Space Science Reviews

, Volume 168, Issue 1–4, pp 237–260 | Cite as

In-Situ CHAMP Observation of Ionosphere-Thermosphere Coupling

  • Hermann LührEmail author
  • Jaeheung Park
  • Patricia Ritter
  • Huixin Liu


The coupling between the ionised plasma and the neutral thermospheric particles plays an important role for the dynamics of the upper atmosphere. Significant progress in understanding the related processes has been achieved thanks to the availability of continuous accurate measurements of thermospheric parameters like mass density and wind by high resolution accelerometers on board the satellites CHAMP and GRACE. Here we present some examples of ionosphere-thermosphere coupling where CHAMP observations contributed considerably to their interpretation. We start with the derived properties of the thermosphere at altitudes around 400 km. A new aspect is the significant control of the geomagnetic field geometry on thermospheric features. Phenomena discussed in some depths are the equatorial mass density anomaly, the cusp-related mass density enhancement and the thermospheric response to magnetospheric substorms. Here we consider both the effect on the density and on the wind. A long predicted process is the wind-driven ionospheric F region dynamo. The high-resolution magnetic field measurements of CHAMP enabled for the first time a systematic study of that phenomenon considering longitudinal, local time, seasonal and solar flux dependences. Some open issues that require further investigations are mentioned at the end.


Ionosphere-thermosphere coupling Low-latitude thermosphere High-latitude thermosphere Substorm effects Ionospheric F region dynamo 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. C.R. Clauer, R.L. McPherron, J. Geophys. Res. 79, 2812–2820 (1974) ADSGoogle Scholar
  2. J.H. Clemmons, J.H. Hecht, D.R. Salem, D.J. Strickland, Geophys. Res. Lett. 35, L24103 (2008). doi: 10.1029/2008GL035972 ADSCrossRefGoogle Scholar
  3. G. Crowley, A. Reynolds, J.P. Thayer, J. Lei, L.J. Paxton, A.B. Christensen, Y. Zhang, R.R. Meier, D.J. Strickland, Geophys. Res. Lett. 35, L21106 (2008). doi: 10.1029/2008GL035745 ADSCrossRefGoogle Scholar
  4. H.G. Demars, R.W. Schunk, J. Atmos. Sol.-Terr. Phys. 69, 649–660 (2007) ADSCrossRefGoogle Scholar
  5. E. Doornbos, J. van den Ijssel, H. Lühr, M. Förster, G. Koppenwallner, J. Spacecr. Rockets 47, 580–589 (2010) CrossRefGoogle Scholar
  6. J.T. Emmert, D.P. Drob, G.G. Shepherd, G. Hernandez, M.J. Jarvis, J.W. Meriwether, R.J. Niciejewski, D.P. Sipler, C.A. Tepley, J. Geophys. Res. 113, A11319 (2008). doi: 10.1029/2008JA013541 ADSCrossRefGoogle Scholar
  7. M. Förster, S. Rentz, W. Köhler, H. Liu, S.E. Haaland, Ann. Geophys. 26, 1581–1595 (2008) ADSCrossRefGoogle Scholar
  8. H.U. Frey, S.B. Mende, in Proceedings of the 8th International Conference on Substorms, ed. by M. Syrjasuo, E. Donovan (University of Calgary, Calgary, 2006), pp. 71–76 Google Scholar
  9. H. Fujiwara, Y. Miyoshi, Geophys. Res. Lett. 33, L20108 (2006). doi: 10.1029/2006GL027103 ADSCrossRefGoogle Scholar
  10. T.J. Fuller-Rowell, D. Rees, Planet. Space Sci. 32, 69–86 (1984) ADSCrossRefGoogle Scholar
  11. T.J. Fuller-Rowell, M.V. Codrescu, B.G. Fejer, W. Borer, F. Marcos, D.N. Anderson, J. Atmos. Sol.-Terr. Phys. 61, 1533–1540 (1997) ADSCrossRefGoogle Scholar
  12. A.E. Hedin, J. Geophys. Res. 96, 1159–1172 (1991) ADSCrossRefGoogle Scholar
  13. J.R. Kan, L.C. Lee, Geophys. Res. Lett. 6, 577–580 (1979) ADSCrossRefGoogle Scholar
  14. M.C. Kelley, The Earth’s Ionosphere, 2nd edn. (Academic Press, San Diego, 2009) Google Scholar
  15. H. Liu, H. Lühr, V. Henize, W. Köhler, J. Geophys. Res. 110, A04301 (2005). doi: 10.1029/2004JA010741 ADSCrossRefGoogle Scholar
  16. H. Liu, H. Lühr, S. Watanabe, W. Köhler, V. Henize, P. Visser, J. Geophys. Res. 111, A07307 (2006). doi: 10.1029/2005JA011415 ADSCrossRefGoogle Scholar
  17. H. Liu, H. Lühr, S. Watanabe, J. Geophys. Res. 112, A05305 (2007a). doi: 10.1029/2006JA012199 ADSCrossRefGoogle Scholar
  18. L. Liu, B. Zhao, W. Wan, S. Venkartraman, M.-L. Zhang, X. Yue, J. Geophys. Res. 112, A07303 (2007b). doi: 10.1029/2007JA012283 ADSCrossRefGoogle Scholar
  19. H. Liu, S. Watanabe, T. Kondo, Geophys. Res. Lett. 36, L08103 (2009a). doi: 10.1029/2009037377 CrossRefGoogle Scholar
  20. H. Liu, M. Yamamoto, H. Lühr, Geophys. Res. Lett. 36, L18104 (2009b). doi: 10.1029/2009GL039865 ADSCrossRefGoogle Scholar
  21. H. Lühr, M. Rother, W. Köhler, P. Ritter, L. Grunwaldt, Geophys. Res. Lett. 31, L06805 (2004). doi: 10.1029/2003GL019314 CrossRefGoogle Scholar
  22. H. Lühr, S. Maus, Geophys. Res. Lett. 33, L24102 (2006). doi: 10.1029/2006GL028374 ADSCrossRefGoogle Scholar
  23. H. Lühr, S. Rentz, P. Ritter, H. Liu, K. Häusler, Ann. Geophys. 25, 1093–1101 (2007) ADSCrossRefGoogle Scholar
  24. H. Maeda, T. Iyemori, T. Araki, T. Kamei, Geophys. Res. Lett. 9, 337–340 (1982) ADSCrossRefGoogle Scholar
  25. G. Millward, R. Moffett, H. Balmforth, A. Rodger, J. Geophys. Res. 104(A11), 24603–24612 (1999) ADSCrossRefGoogle Scholar
  26. S. Müller, H. Lühr, S. Rentz, Ann. Geophys. 27, 2087–2099 (2009) ADSCrossRefGoogle Scholar
  27. T. Neubert, F. Christensen, Geophys. Res. Lett. 30(19) (2003). doi: 10.1029/2003GL017808
  28. J. Park, H. Lühr, K.W. Min, J. Geophys. Res. 115, A10302 (2010a). doi: 10.1029/2010JA015604 ADSCrossRefGoogle Scholar
  29. J. Park, H. Lühr, B.G. Fejer, K.W. Min, Ann. Geophys. 28, 2097–2101 (2010b) ADSCrossRefGoogle Scholar
  30. G.W. Prölss, Physics of the Earth’s Space Environment (Springer, Berlin, 2004) CrossRefGoogle Scholar
  31. C. Reigber, H. Lühr, P. Schwintzer, Adv. Space Res. 30(2), 129–134 (2002) ADSCrossRefGoogle Scholar
  32. S. Rentz, H. Lühr, Ann. Geophys. 26, 2807–2823 (2008) ADSCrossRefGoogle Scholar
  33. H. Rishbeth, Planet. Space Sci. 19, 263–267 (1971) ADSCrossRefGoogle Scholar
  34. P. Ritter, H. Lühr, A. Viljanen, O. Amm, A. Pulkkinen, Sillanpää, Ann. Geophys. 22, 417–430 (2004) ADSCrossRefGoogle Scholar
  35. P. Ritter, H. Lühr, Ann. Geophys. 26, 2781–2793 (2008) ADSCrossRefGoogle Scholar
  36. P. Ritter, H. Lühr, E. Doornbos, Ann. Geophys. 28, 1207–1220 (2010) ADSCrossRefGoogle Scholar
  37. M. Rother, K. Schlegel, H. Lühr, Ann. Geophys. 25, 1603–1615 (2007) ADSCrossRefGoogle Scholar
  38. K. Schlegel, H. Lühr, J.-P. St.-Maurice, G. Crowley, C. Hackert, Ann. Geophys. 23, 1659–1672 (2005) ADSCrossRefGoogle Scholar
  39. C. Stolle, C. Manoj, H. Lühr, S. Maus, P. Alken, J. Geophys. Res. 113, A09310 (2008). doi: 10.1029/2007JA012781 ADSCrossRefGoogle Scholar
  40. M. Takeda, J. Geophys. Res. 101(A4), 7875–7880 (1996) MathSciNetADSCrossRefGoogle Scholar
  41. J.P. Thayer, T.L. Killeen, F.G. McCormac, C.R. Tschan, J.-J. Ponthieu, N.W. Spencer, Ann. Geophys. 5, 363–368 (1987) ADSGoogle Scholar
  42. H. Wang, H. Lühr, S.-Y. Ma, J. Geophys. Res. 110, A03306 (2005). doi: 10.1029/2004JA010530 ADSCrossRefGoogle Scholar
  43. J. Watermann, P. Stauning, H. Lühr, P.T. Newell, F. Christiansen, K. Schlegel, Adv. Space Res. 43, 41–46 (2009) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Hermann Lühr
    • 1
    Email author
  • Jaeheung Park
    • 1
    • 2
  • Patricia Ritter
    • 1
  • Huixin Liu
    • 3
  1. 1.Deutsches GeoForschungsZentrum, GFZPotsdamGermany
  2. 2.Department of PhysicsKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
  3. 3.Research Institute for Sustainable HumanosphereKyoto UniversityUjiJapan

Personalised recommendations