Space Science Reviews

, Volume 168, Issue 1–4, pp 385–417 | Cite as

Equatorial and Low Latitude Ionospheric Effects During Sudden Stratospheric Warming Events

Ionospheric Effects During SSW Events
  • Jorge L. Chau
  • Larisa P. Goncharenko
  • Bela G. Fejer
  • Han-Li Liu
Article

Abstract

There are several external sources of ionospheric forcing, including these are solar wind-magnetospheric processes and lower atmospheric winds and waves. In this work we review the observed ion-neutral coupling effects at equatorial and low latitudes during large meteorological events called sudden stratospheric warming (SSW). Research in this direction has been accelerated in recent years mainly due to: (1) extensive observing campaigns, and (2) solar minimum conditions. The former has been instrumental to capture the events before, during, and after the peak SSW temperatures and wind perturbations. The latter has permitted a reduced forcing contribution from solar wind-magnetospheric processes. The main ionospheric effects are clearly observed in the zonal electric fields (or vertical E×B drifts), total electron content, and electron and neutral densities. We include results from different ground- and satellite-based observations, covering different longitudes and years. We also present and discuss the modeling efforts that support most of the observations. Given that SSW can be forecasted with a few days in advance, there is potential for using the connection with the ionosphere for forecasting the occurrence and evolution of electrodynamic perturbations at low latitudes, and sometimes also mid latitudes, during arctic winter warmings.

Keywords

Atmosphere-ionosphere coupling Equatorial aeronomy Low latitude electrodynamics Stratospheric warming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Abdu, T. Maruyama, I.S. Batista, S. Saito, M. Nakamura, Ionospheric responses to the October 2003 superstorm: Longitude/local time effects over equatorial low and middle latitudes. J. Geophys. Res. 112(A10306) (2007). doi:10.1029/2006JA012228
  2. P. Alken, A quiet time empirical model of equatorial vertical plasma drift in the Peruvian sector based on 150 km echoes. J. Geophys. Res. 114(A2), 1–6 (2009). doi:10.1029/2008JA013751 Google Scholar
  3. D. Altadill, E.M. Apostolov, Vertical propagating signatures of wave-type oscillations (2 and 6.5 days) in the ionosphere obtained from electron-density profiles. J. Atmos. Sol.-Terr. Phys. 63, 823–834 (2001) ADSGoogle Scholar
  4. D. Anderson, A. Anghel, K. Yumoto, M. Ishitsuka, E. Kudeki, Estimating daytime vertical E×B drift velocities in the equatorial F-region using ground-based magnetometers observations. Geophys. Res. Lett. 29 (2002). doi:10.1029/2001GL014562
  5. D. Anderson, A. Anghel, J.L. Chau, K. Yumoto, Global, low-latitude, vertical E×B drift velocities inferred from daytime magnetometer observations. Space Weather 4(S08003) (2006). doi:10.1029/2005SW000193
  6. D. Anderson, E.A. Araujo-Pradere, Sudden stratospheric warming event signatures in daytime exb drift velocities in the Peruvian and Philippine longitude sectors for January 2003 and 2004. J. Geophys. Res. 115, 1–7 (2010). doi:10.1029/2010JA015337 Google Scholar
  7. D.G. Andrews, J.R. Holton, C.B. Leovy, Middle Atmosphere Dynamics (Academic Press, London, San Diego, 1987) Google Scholar
  8. S.M.I. Azeem, E.R. Talaat, G.G. Sivjee, H.-L. Liu, R.G. Roble, Observational study of the 4-day wave in the mesosphere preceding the sudden stratospheric warming events during 1995 and 2002. Geophys. Res. Lett. 32(L15804) (2005). doi:10.1029/2005GL023393
  9. M.P. Baldwin, T.J. Dunkerton, Stratospheric harbingers of anomalous weather regimes. Science 294, 581–584 (2001) ADSGoogle Scholar
  10. J. Bartels, 27-day variations in f2 layer critical frequencies at Huancayo. J. Atmos. Sol.-Terr. Phys. 1, 2–12 (1950) Google Scholar
  11. J. Bartels, H.F. Johnson, Geomagnetic tides in horizontal intensity at Huancayo. Terr. Magn. Atmos. Electr. 45, 269–308 (1940) Google Scholar
  12. I. Batista, R. de Medeiros, M. Abdu, J. de Souza, G. Bailey, E. de Paula, Equatorial ionospheric vertical plasma drift model over the Brazilian region. J. Geophys. Res. 101(A5), 10887–10892 (1996) ADSGoogle Scholar
  13. F. Bertoni, I.S. Batista, M.A. Abdu, B.W. Reinisch, E.A. Kherani, A comparison of ionospheric vertical drift velocities measured by digisonde and incoherent scatter radar at the magnetic equator. J. Atmos. Sol.-Terr. Phys. 68, 669–678 (2006) ADSGoogle Scholar
  14. D. Bilitza, O.K. Obrou, J.O. Adeniyi, O. Oladipo, Variability of fof2 in the equatorial ionosphere. Adv. Space Res. 34(9), 1901–1906 (2004) ADSGoogle Scholar
  15. M. Blanc, A. Richmond, The ionospheric disturbance dynamo. J. Geophys. Res. 85(A4), 1669–1686 (1980) ADSGoogle Scholar
  16. L.C. Chang, S.E. Palo, H.-L. Liu, Short-term variation of the s=1 nonmigrating semidiurnal tide during the 2002 stratospheric sudden warming. J. Geophys. Res. 114(D03109) (2009). doi:10.1029/2008JD010886
  17. A.J. Charlton, L.M. Polvani, A new look at stratospheric sudden warmings. Part I: climatology and modeling benchmarks. J. Climate 20, 449–469 (2007) ADSGoogle Scholar
  18. A.J. Charlton, A. O’Neill, A.C. Massacand, W.A. Lahoz, Sensitivity of tropospheric forecasts to stratospheric initial conditions. Q. J. R. Meteorol. Soc. 130, 1771–1792 (2004) ADSGoogle Scholar
  19. J.L. Chau, E. Kudeki, Statistics of 150-km echoes over Jicamarca based on low-power VHF observations. Ann. Geophys. 24, 1305–1310 (2006) ADSGoogle Scholar
  20. J.L. Chau, R.F. Woodman, Daytime vertical and zonal velocities from 150-km echoes: their relevance to F-region dynamics. Geophys. Res. Lett. 31(L17801) (2004). doi:10.1029/2004GL020800
  21. J.L. Chau, B.G. Fejer, L.P. Goncharenko, Quiet variability of equatorial E×B drifts during a sudden stratospheric warming event. Geophys. Res. Lett. 36(5), 1–4 (2009). doi:10.1029/2008GL036785 Google Scholar
  22. J.L. Chau, N.A. Aponte, E. Cabassa, M.P. Sulzer, L.P. Goncharenko, S.A. González, Quiet time ionospheric variability over arecibo during sudden stratospheric warming events. J. Geophys. Res. 115, 1–8 (2010). doi:10.1029/2010JA015378 Google Scholar
  23. P.-R. Chen, Two-day oscillation of the equatorial ionization anomaly. J. Geophys. Res. 97(A5), 6343–6357 (1992) ADSGoogle Scholar
  24. M.G. Conde, M.J. Nicolls, Thermospheric temperatures above Poker Flat, Alaska, during the stratospheric warming event of January and February 2009. J. Geophys. Res. 115(D00N05) (2010). 10–10292010014280 Google Scholar
  25. O. De la Beaujardière, J.M. Retterer, R.F. Pfaff, P.A. Roddy, C. Roth, W.J. Burke, Y.J. Su, M.C. Kelley, R.R. Ilma, G.R. Wilson, L.C. Gentile, D.E. Hunton, D.L. Cooke, C/nofs observations of deep plasma depletions at dawn. Geophys. Res. Lett. 36, 1–4 (2009). doi:10.1029/2009GL038884 Google Scholar
  26. E.R. de Paula, D.L. Hysell, The Sao Luis 30 MHz coherent scatter ionospheric radar: system description and initial results. Radio Sci. 39(RS1014) (2004). doi:10.1029/2003RS002914
  27. A.J. Dowdy, R.A. Vincent, M. Tsutsumi, K. Igarashi, Y. Murayama, W. Singer, D.J. Murphy, D.M. Riggin, Polar mesosphere and lower thermosphere dynamics: 2. Response to sudden stratospheric warmings. J. Geophys. Res. 112(D17105) (2007). doi:10.1029/2006JD008127
  28. S.L. England, S. Maus, T.J. Immel, S.B. Mende, Longitudinal variation of the E-region electric fields caused by atmospheric tides. Geophys. Res. Lett. 33(L21105) (2006). doi:10.1029/2006GL027465
  29. J.G. Esler, R.K. Scott, Excitation of transient Rossby waves on the stratospheric polar vortex and the barotropic sudden warming. J. Atmos. Sci. 62, 3661–3682 (2005) ADSGoogle Scholar
  30. T.W. Fang, A.D. Richmond, J.Y. Liu, A. Maute, Wind dynamo effects on ground magnetic perturbations and vertical drifts. J. Geophys. Res. 113(A11313) (2008). doi:10.1029/2008JA013513
  31. B.G. Fejer, L. Scherliess, On the variability of F-region vertical plasma drifts. J. Atmos. Sol.-Terr. Phys. 63, 893–897 (2001) ADSGoogle Scholar
  32. B.G. Fejer, E.R. de Paula, S.A. Gonzalez, R.F. Woodman, Average vertical and zonal F region plasma drifts over Jicamarca. J. Geophys. Res. 96, 13901–13906 (1991) ADSGoogle Scholar
  33. B.G. Fejer, M.E. Olson, J.L. Chau, C. Stolle, H. Lühr, L.P. Goncharenko, K. Yumoto, T. Nagatsuma, Lunar-dependent equatorial ionospheric electrodynamic effects during sudden stratospheric warmings. J. Geophys. Res. 115, 1–9 (2010). doi:10.1029/2010JA015273 Google Scholar
  34. B.G. Fejer, Low latitude ionospheric electrodynamics. Space Sci Rev, 115 (2010). doi:10.1007/s11214-010-9690-7
  35. B.G. Fejer, J.W. Jensen, S.-Y. Su, Quiet time equatorial F region vertical plasma drift model derived from rocsat-1 observations. J. Geophys. Res. 113(A5), 10 (2008). doi:10.1029/2007JA012801 Google Scholar
  36. J.M. Forbes, S. Leveroni, Quasi 16-day oscillation in the ionosphere. Geophys. Res. Lett. 19(10), 981–984 (1992) ADSGoogle Scholar
  37. J.M. Forbes, S.E. Palo, X. Zhang, Variability of the ionosphere. J. Atmos. Sol.-Terr. Phys. 62, 685–693 (2000) ADSGoogle Scholar
  38. S. Fritz, S.D. Soules, Large-scale temperature changes in the stratosphere observed from Nimbus III. J. Atmos. Sci. 27, 1091–1097 (1970) ADSGoogle Scholar
  39. T.J. Fuller-Rowell, M. Codrescu, P. Wilkinson, Quantitative modelling of the ionospheric response to geomagnetic activity. Ann. Geophys. 18, 766–781 (2000) ADSGoogle Scholar
  40. T.J. Fuller-Rowell, H. Wang, R. Akmaev, F. Wu, T.W.F.M. Iredell, A.D. Richmond, Forecasting the dynamic and electrodynamic response to the January 2009 sudden stratospheric warming. Geophys. Res. Lett. (2011). doi:10.1029/2011GL047732 Google Scholar
  41. T. Fuller-Rowell, F. Wu, R. Akmaev, T.-W. Fang, E. Araujo-Pradere, A whole atmosphere model simulation of the impact of a sudden stratospheric warming on thermosphere dynamics and electrodynamics. J. Geophys. Res. 115, 1–13 (2010). doi:10.1029/2010JA015524 Google Scholar
  42. B. Funke, M. López-Puertas, D. Bermejo-Pantaleón, M. García-Comas, G.P. Stiller, T.V. Clarmann, M. Kiefer, A. Linden, Evidence for dynamical coupling from the lower atmosphere to the thermosphere during a major stratospheric warming. Geophys. Res. Lett. 37(13), 1–5 (2010). doi:10.1029/2010GL043619 Google Scholar
  43. L.P. Goncharenko, S.R. Zhang, Ionospheric signatures of sudden stratospheric warming: Ion temperature at middle latitude. Geophys. Res. Lett. 35(L21103) (2008). doi:10.1029/2008GL035684
  44. L.P. Goncharenko, A.J. Coster, J.L. Chau, C.E. Valladares, Impact of sudden stratospheric warmings on equatorial ionization anomaly. J. Geophys. Res. 115, 1–11 (2010a). doi:10.1029/2010JA015400 Google Scholar
  45. L.P. Goncharenko, J.L. Chau, H.-L. Liu, A.J. Coster, Unexpected connections between the stratosphere and ionosphere. Geophys. Res. Lett. 37(10), 1–6 (2010b). doi:10.1029/2010GL043125 Google Scholar
  46. L.J. Gray, E.F. Drysdale, T.J. Dunkerton, B.N. Lawrence, Model study of the inter annual variability of the northern hemisphere stratospheric winter circulation: the role of the quasi-biennial oscillation. Q. J. R. Meteorol. Soc. 127, 1413–1432 (2001) ADSGoogle Scholar
  47. M.E. Hagan, F. Vial, J.M. Forbes, Variability in the upward propagating semidiurnal tide due to effects of QBO in the lower atmosphere. J. Atmos. Sol.-Terr. Phys. 54, 1465–1474 (1992) Google Scholar
  48. R.A. Heelis, Electrodynamics in the low and middle latitude ionosphere: a tutorial. J. Atmos. Sol.-Terr. Phys. 66, 825–838 (2004) ADSGoogle Scholar
  49. R.A. Heelis, P.C. Kendall, R.J. Moffet, D.W. Windle, H. Rishbeth, Electrical coupling of the e- and f-region and its effects on F-region drifts and winds. Planet. Space Sci. 22(5), 743–756 (1974) ADSGoogle Scholar
  50. P. Hoffmann, W. Singer, D. Keuer, Variability of the mesospheric wind field at middle and arctic latitudes in winter and its relation to stratospheric circulation disturbances. J. Atmos. Sol.-Terr. Phys. 64, 1229–1240 (2002) ADSGoogle Scholar
  51. P. Hoffmann, W. Singer, D. Keuer, W.K. Hocking, M. Kunze, Y. Murayama, Latitudinal and longitudinal variability of mesospheric winds and temperatures during stratospheric warming events. J. Atmos. Sol.-Terr. Phys. 69, 2355–2366 (2007) ADSGoogle Scholar
  52. J.R. Holton, H.-C. Tan, The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci. 37, 2200–2208 (1980) ADSGoogle Scholar
  53. R. Hutton, J.O. Oyinloye, The counter-electrojet in Nigeria. Ann. Geophys. 26, 921–926 (1970) Google Scholar
  54. T.J. Immel, E. Sagawa, S.L. England, S.B. Henderson, M.E. Hagan, S.B. Mende, H.U. Frey, C.M. Swenson, L.J. Paxton, The control of equatorial ionospheric morphology by atmospheric tides. Geophys. Res. Lett. 33(L15108) (2006). doi:10.1029/2006GL026161
  55. T.J. Immel, S.B. Mende, M.E. Hagan, P.M. Kintner, S.L. England, Evidence of tropospheric effects on the ionosphere. Eos 90, 69 (2009). doi:10.1029/2009EO090001 ADSGoogle Scholar
  56. E.S. Kazimirovsky, G.V. Vergasova, Mesospheric, lower thermospheric dynamics and external forcing effects: a review. Indian J. Radio & Space Phys. 38, 7–36 (2009) Google Scholar
  57. H. Kil, R.A. Heelis, L.J. Paxton, S.-J. Oh, Formation of a plasma depletion shell in the equatorial ionosphere. J. Geophys. Res. 114(A11), 1–7 (2009). doi:10.1029/2009JA014369 Google Scholar
  58. Y.-J. Kim, M. Flatau, Hindcasting the January 2009 arctic sudden stratospheric warming and its influence on the arctic oscillation with unified parameterization of orographic drag in NOGAPS. Part I: extended-range stand-alone forecast. Weather Forecast. 25, 1628–1644 (2010) ADSGoogle Scholar
  59. K. Kodera, Influence of stratospheric sudden warming on the equatorial troposphere. Geophys. Res. Lett. 33(L06804) (2006). doi:10.1029/2005GL024510
  60. K. Kruger, B. Naujokat, K. Labitzke, The unusual midwinter warming in the southern hemisphere stratosphere 2002: a comparison to northern hemisphere phenomena. J. Atmos. Sci. 62, 603–613 (2005) ADSGoogle Scholar
  61. E. Kudeki, C.D. Fawcett, High resolution observations of 150 km echoes at Jicamarca. Geophys. Res. Lett. 20(18), 1987–1990 (1993) ADSGoogle Scholar
  62. E. Kudeki, S. Bhattacharyya, R.F. Woodman, A new approach in incoherent scatter F region E×B drift measurements at Jicamarca. J. Geophys. Res. 104, 28145–28162 (1999) ADSGoogle Scholar
  63. J. Kurihara, Y. Ogawa, S. Oyama, S. Nozawa, M. Tsutsumi, C.M. Hall, Y. Tomikawa, R. Fujii, Links between a stratospheric sudden warming and thermal structures and dynamics in the high-latitude mesosphere, lower thermosphere, and ionosphere. Geophys. Res. Lett. 37(L13806) (2010). doi:10.1029/2010GL043643
  64. K. Labitzke, Temperature changes in the mesosphere and stratosphere connected with circulation changes in winter. J. Atmos. Sci. 29, 756–766 (1972) ADSGoogle Scholar
  65. K. Labitzke, Stratospheric-mesospheric midwinter disturbances—a summary of observed characteristics. International Symposium on Middle Atmosphere Dynamics and Transport, vol. 86, p. 9665 (1981). doi:10.1029/JC086iC10p09665 Google Scholar
  66. K. Labitzke, On the interannual variability of the middle stratosphere during the northern winters. J. Meteorol. Soc. Jpn. 60, 124–139 (1982) Google Scholar
  67. K. Labitzke, M. Kunze, On the remarkable Arctic winter in 2008/2009. J. Geophys. Res. 114(D00I02) (2009). doi:10.1029/2009JD012273
  68. K. Labitzke, B. Naujokat, The lower arctic stratosphere since 1952, in SPARC Newsletter, vol. 15 (SPARC Office, Toronto, 2000) Google Scholar
  69. K. Labitzke, H. van Loon, Associations between the 11-year solar cycle, the QBO and the atmosphere. Part I: the troposphere and stratosphere in the northern hemisphere winter. J. Atmos. Sol.-Terr. Phys. 50, 197–206 (1988) ADSGoogle Scholar
  70. J. Lei, J.P. Thayer, J.M. Forbes, E.K. Sutton, R.S. Nerem, M. Temmer, A.M. Veronig, Global thermospheric density variations caused by high-speed solar wind streams during the declining phase of solar cycle 23. J. Geophys. Res. 113(A11303) (2008). doi:10.1029/2008JA013433
  71. V. Limpasuvan, D.W.J. Thompson, D.L. Hartmann, The life cycle of the northern hemisphere sudden stratospheric warmings. J. Climate 17, 2584–2596 (2004) ADSGoogle Scholar
  72. H.L. Liu, R.G. Roble, A study of a self-generated stratospheric sudden warming and its mesospheric/lower thermospheric impacts using coupled TIME-GCM/CCM3. J. Geophys. Res. 107(4695) (2002). doi:10.1029/2001JD001533
  73. H.-L. Liu, W. Wang, A.D. Richmond, R.G. Roble, Ionospheric variability due to planetary waves and tides for solar minimum conditions. J. Geophys. Res. 115, 1–13 (2010). doi:10.1029/2009JA015188 Google Scholar
  74. H. Liu, E. Doornbos, M. Yamamoto, S.T. Ram, Strong thermospheric cooling during the 2009 major stratosphere warming. Geophys. Res. Lett. (2011). doi:10.1029/2011GL047898
  75. H. Lühr, M. Rother, K. Häusler, P. Alken, S. Maus, The influence of nonmigrating tides on the longitudinal variation of the equatorial electrojet. J. Geophys. Res. 113(A08313) (2008). doi:10.1029/2008JA013064
  76. G.L. Manney, M.J. Schwartz, K. Kruger, M.L. Santee, S. Pawson, J.N. Lee, W.H. Daffer, R.A. Fuller, N.J. Livesey, Aura microwave limb sounder observations of dynamics and transport during the record-breaking 2009 arctic stratospheric major warming. Geophys. Res. Lett. 36(L12815) (2009). doi:10.1029/2009GL038586
  77. A.J. Mannucci, B.T. Tsurutani, B.A. Iijima, A. Komjathy, A. Saito, W.D. Gonzalez, F.L. Guarnieri, J.U. Kozyra, R. Skoug, Dayside global ionospheric response to the major interplanetary events of October 29-30, 2003, Halloween storms. Geophys. Res. Lett. 32(L12S02) (2005) Google Scholar
  78. T. Matsuno, A dynamical model of the stratospheric sudden warming. J. Atmos. Sci. 28, 1479–1494 (1971) ADSGoogle Scholar
  79. N.J. Matthewman, J.G. Esler, A.J. Charlton-Perez, L.M. Polvani, A new look at stratospheric sudden warmings. Part III: Polar vortex evolution and vertical structure. J. Climate 22, 1566–1585 (2009) ADSGoogle Scholar
  80. P.N. Mayaud, The equatorial counter-electrojet: a review of its geomagnetic aspects. J. Atmos. Sol.-Terr. Phys. 39, 1055–1070 (1977) ADSGoogle Scholar
  81. M. Mendillo, H. Rishbeth, R.G. Roble, J. Wroten, Modelling F2-layer seasonal trends and day-to-day variability driven by coupling with the lower atmosphere. J. Atmos. Sol.-Terr. Phys. 64, 1911–1931 (2002) ADSGoogle Scholar
  82. A.V. Mikhailov, V.H. Depuev, A.H. Depueva, Synchronous NmF2 and NmE daytime variations as a key to the mechanism of quiettime F2-layer disturbances. Ann. Geophys. 25, 483–493 (2007) ADSGoogle Scholar
  83. P. Mukhtarov, D. Pancheva, B. Andonov, N.J. Mitchell, E. Merzlyakov, W. Singer, W. Hocking, C. Meek, A. Manson, Y. Murayama, Large-scale thermodynamics of the stratosphere and mesosphere during the major stratospheric warming in 2003/2004. J. Atmos. Sol. Terr. Phys. 69 (2007). doi:10.1016/j.jastp.2007.07.012
  84. A. O’Neill, Stratospheric Sudden Warmings, in Encyclopedia of Atmospheric Sciences (Elsevier Science, San Diego, 2003), pp. 1342–1353 Google Scholar
  85. D. Pancheva, N. Mitchell, R.R. Clark, J. Drobjeva, J. Lastovicka, Variability in the maximum height of the ionospheric F2-layer over millstone hill (September 1998 to march 2000); influence from below and above. Ann. Geophys. 20, 1807–1819 (2002) ADSGoogle Scholar
  86. D. Pancheva, P. Mukhtarov, N.J. Mitchell, B. Andonov, E. Merzlyakov, W. Singer, Y. Murayama, S. Kawamura, J. Xiong, W. Wan, W. Hocking, D. Fritts, D. Riggin, C. Meek, A. Manson, Latitudinal wave coupling of the stratosphere and mesosphere during the major stratospheric warming in 2003/2004. Ann. Geophys. 26, 467–483 (2008) ADSGoogle Scholar
  87. D. Pancheva, P. Mukhtarov, B. Andonov, N.J. Mitchell, J.M. Forbes, Planetary waves observed by TIMED/SABER in coupling the stratosphere–mesosphere–lower thermosphere during the winter of 2003/2004: Part 2—altitude and latitude planetary wave structure. J. Atmos. Sol.-Terr. Phys. 71(1), 75–87 (2009) ADSGoogle Scholar
  88. D. Pancheva, P. Mukhtarov, Stratospheric warmings: the atmosphere-ionosphere coupling paradigm. J. Atmos. Sol. Terr. Phys. 73 (2011). doi:10.1016/j.jastp.2011.03.066
  89. H.F. Parish, J.M. Forbes, F. Kamalabadi, Planetary wave and solar emission signatures in the equatorial electrojet. J. Geophys. Res. 99(A1), 355–368 (1994) ADSGoogle Scholar
  90. A.K. Patra, N.V. Rao, Further investigations of 150-km echoing riddle using simultaneous observations of 150-km and E region echoes from off-electrojet location Gadanki. J. Geophys. Res. 112(A09301) (2007). doi:10.1029/2006JA012204
  91. N.M. Pedatella, J.M. Forbes, Evidence for stratosphere sudden warming-ionosphere coupling due to vertically propagating tides. Geophys. Res. Lett. 37(11), 1–5 (2010a). doi:10.1029/2010GL043560 Google Scholar
  92. N.M. Pedatella, J.M. Forbes, Global structure of the lunar tide in ionospheric total electron content. Geophys. Res. Lett. 37, 06103 (2010b). doi:10.1029/2010GL042781 Google Scholar
  93. J.E. Pingree, B.G. Fejer, On the height variation of the equatorial F region vertical plasma drifts. J. Geophys. Res. 92, 4763–4766 (1987) ADSGoogle Scholar
  94. R.A. Plumb, Instability of the distorted polar night vortex: a theory of stratospheric warmings. J. Atmos. Sci. 38, 2514–2531 (1981) ADSGoogle Scholar
  95. A.I. Pogoreltsev, A.A. Vlasov, K. Fröhlich, C. Jacobi, Planetary waves in coupling the lower and upper atmosphere. J. Atmos. Sol.-Terr. Phys. 69, 2083 (2007). doi:10.1016/j.jastp.2007.05.014 ADSGoogle Scholar
  96. L.M. Polvani, P.J. Kushner, Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys. Res. Lett. 29(7) (2002). doi:10.1029/2001GL014284
  97. L.M. Polvani, D.W. Waugh, Upward wave activity flux as precursor to extreme stratospheric events and subsequent weather regimes. J. Climate 17, 3548–3554 (2004) ADSGoogle Scholar
  98. R.G. Rastogi, Lunar effects in the counter-electrojet near the magnetic equator. J. Atmos. Sol.-Terr. Phys. 36, 167–170 (1974) ADSGoogle Scholar
  99. R.G. Rastogi, Morphological aspects of a new type of counter electrojet event. Ann. Geophys. 17, 210 (1999). doi:10.1007/s00585-999-0210-6 ADSGoogle Scholar
  100. A.D. Richmond, S. Matsushita, J.D. Tarpley, On the production mechanisms of electric currents and fields in the ionosphere. J. Geophys. Res. 81(4), 547–555 (1976) ADSGoogle Scholar
  101. H. Rishbeth, The F-region dynamo. Planet. Space Sci. 19(263) (1971) Google Scholar
  102. H. Rishbeth, F region links with the lower atmosphere? J. Atmos. Sol.-Terr. Phys. 68, 469–478 (2006) ADSGoogle Scholar
  103. H. Rishbeth, M. Mendillo, Patterns of F2-layer variability. J. Atmos. Sol.-Terr. Phys. 63, 1661–1680 (2001) ADSGoogle Scholar
  104. F. Sassi, R.R. Garcia, B.A. Boville, H. Liu, On temperature inversions and the mesospheric surf zone. J. Geophys. Res. 107(D19) (2002). doi:10.1029/2001JD001525
  105. J.H. Sastri, Longitudinal dependence of equatorial F region vertical plasma drifts in the dusk sector. J. Geophys. Res. 101(A2), 2445–2452 (1996) ADSGoogle Scholar
  106. S. Sathishkumar, S. Sridharan, Planetary and gravity waves in the mesosphere and lower thermosphere region over Tirunelveli (8.7°N, 77.8°E) during stratospheric warming events. Geophys. Res. Lett. 36(7), 1–5 (2009). doi:10.1029/2008GL037081 Google Scholar
  107. L. Scherliess, B.G. Fejer, Radar and satellite global equatorial F-region vertical drift model. J. Geophys. Res. 104, 6829–6842 (1999) ADSGoogle Scholar
  108. D.M.H. Sexton, The effect of stratospheric ozone depletion on the phase of the Antarctic oscillation. Geophys. Res. Lett. 28, 3697–3700 (2001) ADSGoogle Scholar
  109. M.G. Shepherd, D.L. Wu, I.N. Fedulina, S. Gurubaran, J.M. Russell, M.G. Mlynczak, G.G. Shepherd, Stratospheric warming effects on the tropical mesospheric temperature field. J. Atmos. Sol.-Terr. Phys. 69, 2309–2337 (2007) ADSGoogle Scholar
  110. D.E. Siskind, L. Coy, P. Espy, Observations of stratospheric warmings and mesospheric coolings by the TIMED SABER instrument. Geophys. Res. Lett. 32(L09804) (2005). doi:10.1029/2005GL022399
  111. D.E. Siskind, S.D. Eckermann, L. Coy, J.P. McCormack, C.E. Randall, On recent interannual variability of the arctic winter mesosphere: Implications for tracer descent. Geophys. Res. Lett. 34(L09806) (2007). doi:10.1029/2007GL029293
  112. D.E. Siskind, S.D. Eckermann, J.P. Mccormack, L. Coy, K.W. Hoppel, N.L. Baker, Case studies of the mesospheric response to recent minor, major, and extended stratospheric warmings. J. Geophys. Res. 115, 1–16 (2010). doi:10.1029/2010JD014114 Google Scholar
  113. S. Sridharan, S. Sathishkumar, Seasonal and interannual variations of gravity wave activity in the low-latitude mesosphere and lower thermosphere over tirunelveli (8.7°N, 77.8°E). Ann. Geophys. 26, 3215 (2008). doi:10.5194/angeo-26-3215-2008 ADSGoogle Scholar
  114. S. Sridharan, S. Sathishkumar, S. Gurubaran, Variabilities of mesospheric tides and equatorial electrojet strength during major stratospheric warming events. Ann. Geophys. 27, 4125 (2009) ADSGoogle Scholar
  115. R.J. Stening, Electron density profile changes associated with the equatorial electrojet. J. Atmos. Terr. Phys. 39, 157 (1977) ADSGoogle Scholar
  116. R.J. Stening, A diurnal modulation of the lunar tide in the upper atmosphere. Geophys. Res. Lett. 16, 307 (1989). doi:10.1029/GL016i004p00307 (ISSN 0094-8276) ADSGoogle Scholar
  117. R.J. Stening, B.G. Fejer, Lunar tide in the equatorial F region vertical ion drift velocity. J. Geophys. Res. 106, 221–226 (2001) ADSGoogle Scholar
  118. R.J. Stening, C.E. Meek, A.H. Manson, Upper atmosphere wind systems during reverse equatorial electrojet events. Geophys. Res. Lett. 23, 3243 (1996). doi:10.1029/96GL02611 ADSGoogle Scholar
  119. R.J. Stening, J.M. Forbes, M.E. Hagan, A.D. Richmond, Experiments with a lunar atmospheric tidal model. J. Geophys. Res. 102, 13465 (1997). doi:10.1029/97JD00778 ADSGoogle Scholar
  120. R.J. Stening, A two-layer ionospheric dynamo calculation. J. Geophys. Res. 86(A5), 3543–3550 (1981) ADSGoogle Scholar
  121. M. Taguchi, Is there a statistical connection between stratospheric sudden warming and tropospheric blocking events? J. Atmos. Sci. 65, 1442 (2008). doi:10.1175/2007JAS2363.1 ADSGoogle Scholar
  122. J.D. Tarpley, B.B. Balsley, Lunar variations in the Peruvian electrojet. J. Geophys. Res. 77, 1951 (1972). doi:10.1029/JA077i010p01951 ADSGoogle Scholar
  123. D.W.J. Thompson, S. Solomon, Interpretation of recent southern hemisphere climate change. Science 296, 895–899 (2002) ADSGoogle Scholar
  124. D.W.J. Thompson, M.P. Baldwin, J.M. Wallace, Stratospheric connection to northern hemisphere wintertime weather: Implications for predictions. J. Climate 15, 1421–1428 (2002) ADSGoogle Scholar
  125. R.T. Tsunoda, W.L. Ecklund, On a summer maximum in the occurrence frequency of 150 km (F 1) radar echoes over Pohnpei. Geophys. Res. Lett. 31(L06810) (2004). doi:10.1029/2003GL018704
  126. K.K. Tung, R.S. Lindzen, A theory of stationary long waves. Part I: a simple theory of blocking. Mon. Weather Rev. 107, 714–734 (1979) ADSGoogle Scholar
  127. F. Vial, J.M. Forbes, Monthly simulations of the lunar semi-diurnal tide. J. Atmos. Terr. Phys. 56, 1591–1607 (1994) Google Scholar
  128. C. Vineeth, T.K. Pant, R. Sridharan, Equatorial counter electrojets and polar stratospheric sudden warmings—a classical example of high latitude-low latitude coupling? Ann. Geophys. 27, 3147 (2009) ADSGoogle Scholar
  129. C. Vineeth, T.K. Pant, K.K. Kumar, S.G. Sumod, Tropical connection to the polar stratospheric sudden warming through quasi 16-day planetary wave. Ann. Geophys. 28(11), 2007–2013 (2010). doi:10.5194/angeo-28-2007-2010 ADSGoogle Scholar
  130. R.L. Walterscheid, G.G. Sivjee, R.G. Roble, Mesospheric and lower thermospheric manifestations of a stratospheric warming event over Eureka, Canada (80°N). Geophys. Res. Lett. 27(18), 2897–2900 (2000) ADSGoogle Scholar
  131. H. Wang, T.J. Fuller-Rowell, R.A. Akmaev, M. Hu, D.T. Kleist, M.D. Iredell, Simulation of the January 2009 sudden stratospheric 1 warming with a whole atmosphere model. Geophys. Res. Lett. (2011) Google Scholar
  132. J.R. Winick, P.P. Wintersteiner, R.H. Picard, D. Esplin, M.G. Mlynczak, J.M. Russell III, L.L.G. (2009), OH layer characteristics during unusual boreal winters of 2004 and 2006. J. Geophys. Res. 114(A02303) (2009). doi:10.1029/2008JA013688
  133. R.F. Woodman, Vertical drift velocities and east-west electric fields at the magnetic equator. J. Geophys. Res. 75(31), 6249–6259 (1970) ADSGoogle Scholar
  134. R.F. Woodman, T. Hagfors, Methods for the measurement of vertical ionospheric motions near the magnetic equator by incoherent scattering. J. Geophys. Res. 74, 1205–1212 (1969) ADSGoogle Scholar
  135. R.F. Woodman, J.L. Chau, R.R. Ilma, Comparison of ionosonde and incoherent scatter drift measurements at the magnetic equator. Geophys. Res. Lett. 33(L01103) (2006). doi:10.1029/2005GL023692
  136. J. Xiong, W. Wan, B. Ning, L. Liu, Y. Gao, Planetary wave-type oscillations in the ionosphere and their relationship to mesospheric/lower thermospheric and geomagnetic disturbances at Wuhan (30.6°N, 114.5°E). J. Atmos. Sol.-Terr. Phys. 68, 498 (2006). doi:10.1016/j.jastp.2005.03.018 ADSGoogle Scholar
  137. C. Yamashita, H.-L. Liu, X. Chu, Gravity wave variations during the 2009 stratospheric sudden warming as revealed by ECMWF-T799 and observations. Geophys. Res. Lett. 37(L22806) (2010a). doi:10.1029/2010GL045437
  138. C. Yamashita, H.-L. Liu, X. Chu, Responses of mesosphere and lower thermosphere temperatures to gravity wave forcing during stratospheric sudden warming. Geophys. Res. Lett. 37(L09803) (2010b). doi:10.1029/2009GL042351
  139. X. Yue, W.S. Schreiner, J. Lei, C. Rocken, D.C. Hunt, Y.-H. Kuo, W. Wan, Global ionospheric response observed by cosmic satellites during the January 2009 stratospheric sudden warming event. J. Geophys. Res. 115 (2010). doi:10.1029/2010JA015466
  140. B. Zhao, W. Wan, L. Liu, K. Igarashi, M. Nakamura, L.J. Paxton, S.-Y. Su, G. Li, Z. Ren, Anomalous enhancement of ionospheric electron content in the Asian-Australian region during a geomagnetically quiet day. J. Geophys. Res. 113(A11302) (2008). doi:10.1029/2007JA012987

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jorge L. Chau
    • 1
  • Larisa P. Goncharenko
    • 2
  • Bela G. Fejer
    • 3
  • Han-Li Liu
    • 4
  1. 1.Radio Observatorio de JicamarcaInstituto Geofisico del PeruLimaPeru
  2. 2.Massachusetts Institute of TechnologyHaystack ObservatoryWestfordUSA
  3. 3.Center for Atmospheric and Space SciencesUtah State UniversityLoganUSA
  4. 4.High Altitude ObservatoryNational Center for Atmospheric ResearchBoulderUSA

Personalised recommendations