. Fomichev, A.I. Jonsson, J. de Grandpré, S.R. Beagley, C. McLandress, K. Semeniuk, T.G. Shepherd, Response of the middle atmosphere to CO2 doubling: results from the Canadian Middle Atmosphere Model. J. Climate 20(7), 1255–1264 (2007) CrossRefGoogle Scholar
  47. A.J. Foppiano, L. Cid, V. Jara, Ionospheric long-term trends for South American mid-latitudes. J. Atmos. Sol.-Terr. Phys. 61, 717–723 (1999) ADSCrossRefGoogle Scholar
  48. R.R. Garcia, D.R. Marsh, D.E. Kinnison, B.A. Boville, F. Sassi, Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res. 112, D09301 (2007). doi: 10.1029/2006JD007485 CrossRefGoogle Scholar
  49. N.M. Gavrilov, S. Fukao, T. Nakamura, Ch. Jacobi, D. Kürschner, A.H. Manson, C.E. Meek, Comparative study of interannual changes of the mean winds and gravity wave activity in the middle atmosphere over Japan, Central Europe and Canada. J. Atmos. Sol.-Terr. Phys. 64, 1003–1010 (2002) ADSCrossRefGoogle Scholar
  50. G.S. Golitsyn, A.I. Semenov, N.N. Shefov, Seasonal variations of the long-term temperature trend in the mesopause region. Geomagn. Aeron. 40(2), 198–200 (2000) Google Scholar
  51. P.F. Graigmile, P. Guttorp, D.B. Percival, Trend assessment in a long memory dependence model using the discrete wavelet transform. Environmetrics 15(4), 313–315 (2004) CrossRefGoogle Scholar
  52. A.N. Gruzdev, G.P. Brasseur, Long-term changes in the mesosphere calculated by a two-dimensional model. J. Geophys. Res. 110, D03304 (2005). doi: 10.1029/2003JD004410 CrossRefGoogle Scholar
  53. C.M. Hall, A. Brekke, P.S. Cannon, Climatic trends in E-region critical frequency and virtual height above Tromso (70°N, 19°E). Ann. Geophys. 25, 2351–2357 (2007a) ADSCrossRefGoogle Scholar
  54. C.M. Hall, A. Brekke, A.H. Manson, C.E. Meek, S. Nozawa, Trends in mesospheric turbulence at 70°N. Atmos. Sci. Lett. 8, 80–84 (2007b) ADSCrossRefGoogle Scholar
  55. N.R.P. Harris, E. Kyrö, J. Staehelin et al., Ozone trends at northern mid and high latitudes—a European perspective. Ann. Geophys. 26(5), 1207–1220 (2008) ADSCrossRefGoogle Scholar
  56. P. Hoffmann, E. Becker, M. Rapp, J. Bremer, W. Singer, M. Placke, Seasonal and interannual variation of mesospheric waves at middle and high latitudes, in 6th IAGA/ICMA/ CAWSES Workshop “Long-Term Changes and Trends in the Atmosphere”, HAO-NCAR, Boulder (Book of abstracts, p. 16) (2010) Google Scholar
  57. J.M. Holt, S.-R. Zhang, Long-term temperature trends in the ionosphere above Millstone Hill. Geophys. Res. Lett. 35, L05813 (2008). doi: 10.1029/2007GL031148 CrossRefGoogle Scholar
  58. IPCC (Intergovernmental Panel on Climate Change), in Climate Change 2007: The Physical Science Basis, ed. by S. Solomon (Cambridge Univ. Press, Cambridge, 2007) Google Scholar
  59. C. Jacobi, Y.I. Portnyagin, E.G. Merzlyakov, T.V. Solovjova, N.A. Makarov, D. Kürschner, A long-term comparison of mesopause region wind measurements over Eastern and Central Europe. J. Atmos. Sol.-Terr. Phys. 67, 227–240 (2005) ADSCrossRefGoogle Scholar
  60. C. Jacobi, N.M. Gavrilov, D. Kürschner, K. Fröhlich, Gravity wave climatology and trends in the mesosphere/lower thermosphere region deduced from low-frequency drift measurements 1984–2003 (52.1°N, 13.2°E). J. Atmos. Sol.-Terr. Phys. 68, 1913–1923 (2006) ADSCrossRefGoogle Scholar
  61. C. Jacobi, P. Hoffmann, D. Kürschner, Trends in MLT region winds and planetary waves, Collm (52°N, 15°E). Ann. Geophys. 26, 1221–1232 (2008) ADSCrossRefGoogle Scholar
  62. C. Jacobi, P. Hoffmann, R.Q. Liu, P. Križan, J. Laštovička, E.G. Merzlyakov, T.V. Solovjova, Yu.I. Portnyagin, Midlatitude mesopause region winds and waves and comparison with stratospheric variability. J. Atmos. Sol.-Terr. Phys. 71, 1540–1546 (2009) ADSCrossRefGoogle Scholar
  63. M.J. Jarvis, Planetary wave trends in the lower thermosphere—evidence for 22-year solar modulation of the quasi 5-day wave. J. Atmos. Sol.-Terr. Phys. 68(17), 1902–1912 (2006) ADSCrossRefGoogle Scholar
  64. M.J. Jarvis, B. Jenkins, G.A. Rodgers, Southern hemisphere observations of a long-term decrease in F-region altitude and thermospheric wind providing possible evidence for global thermospheric cooling. J. Geophys. Res. 103(A9), 20,774–20,787 (1998) CrossRefGoogle Scholar
  65. M.J. Jarvis, M.A. Clilverd, Th. Ulich, Methodological influences on F-region peak height trend analysis. Phys. Chem. Earth 27, 589–594 (2002) CrossRefGoogle Scholar
  66. G.M. Keating, R.H. Tolson, M.S. Bradford, Evidence of long term global decline in the Earth’s thermospheric densities apparently related to anthropogenic effects. Geophys. Res. Lett. 27, 1523–1526 (2000) ADSCrossRefGoogle Scholar
  67. Y.A. Kalgin, Dynamical aspect of long-term trend of the neutral atmosphere composition at turbopause region, in Proc. Int. Workshop “Cooling and Sinking of the Middle and Upper Atmosphere”, Moscow (1998), pp. 26–27 Google Scholar
  68. M. Kendall, Time Series (Charles Griffin, London, 1973) Google Scholar
  69. D. Keuer, P. Hoffmann, W. Singer, J. Bremer, Long-term variations of the mesospheric wind field at mid-latitudes. Ann. Geophys. 25, 1779–1790 (2007) ADSCrossRefGoogle Scholar
  70. S. Kirkwood, P. Dalin, A. Réchou, Noctilucent clouds observed from the UK and Denmark—trends and variations over 43 years. Ann. Geophys. 26, 1243–1254 (2008) ADSCrossRefGoogle Scholar
  71. V.M. Krasnov, Y.V. Drobzheva, J. Laštovička, Recent advances and difficulties of infrasonic wave investigation in the ionosphere. Surv. Geophys. 27(2), 169–209 (2006) ADSCrossRefGoogle Scholar
  72. P. Križan, J. Laštovička, Trends in positive and negative ozone laminae in the Northern Hemisphere. J. Geophys. Res. 110, D10107 (2005). doi: 10.1029/2004JD005477 ADSCrossRefGoogle Scholar
  73. A. Kubicky, P. Keckhut, M.-L. Chanin, G.S. Golitsyn, E. Lysenko, Temperature trends in the middle atmosphere as seen by historical Russian rocket launches. Part II. Heiss Island (80.6°N, 58°E). J. Atmos. Sol.-Terr. Phys. 70(1), 145–155 (2008) ADSCrossRefGoogle Scholar
  74. J. Laštovička, Long-term changes and trends in the lower ionosphere. Phys. Chem. Earth 27, 497–507 (2002) CrossRefGoogle Scholar
  75. J. Laštovička, On the role of solar and geomagnetic activity in long-term trends in the atmosphere-ionosphere system. J. Atmos. Sol.-Terr. Phys. 67(1–2), 83–92 (2005) ADSCrossRefGoogle Scholar
  76. J. Laštovička, Global pattern of trends in the upper atmosphere and ionosphere: recent progress. J. Atmos. Sol.-Terr. Phys. 71, 1514–1528 (2009). doi: 10.1016/j.jastp.2009.01.010 ADSCrossRefGoogle Scholar
  77. J. Laštovička, J. Bremer, An overview of long-term trends in the lower ionosphere below 120 km. Surv. Geophys. 25, 69–99 (2004) CrossRefGoogle Scholar
  78. J. Laštovička, D. Pancheva, Changes in characteristics of planetary waves at 80–100 km over Central and Southern Europe since 1980. Adv. Space Res. 11(3), 31–34 (1991) ADSCrossRefGoogle Scholar
  79. J. Laštovička, V. Fišer, D. Pancheva, Long-term trends in planetary wave activity (2–15 days) at 80–100 km inferred from radio wave absorption. J. Atmos. Sol.-Terr. Phys. 56, 893–899 (1994) ADSCrossRefGoogle Scholar
  80. J. Laštovička, R.A. Akmaev, G. Beig, J. Bremer, J.T. Emmert, Global change in the upper atmosphere. Science 314(5803), 1253–1254 (2006a) CrossRefGoogle Scholar
  81. J. Laštovička, A.V. Mikhailov, Th. Ulich, J. Bremer, A.G. Elias, N. Ortiz de Adler, V. Jara, R. Abarca del Rio, A.J. Foppiano, E. Ovalle, A.D. Danilov, Long-term trends in foF2: a comparison of various methods. J. Atmos. Sol.-Terr. Phys. 68(17), 1854–1870 (2006b) ADSCrossRefGoogle Scholar
  82. J. Laštovička, R.A. Akmaev, G. Beig, J. Bremer, J.T. Emmert, C. Jacobi, M.J. Jarvis, G. Nedoluha, Y.I. Portnyagin, T. Ulich, Emerging pattern of global change in the upper atmosphere and ionosphere. Ann. Geophys. 26(5), 1255–1268 (2008a) ADSCrossRefGoogle Scholar
  83. J. Laštovička, X. Yue, W. Wan, Long-term trends in foF2: their estimating and origin. Ann. Geophys. 26, 593–598 (2008b) ADSCrossRefGoogle Scholar
  84. J. Laštovička, P. Križan, M. Kozubek, Long-term trends in the middle atmosphere dynamics at northern middle latitudes—one regime or two different regimes? Atmos. Chem. Phys. Discuss. 10, 2631–2668 (2010) CrossRefGoogle Scholar
  85. F.-J. Lübken, Nearly zero temperature trend in the polar summer mesosphere. Geophys. Res. Lett. 27(21), 3603–3606 (2000) ADSCrossRefGoogle Scholar
  86. F.-J. Lübken, No long term change of the thermal structure in the mesosphere at high latitudes during summer. Adv. Space Res. 28(7), 947–953 (2001) ADSCrossRefGoogle Scholar
  87. F.-J. Lübken, U. Berger, G. Baumgartner, Stratospheric and solar cycle effects on long-term variability of mesospheric ice clouds. J. Geophys. Res. 114(21), D00106 (2009). doi: 10.1029/2009JD012377 Google Scholar
  88. F.-J. Lübken, U. Berger, J. Fiedler, G. Baumgartner, M. Gerding, Trends and solar cycle effects in mesospheric ice clouds, in 38th Sci. Ass. COSPAR, Symp. C2.1, Bremen (2010) Google Scholar
  89. F.A. Marcos, J.O. Wise, M.J. Kendra, N.J. Grossbard, B.R. Bowman, Detection of long-term decrease in thermospheric neutral density. Geophys. Res. Lett. 32, L04103 (2005). doi: 10.1029/2004GL021269 CrossRefGoogle Scholar
  90. D. Marsh, A. Smith, E. Woble, Mesospheric ozone response to changes in water vapor. J. Geophys. Res. 108(D3), 4109 (2003). doi: 10.1029/2002JD002705 CrossRefGoogle Scholar
  91. D. Martini, K. Mursula, Centennial geomagnetic activity studied by a new, reliable long-term index. J. Atmos. Sol.-Terr. Phys. 70(7), 1074–1087 (2008) ADSCrossRefGoogle Scholar
  92. C. McLandress, V.I. Fomichev, Amplification of the mesospheric diurnal tide in a doubled CO2 atmosphere. Geophys. Res. Lett. 33, L06808 (2006). doi: 10.1029/2005GL025345 CrossRefGoogle Scholar
  93. L.F. McNamara, Accuracy of models of hmF2 used for long-term trend analyses. Radio Sci. 43, RS2002 (2008). doi: 10.1029/2007RS003740 ADSCrossRefGoogle Scholar
  94. E. Merzlyakov, C. Jacobi, Y.I. Portnyagin, T.V. Solovjova, Structural changes in trend parameters of the MLT winds based on wind measurements at Obninsk (55°N, 37°E) and Collm (52°N, 15°E). J. Atmos. Solar-Terr. Phys. 71 (2009). doi: 10.1016/j.jastp.2009.05.013
  95. A.V. Mikhailov, The geomagnetic control concept of the F2-layer parameter long-term trends. Phys. Chem. Earth 27, 595–606 (2002) CrossRefGoogle Scholar
  96. A.V. Mikhailov, Ionospheric long-term trends: can the geomagnetic control and the greenhouse hypothesis be reconciled? Ann. Geophys. 24(10), 2533–2541 (2006a) ADSCrossRefGoogle Scholar
  97. A.V. Mikhailov, Trends in the ionospheric E-region. Phys. Chem. Earth 31, 22–23 (2006b) CrossRefGoogle Scholar
  98. A.V. Mikhailov, Ionospheric F1 layer long-term trends and the geomagnetic control concept. Ann. Geophys. 26, 3793–3803 (2008) ADSCrossRefGoogle Scholar
  99. A.V. Mikhailov, B.A. de la Morena, Long-term trends of foE and geomagnetic activity variations. Ann. Geophys. 21, 751–760 (2003) ADSCrossRefGoogle Scholar
  100. A.V. Mikhailov, D. Marin, Geomagnetic control of the foF2 long-term trends. Ann. Geophys. 18, 653–665 (2000) ADSCrossRefGoogle Scholar
  101. A.V. Mikhailov, D. Marin, An interpretation of the foF2 and hmF2 long-term trends in the framework of the geomagnetic control concept. Ann. Geophys. 19, 733–748 (2001) ADSCrossRefGoogle Scholar
  102. M. Mlynczak, L. Hunt, B.T. Marshall, F.J. Martin-Torres, C.J. Mertens, J.M. Russell III, E. Remsberg, M. Lopez-Puertas, R. Picard, J. Winick, P. Wintersteiner, R.E. Thompson, L.L. Gordley, Observations of infrared radiative cooling in the thermosphere on daily to multiyear timescales from the TIMED/SABER instrument. J. Geophys. Res. 115, A03309 (2010). doi: 10.1029/2009JA014713 CrossRefGoogle Scholar
  103. K. Mursula, D. Martini, Centennial increase in geomagnetic activity: latitudinal difference and global estimates. J. Geophys. Res. 111, A08209 (2006). doi: 10.1029/2005JA011549 CrossRefGoogle Scholar
  104. G.E. Nedoluha, R.M. Bevilacqua, R.M. Gomez, B.C. Hicks, J.M. Russell III, B.J. Connor, An evaluation of trends in middle atmospheric water vapor as measured by HALOE, WVMS, and POAM. J. Geophys. Res. 108(D13), 4391 (2003). doi: 10.1029/2002JD003332 CrossRefGoogle Scholar
  105. D. Offermann, M. Donner, P. Knieling, B. Naujokat, Middle atmosphere temperature changes and the duration of summer. J. Atmos. Sol.-Terr. Phys. 66, 437–450 (2004) ADSCrossRefGoogle Scholar
  106. D. Offermann, M. Jarisch, M. Donner, W. Steinbrecht, A.I. Semenov, OH temperature re-analysis forced by recent variance increases. J. Atmos. Sol.-Terr. Phys. 68(17), 1924–1933 (2006) ADSCrossRefGoogle Scholar
  107. D. Offermann, P. Hoffmann, P. Knieling, R. Koppmann, J. Oberheide, W. Steinbrecht, Long-term-trends and solar cycle variations of mesospheric temperature and dynamics. J. Geophys. Res. 115, D18127 (2010). doi: 10.1029/2009JD013363 ADSCrossRefGoogle Scholar
  108. N. Ortiz de Adler, A.G. Elias, T. Heredia, Long-term trend of the ionospheric F2-layer peak height at a southern low latitude station. Phys. Chem. Earth 27(6–8), 613–615 (2002) Google Scholar
  109. V.I. Perminov, A.I. Semenov, Model of latitudinal, seasonal and altitudinal changes of long-term temperature trends in the middle atmosphere. Geomagn. Aeron. 47(5), 685–691 (2007) (in Russian, abstract in English) CrossRefGoogle Scholar
  110. A.I. Pogorelcev, A.Yu. Kanukhina, E.V. Suvorova, E.N. Savenkova, Variability of planetary waves as a signature of possible climatic change. J. Atmos. Sol.-Terr. Phys. 71, 1529–1539 (2009) ADSCrossRefGoogle Scholar
  111. Y.I. Portnyagin, E.G. Merzlyakov, T.V. Solovjova, Ch. Jacobi, D. Kürschner, A. Manson, C. Meek, Long-term trends and year-to-year variability of mid-latitude mesosphere/lower thermosphere winds. J. Atmos. Sol.-Terr. Phys. 68, 1890–1901 (2006). doi: 10.1016/j.jastp.2006.04.004 ADSCrossRefGoogle Scholar
  112. L. Qian, R.G. Roble, S.C. Solomon, T.J. Kane, Calculated and observed climate change in the thermosphere, and a prediction for solar cycle 24. Geophys. Res. Lett. 33, L23705 (2006). doi: 10.1029/2006GL027185 ADSCrossRefGoogle Scholar
  113. L. Qian, S.C. Solomon, R.G. Roble, T.J. Kane, Model simulations of global change in the ionosphere. Geophys. Res. Lett. 35, L07811 (2008). doi: 10.1029/2007GL033156 CrossRefGoogle Scholar
  114. L. Qian, A.G. Burns, S.C. Solomon, R.G. Roble, The effect of carbon dioxide cooling on trends in the F2-layer ionosphere. J. Atmos. Sol.-Terr. Phys. 71, 1592–1601 (2009). doi: 10.1016/j.jastp.2009.03.006 ADSCrossRefGoogle Scholar
  115. L. Qian, J. Laštovička, S.C. Solomon, R.G. Roble, Progress in observations and simulations of global change in the upper atmosphere. J. Geophys. Res. 111(A4), A00H03, (2011) doi: 10.1029/2010JA016317 CrossRefGoogle Scholar
  116. G.C. Reinsel, A.J. Miller, E.C. Weatherhead, L.E. Flynn, R.M. Nagatani, G.C. Tiao, D.J. Wuebbles, Trend analysis of total ozone data for turnaround and dynamical contributions. J. Geophys. Res. 110, D16306 (2005). doi: 10.1029/2004JD004662 ADSCrossRefGoogle Scholar
  117. E.E. Remsberg, A reanalysis for the seasonal and longer-period cycles and the trends in middle atmosphere temperature from the Halogen Occultation Experiment. J. Geophys. Res. 112, D09118 (2007). doi: 10.1029/2006JD007489 CrossRefGoogle Scholar
  118. E.E. Remsberg, Trends and solar cycle effects in temperatures versus altitude from the Halogen Occultation Experiment for the mesosphere and upper stratosphere. J. Geophys. Res. 114, D12303 (2009). doi: 10.1029/2009JD011897 ADSCrossRefGoogle Scholar
  119. H. Rishbeth, A greenhouse effect in the ionosphere? Planet. Space Sci. 38, 945–948 (1990) ADSCrossRefGoogle Scholar
  120. H. Rishbeth, Long-term changes in the ionosphere. Adv. Space Res. 20(11), 2149–2155 (1997) ADSCrossRefGoogle Scholar
  121. H. Rishbeth, R.G. Roble, Cooling of the upper atmosphere by enhanced greenhouse gases—modeling of thermospheric and ionospheric effects. Planet. Space Sci. 40, 1011–1026 (1992) ADSCrossRefGoogle Scholar
  122. R.G. Roble, R.E. Dickinson, How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and lower thermosphere? Geophys. Res. Lett. 16, 1441–1444 (1989) ADSCrossRefGoogle Scholar
  123. R.G. Roble, E.C. Ridley, Thermosphere-ionospheremesosphere electrodynamics general circulation model (TIME-GCM): equinox solar min simulations, 30–500 km. Geophys. Res. Lett. 21, 417–420 (1994) ADSCrossRefGoogle Scholar
  124. H. Schmidt, G.P. Brasseur, M. Charron, E. Manzini, M.A. Giorgetta, T. Diehl, V.I. Fomichev, D. Kinnison, D. Marsh, S. Walters, The HAMMONIA chemistry climate model: sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling. J. Climate 19, 3903–3931 (2006) ADSCrossRefGoogle Scholar
  125. A.I. Semenov, N.N. Shefov, E.V. Lysenko, G.V. Givishvili, A.V. Tikhonov, The seasonal peculiarities of behavior of the long-term temperature trends in the middle atmosphere at the mid-latitudes. Phys. Chem. Earth 27, 529–534 (2002) CrossRefGoogle Scholar
  126. S.S. Sharma, H. Chandra, G.D. Vyas, Long-term ionospheric trends over Ahmedabad. Geophys. Res. Lett. 26, 433–436 (1999) ADSCrossRefGoogle Scholar
  127. P.E. Shettle, M.T. DeLand, G.E. Thomas, J.J. Olivero, Long term variations in the frequency of polar mesospheric clouds in the Northern Hemisphere from SBUV. Geophys. Res. Lett. 36, L02803 (2009). doi: 10.1029/2008GL036048 CrossRefGoogle Scholar
  128. M. Smirnova, E. Belova, S. Kirkwood, N. Mitchell, Polar mesosphere summer echoes with ESRAD, Kiruna, Sweden: variations and trends over 1997–2008. J. Atmos. Solar-Terr. Phys. 72 (2010). doi: 10.1016/j.jastp.2009.12.014
  129. S. Solomon, K.H. Rosenlof, R.W. Portmann, J.S. Daniel, S.M. Davis, T.J. Sanford, G.-K. Plattner, Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327(5970), 1219–1223 (2010a) ADSCrossRefGoogle Scholar
  130. S.C. Solomon, T.N. Woods, L.V. Didkovsky, J.T. Emmert, L. Qian, Anomalously low solar extreme-ultraviolet irradiance and thermospheric density during solar minimum. Geophys. Res. Lett. 37, L16103 (2010b). doi: 10.1029/2010GL044468 ADSCrossRefGoogle Scholar
  131. S.C. Solomon, L. Qian, L.V. Didkovsky, R.A. Viereck, T.N. Woods, Causes of low thermospheric density during the 2007–2009 solar minimum. J. Geophys. Res., submitted (2011), doi: 10.1029/2011JA016508
  132. S. Sridharan, T. Tsuda, S. Gurubaran, Long-term tendencies in the mesosphere/lower thermosphere mean winds and tides observed by medium frequency radar at Tirunaveli (8.7°N, 77.8°E). J. Geophys. Res. 115, D08109 (2010). doi: 10.1029/2008JD011609 CrossRefGoogle Scholar
  133. R. Stamper, M. Lockwood, M.N. Wild, T.D.G. Clark, Solar causes of the long-term increase in geomagnetic activity. J. Geophys. Res. 104, 28325–28342 (1999) ADSCrossRefGoogle Scholar
  134. T. Ulich, E. Turunen, Evidence for long-term cooling of the upper atmosphere in ionosonde data. Geophys. Res. Lett. 24, 1103–1106 (1997) ADSCrossRefGoogle Scholar
  135. T. Ulich, M.A. Clilverd, H. Rishbeth, On determining long-term change in the ionosphere. EOS Trans. 84(52), 581–585 (2003) ADSCrossRefGoogle Scholar
  136. T. Ulich, M.A. Clilverd, M.J. Jarvis, H. Rishbeth, Unravelling signs of global change in the ionosphere, in Space Weather, ed. by J. Lilensten (Springer, Dordrecht, 2007), pp. 95–105 CrossRefGoogle Scholar
  137. H.O. Upadhyay, E.E. Mahajan, Atmospheric greenhouse effect and ionospheric trends. Geophys. Res. Lett. 25, 3375–3378 (1998) ADSCrossRefGoogle Scholar
  138. M. Venkat Ratnam, A.K. Patra, B.V. Krishna Murthy, Tropical mesopause: is it always close to 100 km? J. Geophys. Res. 115, D06106 (2010). doi: 10.1029/2009JD012531 CrossRefGoogle Scholar
  139. E.C. Weatherhead, G.C. Reinsel, G.C. Tiao et al., Detecting the recovery of total column ozone. J. Geophys. Res. 105, 22201–22210 (2000) ADSCrossRefGoogle Scholar
  140. E.C. Weatherhead, A.J. Stevermer, B.E. Schwartz, Detecting environmental changes and trends. Phys. Chem. Earth 27, 399–403 (2002) CrossRefGoogle Scholar
  141. Z.-W. Xu, J. Wu, K. Igarashi, H. Kato, Z.-S. Wu, Long-term ionospheric trends based on ground-based ionosonde observations at Kokubunji, Japan. J. Geophys. Res. 109, A09307 (2004) CrossRefGoogle Scholar
  142. X. Yue, W. Wan, L. Liu, B. Ning, B. Zhao, Applying artificial neural network to derive long-term foF2 trends in Asia/Pacific sector from ionosonde observations. J. Geophys. Res. 111, D22307 (2006). doi: 10.1029/2005JA011577 CrossRefGoogle Scholar
  143. X. Yue, L. Liu, W. Wan, Y. Wei, Z. Ren, Modeling the effects of secular variation of geomagnetic field orientation on the ionospheric long term trend over the past century. J. Geophys. Res. 113, A10301 (2008). doi: 10.1029/2007JA012995 ADSCrossRefGoogle Scholar
  144. X. Yue, W.S. Schreiner, J. Lei, C. Rocken, D.G. Hunt, Y.-H. Kuo, W. Wan, Global ionospheric response observed by COSMIC satellites during the January 2009 stratospheric sudden warming event. J. Geophys. Res. 115, A00G09 (2010). doi: 10.1029/2010JA015466 CrossRefGoogle Scholar
  145. S.-R. Zhang, J. Holt, J. Kurdzo, Millstone Hill ISR observations of upper atmospheric long-term changes: Height dependency. J. Geophys. Res. 116, A00H05 (2011). doi: 10.1029/2010JA016414 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jan Laštovička
    • 1
    Email author
  • Stanley C. Solomon
    • 2
  • Liying Qian
    • 2
  1. 1.Institute of Atmospheric Physics ASCRPragueCzech Republic
  2. 2.High Altitude ObservatoryNational Center for Atmospheric ResearchBoulderUSA

Personalised recommendations